flavor anomalies and the extra-dimension option

Pietro Colangelo
INFN - Bari, Italy

```
based on
P. Biancofiore, F. De Fazio, PC: PRD }89\mathrm{ (2014) }0950
P. Biancofiore, F. De Fazio, E. Scrimieri, PC: EPJ C 75 (2015) }13
```

Helmholtz International Summer School
Quantum Field Theories at the Limits:
from Strong Fields to Heavy Quarks
BLTP - JINR, Dubna, Russia
18-30 July 2016

1

Outline:

- tensions in the flavor sector
- possible NP scenarios
- custodially protected Randall-Sundrum 5D model
- few results
- role of flavor correlations

$$
\begin{aligned}
& \bar{B}\left(B_{s}^{0} \rightarrow \mu^{+} \mu^{-}\right)_{S M}=(3.65 \pm 0.23) \times 10^{-9} \\
& B\left(B_{d}^{0} \rightarrow \mu^{+} \mu^{-}\right)_{S M}=(1.06 \pm 0.09) \times 10^{-10}
\end{aligned}
$$

LHCb \& CMS 1411.4413

Bobeth et al,
PRL 112 (2014) 101801

$$
\mathrm{B}\left(\mathrm{~B}_{\mathrm{d}} \rightarrow \mu^{+} \mu^{-}\right) \text {higher than in } \mathrm{SM} \text { ? }
$$

small tensions accumulated in flavor observables

$$
\begin{aligned}
& \mathrm{R}\left(\mathrm{D}^{*}\right)=B\left(\mathrm{~B} \rightarrow \mathrm{D}^{*} \tau v\right) / B\left(\mathrm{~B} \rightarrow \mathrm{D}^{*} \mu v\right) \\
& \mathrm{R}(\mathrm{D})=\mathrm{B}(\mathrm{~B} \rightarrow \mathrm{D} \tau v) / B(\mathrm{~B} \rightarrow \mathrm{D} \mu v)
\end{aligned}
$$

described at this School

$\left.\mathcal{R}^{0}(D)\right|_{\mathrm{SM}}=\left.\frac{\mathcal{B}\left(\bar{B}^{0} \rightarrow D^{+} \tau^{-} \bar{\nu}_{\tau}\right)}{\mathcal{B}\left(\bar{B}^{0} \rightarrow D^{+} \ell^{-} \bar{\nu}_{\ell}\right)}\right|_{\mathrm{SM}}=0.324 \pm 0.022$.
$\left.\mathcal{R}^{0}\left(D^{*}\right)\right|_{\mathrm{SM}}=\left.\frac{\mathcal{B}\left(\bar{B}^{0} \rightarrow D^{*+} \tau^{-} \bar{\nu}_{\tau}\right)}{\mathcal{B}\left(\bar{B}^{0} \rightarrow D^{*+} \ell^{-} \bar{\nu}_{\ell}\right)}\right|_{\mathrm{SM}}=0.250 \pm 0.003$.
Biancofiore, De Fazio, PC, PRD 87, 074010
violation of Lepton Flavor Universality (LFU) in the 2nd-3rd generation?

small tensions accumulated in flavor observables

LHCb 1506.08777
in the first two bins of $q^{2}\left[1-6 \mathrm{GeV}^{2}\right]$: deviation of 3.5σ
hadronic uncertainties or "new physics" effects?

small tensions accumulated in flavor observables

$$
R_{K}=\frac{\int_{q_{\min }}^{q_{\text {max }}^{2}} \frac{d \Gamma\left[B^{+} \rightarrow K^{+} \mu^{+} \mu^{-}\right]}{d q^{2}} d q^{2}}{\int_{q_{\text {min }}^{2}}^{q_{\text {and }}^{2}} \frac{d \Gamma\left[B^{+} \rightarrow K^{+} e^{+} e^{-}\right]}{d q^{2}} d q^{2}}, \text { LHCb PRL (2014) } 151601
$$

violation of LFU in the 1 st-2nd generation?

$$
\begin{aligned}
& \begin{array}{ll}
\left.V_{u b}\right|_{\text {incl }} \text { vs }\left.V_{u b}\right|_{\text {excl }} & (\approx 3 \sigma) \\
\left.V_{c b}\right|_{\text {incl }} \text { vs } V_{c b b_{\text {excl }}} & (\approx 3 \sigma)
\end{array} \\
& (g-2)_{\mu} \quad(\approx 3.5 \sigma) \\
& \varepsilon^{\prime} / \varepsilon \quad(\approx 2-3 \sigma \text { above the SM result })
\end{aligned}
$$

\square
$h \rightarrow \tau \mu \quad$ hints for a non zero result -
but new CMS measurement (2016) towards zero
Leonardo at this School

angular distributions in $B \rightarrow K^{*}(K \pi) \mu^{+} \mu^{-}$

Sinha at this School

$$
\begin{aligned}
\frac{1}{d \Gamma / d q^{2}} \frac{d^{4} \Gamma}{d \cos \theta_{\ell} d \cos \theta_{K} d \phi d q^{2}}= & \frac{9}{32 \pi}\left[\frac{3}{4}\left(1-F_{L}\right) \sin ^{2} \theta_{K}+F_{L} \cos ^{2} \theta_{K}+\frac{1}{4}\left(1-F_{L}\right) \sin \theta_{K} \cos 2 \theta_{\ell}\right. \\
& -F_{L} \cos ^{2} \theta_{K} \cos 2 \theta_{\ell}+S_{3} \sin ^{2} \theta_{K} \sin ^{2} \theta_{\ell} \cos 2 \phi+S_{4} \sin 2 \theta_{K} \sin 2 \theta_{\ell} \cos \phi \\
& +S_{5} \sin 2 \theta_{K} \sin \theta_{\ell} \cos \phi+S_{6} \sin ^{2} \theta_{K} \cos \theta_{\ell}+S_{7} \sin 2 \theta_{K} \sin \theta_{\ell} \sin \phi \\
& \left.+S_{8} \sin 2 \theta_{K} \sin 2 \theta_{\ell} \sin \phi+S_{9} \sin ^{2} \theta_{K} \sin ^{2} \theta_{\ell} \sin 2 \phi\right]
\end{aligned}
$$

$$
P_{i=4,5,6,8}^{\prime}=\frac{S_{j=4,5,7,8}}{\sqrt{F_{L}\left(1-F_{L}\right)}}
$$

mild (?) form factor dependence
Descotes, Matias, Virto, ...

discrepancy in two bins of q^{2}

(a)Result for P_{4}^{\prime}

(c)Result for P_{6}^{\prime}

(b)Result for P_{5}^{\prime}

(d)Result for P_{8}^{\prime}

$$
\mathrm{B} \rightarrow \mathrm{~K}^{*} \mu^{+} \mu^{-}
$$

$$
H^{e f f}=-4 \frac{G_{F}}{\sqrt{2}} V_{t b} V_{t s}^{*}\left\{C_{1} O_{1}+C_{2} O_{2}+\sum_{i=3, \ldots, 6} C_{i} O_{i}+\sum_{i=7, \ldots, 10, P, S}\left[C_{i} O_{i}+C_{i}^{\prime} O_{i}^{\prime}\right]\right\}
$$

mostly relevant

$$
\begin{aligned}
& O_{7}=\frac{e}{16 \pi^{2}} m_{b}\left(\bar{s}_{L \alpha} \sigma^{\mu \nu} b_{R \alpha}\right) F_{\mu \nu} \\
& O_{7}^{\prime}=\frac{e}{16 \pi^{2}} m_{b}\left(\bar{s}_{R \alpha} \sigma^{\mu \nu} b_{L \alpha}\right) F_{\mu \nu}
\end{aligned}
$$

$$
\begin{aligned}
& O_{9}=\frac{e^{2}}{16 \pi^{2}}\left(\bar{s}_{L \alpha} \gamma^{\mu} b_{L \alpha}\right) \bar{\ell} \gamma_{\mu} \ell \\
& O_{9}^{\prime}=\frac{e^{2}}{16 \pi^{2}}\left(\bar{s}_{R \alpha} \gamma^{\mu} b_{R \alpha}\right) \bar{\ell} \gamma_{\mu} \ell \\
& O_{10}=\frac{e^{2}}{16 \pi^{2}}\left(\bar{s}_{L \alpha} \gamma^{\mu} b_{L \alpha}\right) \bar{\ell} \gamma_{\mu} \gamma_{5} \ell \\
& O_{10}^{\prime}=\frac{e^{2}}{16 \pi^{2}}\left(\bar{s}_{R \alpha} \gamma^{\mu} b_{R \alpha}\right) \bar{\ell} \gamma_{\mu} \gamma_{5} \ell .
\end{aligned}
$$

if the anomaly is due to NP, how large should be the NP contributions to the relevant Wilson coefficients C_{i} ?

global fits from b->s measurements

Decay	obs.	q^{2} bin	SM pred.	measurement		pull
$\bar{B}^{0} \rightarrow \bar{K}^{* 0} \mu^{+} \mu^{-}$	F_{L}	$[2,4.3]$	0.81 ± 0.02	0.26 ± 0.19	ATLAS	+2.9
$\bar{B}^{0} \rightarrow \bar{K}^{* 0} \mu^{+} \mu^{-}$	F_{L}	$[4,6]$	0.74 ± 0.04	0.61 ± 0.06	LHCb	+1.9
$\bar{B}^{0} \rightarrow \bar{K}^{* 0} \mu^{+} \mu^{-}$	S_{5}	$[4,6]$	-0.33 ± 0.03	-0.15 ± 0.08	LHCb	-2.2
$\bar{B}^{0} \rightarrow \bar{K}^{* 0} \mu^{+} \mu^{-}$	P_{5}^{\prime}	$[1.1,6]$	-0.44 ± 0.08	-0.05 ± 0.11	LHCb	-2.9
$\bar{B}^{0} \rightarrow \bar{K}^{* 0} \mu^{+} \mu^{-}$	P_{5}^{\prime}	$[4,6]$	-0.77 ± 0.06	-0.30 ± 0.16	LHCb	-2.8
$B^{-} \rightarrow K^{*-} \mu^{+} \mu^{-}$	$10^{7} \frac{\mathrm{dBR}}{d q^{2}}$	$[4,6]$	0.54 ± 0.08	0.26 ± 0.10	LHCb	+2.1
$\bar{B}^{0} \rightarrow \bar{K}^{0} \mu^{+} \mu^{-}$	$10^{8} \frac{\mathrm{dBR}}{d q^{2}}$	$[0.1,2]$	2.71 ± 0.50	1.26 ± 0.56	LHCb	+1.9
$\bar{B}^{0} \rightarrow \bar{K}^{0} \mu^{+} \mu^{-}$	$10^{8} \frac{\mathrm{dBR}}{d q^{2}}$	$[16,23]$	0.93 ± 0.12	0.37 ± 0.22	CDF	+2.2
$B_{s} \rightarrow \phi \mu^{+} \mu^{-}$	$10^{7} \frac{\mathrm{dBR}}{\mathrm{d} q^{2}}$	$[1,6]$	0.48 ± 0.06	0.23 ± 0.05	LHCb	+3.1

LHCb \& upgrade sensitivities

Table 28: Statistical sensitivities of the LHCb upgrade to key observables. For each observable the expected sensitivity is given for the integrated luminosity accumulated by the end of LHC Run 1, by 2018 (assuming $5 \mathrm{fb}^{-1}$ recorded during Run 2) and for the LHCb Upgrade $\left(50 \mathrm{fb}^{-1}\right)$. An estimate of the theoretical uncertainty is also given - this and the potential sources of systematic uncertainty are discussed in the text.

Type B_{s}^{0} mixing	Observable	LHC Run 1	LHCb 2018	LHCb upgrade	Theory
	$\phi_{s}\left(B_{s}^{0} \rightarrow J / \psi \phi\right)(\mathrm{rad})$	0.050	0.025	0.009	~ 0.003
	$\phi_{s}\left(B_{s}^{0} \rightarrow J / \psi f_{0}(980)\right)(\mathrm{rad})$	0.068	0.035	0.012	~ 0.01
	$A_{\text {sl }}\left(B_{s}^{9}\right)\left(10^{-3}\right)$	2.8	1.4	0.5	0.03
Gluonic penguin	$\phi_{s}^{\text {eff }}\left(B_{s}^{0} \rightarrow \phi \phi\right)(\mathrm{rad})$	0.15	0.10	0.023	0.02
	$\phi_{s}^{\mathrm{dff}}\left(B_{s}^{0} \rightarrow K^{* 0} \bar{K}^{* 0}\right)(\mathrm{rad})$	0.19	0.13	0.029	<0.02
	$2 \beta^{\text {eff }}\left(B^{0} \rightarrow \phi K_{S}^{0}\right)(\mathrm{rad})$	0.30	0.20	0.04	0.02
Right-handed	$\phi_{s}^{\text {elf }}\left(B_{s}^{0} \rightarrow \phi \gamma\right)$	0.20	0.13	0.030	<0.01
currents	$\tau^{\text {eff }}\left(B_{s}^{0} \rightarrow \phi \gamma\right) / \tau_{B^{\prime}}$	5\%	3.2\%	0.3\%	0.2%
Electroweak penguin	$S_{3}\left(B^{0} \rightarrow K^{20} \mu^{+} \mu^{-} ; 1<q^{2}<6 \mathrm{GeV}^{2} / c^{4}\right)$	0.04	0.020	0.007	0.02
	$q_{0}^{2} A_{\mathrm{FB}}\left(B^{0} \rightarrow K^{* 0} \mu^{+} \mu^{-}\right)$	10\%	5\%	1.9\%	$\sim 7 \%$
	$A_{\mathrm{I}}\left(K \mu^{+} \mu^{-} ; 1<q^{2}<6 \mathrm{GeV}^{2} / c^{4}\right)$	0.09	0.05	0.017	~ 0.02
	$\mathcal{B}\left(B^{+} \rightarrow \pi^{+} \mu^{+} \mu^{-} / / \mathcal{B}\left(B^{+} \rightarrow K^{+} \mu^{+} \mu^{-}\right)\right.$	14\%	7\%	2.4\%	$\sim 10 \%$
Higgs penguin	$\mathcal{B}\left(B_{s}^{0} \rightarrow \digamma^{+} \mu^{-}\right)\left(10^{-9}\right)$	1.0	0.5	0.19	0.3
	$\mathcal{B}\left(B^{0} \rightarrow \mu^{+} \mu^{-}\right) / \mathcal{B}\left(B_{s}^{0} \rightarrow \mu^{+} \mu^{-}\right)$	220\%	110\%	40\%	$\sim 5 \%$
Unitarity triangle angles	$\gamma\left(B \rightarrow D^{(*)} K^{(*)}\right)$	$7{ }^{\circ}$	4°	$1.1{ }^{\circ}$	negligible
	$\gamma\left(B_{s}^{0} \rightarrow D_{s}^{\mp} K^{ \pm}\right)$	17	11°	$2.4{ }^{\circ}$	negligible
	$\beta\left(B^{0} \rightarrow J / \psi K_{S}^{0}\right)$	1.7°	0.8°	$0.31{ }^{\circ}$	negligible
Charm	$A_{\Gamma}\left(D^{0} \rightarrow K^{+} K^{-}\right)\left(10^{-4}\right)$	3.4	2.2	0.5	-
$C P$ violation	$\Delta A_{C P}\left(10^{-3}\right)$	0.8	0.5	0.12	-

Important role of BELLE II

tensions should be considered within possible NP realizations
discussed today: the extra-dimension option main motivation: hierarchy $R S_{c}$ model
concrete models -> precise correlations among the observables
tensions should be considered within possible NP realizations
discussed today: the extra-dimension option main motivation: hierarchy

$$
\mathrm{RS}_{\mathrm{C}} \text { model not of a simple model }
$$

concrete models -> precise correlations among the observables
tensions should be considered within possible NP realizations
discussed today: the extra-dimension option main motivation: hierarchy

$$
\mathrm{RS}_{\mathrm{C}} \text { model not of a simple model }
$$

concrete models -> precise correlations among the observables interesting correlations found in $\mathrm{RS}_{\text {c }}$
simple introduction to extra dimensions

```
why extra dimensions?
```

first proposal

- 1914 G. Nordstrom
idea: unification of gravity and electromagnetism could be achieved in 5 dimensions
- String theory (incorporating both gauge theories and gravitation) requires 6 or 7 extra spatial dimensions

```
today
```

- address the hierarchy problem
- provide dark matter candidates
- coupling unification
-

Arkani-Hamed, Dimopoulos, Dvali
Antoniadis
Randall, Sundrum
Dienes, Dudas, Gherghetta

massless scalar field in 5D

$$
\begin{array}{ll}
S=\int d^{4} x \int_{y_{1}}^{y_{2}} d y \frac{1}{2} \partial_{A} \Phi(x, y) \partial^{A} \Phi(x, y) & y_{1}, y_{2} \text { arbitrary } \\
\text { Try }=0,1,2,3,5 \\
\text { Try } & \Phi(x, y)=\sum_{n} \phi_{n}(x) \chi_{n}(y) \\
\text { If } \quad \text { and assume } \int_{y_{1}}^{y_{2}} d y \chi_{n}(y) \chi_{m}(y)=\delta_{n m} \\
\quad\left[\chi_{m} \partial_{y} \chi_{n}\right]_{y_{1}}^{y_{2}}=0 & \text { and }\left(\partial_{y}^{2}+m_{n}^{2}\right) \chi_{n}=0 \quad \forall n, m
\end{array}
$$

$$
S=\int d^{4} x \quad \sum_{n} \frac{1}{2}\left(\partial_{\mu} \phi_{n} \partial^{\mu} \phi_{n}-m_{n}^{2} \phi_{n}^{2}\right) \quad \mu=0,1,2,3
$$

in 4D there is a tower of states with mass m_{n} (KK modes)
possible BC

$$
\left\{\begin{array}{l}
\left.\chi_{m}\right|_{y_{1}} ^{y_{2}}=0 \\
\left.\partial_{y} \chi_{n}\right|_{y_{1}} ^{y_{2}}=0
\end{array}\right.
$$

Dirichlet BC
Von Neumann BC

massless scalar field in 5D

$$
\left(\partial_{y}^{2}+m_{n}^{2}\right) \chi_{n}=0 \quad \Rightarrow \quad \chi_{n}=A_{n} e^{i m_{n} y}+B_{n} e^{-i m_{n} y}
$$

Analogy with quantum mechanics:

- The solution of the Schroedinger equation for the free particle is

$$
\psi=A e^{i p y}+B e^{-i p y}
$$

Therefore $\quad m_{n} \leftrightarrow p$

- If the particle moves along an infinite axis (non compact space) p has continuous values
- If the particle is confined in a box $0 \leq y \leq \pi L \quad$ (compact space)

$$
\begin{aligned}
\psi(0) & =\psi(\pi L)=0 \quad \Rightarrow \quad p=n \frac{\pi}{L} \\
\psi & \approx \sin \left(\frac{n \pi y}{L}\right) \\
& \longrightarrow \text { absence of zero mode }
\end{aligned}
$$

massless scalar field in 5D

Similar situation in 5D: we consider that the 5th dimension y is $-\pi R \leq y \leq \pi R$
with periodic boundary conditions (geometry= unidimensional sphere S^{1})

$$
\chi_{n}(-\pi R)=\chi_{n}(\pi R) \quad \Rightarrow \quad m_{n}=\frac{n}{R}
$$

$$
\chi_{n} \approx A_{n} \cos \left(\frac{n y}{R}\right)+B_{n} \sin \left(\frac{n y}{R}\right) \longrightarrow \text { there is a zero mode }
$$

- combine the geometry S^{1} with a parity operation for $y \in[-\pi R, \pi R]$:

$$
Z_{2}: y \rightarrow-y
$$

- require that χ_{n} have definite behaviour under Z_{2}

$$
\leadsto \begin{cases}\chi_{n} \approx \cos \left(\frac{n y}{R}\right) \longrightarrow & \text { even under } \mathrm{Z}_{2} \text {, satisfies } \\ \left.\partial_{y} \chi_{n}\right|_{-\pi R} ^{\pi R}=0 \\ \chi_{n} \approx \sin \left(\frac{n y}{R}\right) \longrightarrow & \text { odd under } \mathrm{Z}_{2} \text {, satisfies } \\ \left.\chi_{n}\right|_{-\pi R} ^{\pi R}=0\end{cases}
$$

Geometry $\mathrm{S}^{1} / \mathrm{Z}_{2} \longrightarrow$ orbifold
three main scenarios:

- Large extra dimensions (ADD)
- Universal extra dimension (UED)
- Warped extra dimensions (RS)

Proposed as a possible solution to the hierarchy problem

It Scale of weak interactions set by the Fermi constant

$$
\begin{aligned}
G_{F}= & \frac{1}{\left(\sqrt{2} \mathrm{v}^{2}\right)}
\end{aligned} \xlongequal{ } 1.166 \times 10^{-5} \quad \mathrm{GeV}^{-2} \mathrm{Higgs} \text { vev } \mathrm{v} \approx 246 \mathrm{GeV} \text {. }
$$

Gravitation: Newton constant

$$
G_{N}=\frac{1}{\left(\sqrt{2} \mathrm{M}_{P l}^{2}\right)} \cong 6.7 \times 10^{-39} \quad \mathrm{GeV}^{-2}
$$

\longrightarrow Planck mass $M_{P l} \approx 10^{19} \mathrm{GeV}$

Is M_{PI} the fundamental scale?

$$
\text { In } \mathrm{D}=4 \quad F=G \frac{m_{1} m_{2}}{r^{2}} \quad \text { with } \quad G=\frac{1}{4 \pi M_{P l}^{2}}
$$

In $\mathrm{D}=4+\mathrm{n} \quad F=G^{(n)} \frac{m_{1} m_{2}}{r^{n+2}}$

$$
G^{(n)}=\frac{1}{4 \pi M^{n+2}}
$$

Matching at $\mathrm{r}=\mathrm{R} \quad \llbracket G^{(n)} \frac{m_{1} m_{2}}{R^{n+2}}=G \frac{m_{1} m_{2}}{R^{2}} \quad \Rightarrow \quad G=\frac{G^{(n)}}{R^{n}}$

$$
M_{P l}^{2}=R^{n} M^{n+2}
$$

fundamental scale no more $M_{P I}$ but M

Large extra dimensions

$$
\begin{aligned}
& \mathrm{M}=\mathrm{O}(\mathrm{TeV}) \\
& \begin{array}{l}
n=1 \quad
\end{array} \quad \Rightarrow \quad R \cong 10^{11} \mathrm{~m} \\
& n=2 \quad \Longrightarrow \quad \text { Too large! } \\
& n \cong 1 \mu m \\
& \text { in this scenario } n \geq 2
\end{aligned}
$$

SM fields do not feel the effects of large extra dimensions and are confined to a 3-brane Gravity is allowed to propagate in the bulk

Large extra dimensions: collider signatures

- real emission of gravitons and their KK excitations the produced graviton behaves as a stable,

$$
\begin{aligned}
& e^{+} e^{-} \rightarrow \gamma(Z)+G_{(n)} \\
& p \bar{p}(p p) \rightarrow g+G_{(n)} \\
& Z \rightarrow \overline{f f}+G_{(n)}
\end{aligned}
$$ non interacting particle and thus appears as missing energy in the detector

- virtual graviton exchange in $2 \rightarrow 2$ scattering.
deviations in cross sections and asymmetries in SM processes such as $e^{+} e^{-} \rightarrow \overline{f f}$
Also possible to observe processes like $\quad g g \rightarrow \ell^{+} \ell^{-}$
the analysis of the angular distribution of the final states could signal the spin-2 nature of the intermediate state

Universal Extra Dimensions are compact dimensions of size $\quad R^{-1} \approx \mathrm{TeV}$ accessible to all SM fields

KK parity (-1$)^{\mathrm{j}}$ ($\mathrm{j}=\mathrm{KK}$ number) conservation in the equivalent 4D theory

- no vertices involving a single non zero KK mode
\longrightarrow no tree level contribution to the EW observables
- non zero KK modes may be produced at colliders only
in groups of 2 or more

Appelquist-Cheng-Dobrescu model (ACD): a single ED

- A single additional parameter: $1 / \mathrm{R}$
- Minimal extension of the SM in 4+1 dimensions containing
- KK excitations of the SM fields
- KK modes having no SM partner
\square
I
unwanted fields (fermions with the wrong chirality and the 5th component of gauge fields) can be projected out

Universal extra dimensions: signatures at hadron colliders

Discovery of KK modes
Since masses are roughly $\quad \approx \frac{n}{R}$ particles with $n \geq 3$ would be heavy
and difficult to detect
\longrightarrow modes with $\mathrm{n}=1$ and $\mathrm{n}=2$

1-modes may be produced in pairs at colliders

problem: how to distinguish these processes from SUSY:
1-modes are analogous to superpartners in SUSY
(KK parity resambles R parity ...)
$\left.\begin{array}{l|l|l} & \text { SUSY } & \text { ED } \\ \hline \begin{array}{l}\text { number of predicted } \\ \text { partners }\end{array} & \begin{array}{l}1 \text { superpartner } \\ \text { for each SM particle }\end{array} & \begin{array}{l}\text { tower of KK states } \\ \text { (though cross sections for the production } \\ \text { of higher modes are kinematically suppressed) }\end{array} \\ \hline \text { spin of partners } & \text { differs of } 1 / 2 & \begin{array}{l}\text { SM particles and their KK partners } \\ \text { have the same spin }\end{array} \\ \hline \text { couplings } & \begin{array}{l}\text { the same as for SM } \\ \text { particles }\end{array} & \begin{array}{l}\text { the same as for SM } \\ \text { particles }\end{array} \\ \hline \text { collider signature } & \begin{array}{l}\text { missing energy } \\ \text { (in models with a WIMP LSP) }\end{array} & \text { missing energy commonfeatures }\end{array}\right\}$

```
example: twin processes
```


$$
\left.\begin{array}{lrl}
\text { SUSY: } & \widetilde{q} \rightarrow q \widetilde{\chi}_{2}^{0} \rightarrow q \ell^{ \pm} \tilde{\ell}^{\mp} \rightarrow q \ell^{+} \ell^{-} \widetilde{\chi}_{1}^{0} \\
\text { UED: } & Q_{1} \rightarrow q Z_{1} \rightarrow q \ell^{ \pm} \widetilde{\ell}_{1}^{\mp} \rightarrow q \ell^{+} \ell^{-} \gamma_{1}
\end{array}\right\} \begin{array}{r}
\text { same observed final state } \\
q \ell^{+} \ell^{-} \mathbb{E}_{T}
\end{array}
$$

proposal

Barr, PLB 596 (04) 205
Datta et al., PRD 72 (05) 096006
Smillie and Webber, JHEP 510 (05) 69
consider the charge asymmetry $A^{+-}=\frac{s^{+}-s^{-}}{s^{+}+s^{-}} \quad s^{ \pm}=\frac{d \sigma}{d\left(m_{\ell_{+} q}\right)}$
shape slightly different in the two cases
challenging!

2-modes They may be pair produced as the 1-modes However, unlike them, they can decay into SM particles at 1 loop

The loop-induced coupling 2-0-0 allows 2-modes to be singly produced in the s-channel

UED vs SUSY: signatures at high energy lepton colliders

example: UED $e^{+} e^{-} \rightarrow \mu_{1}^{+} \mu_{1}^{-} \rightarrow \mu^{+} \mu^{-} \gamma_{1} \gamma_{1}$

$$
\operatorname{sUSY} e^{+} e^{-} \rightarrow \tilde{\mu}^{+} \tilde{\mu}^{-} \rightarrow \mu^{+} \mu^{-} \tilde{\chi}_{1}^{0} \tilde{\chi}_{1}^{0}
$$

for $\quad \frac{1}{R}=500 \quad \mathrm{GeV} \quad \sqrt{\mathrm{s}}=3 \quad \mathrm{TeV}$
differential cross section as a function of the muon scattering angle

$$
\begin{aligned}
& \left.\left(\frac{d \sigma}{d \cos \vartheta}\right)\right|_{U E D} \approx 1+\cos ^{2} \vartheta \\
& \left.\left(\frac{d \sigma}{d \cos \vartheta}\right)\right|_{S U S Y} \approx 1-\cos ^{2} \vartheta
\end{aligned}
$$

b-> s processes in warped extra dimensions

fermion localization in the extra dimension depends exponentially on $\mathrm{O}(1)$ bulk mass parameters c
overlap with a Higgs localized on IR exponentially small for light quarks O(1) for top

```
custodially protected RSc


\section*{pros:}
prevents large \(Z\) couplings to left-handed fermions
consistent with electroweak precision observables without large fine-tuning masses of Kaluza-Klein of a few TeV (within the LHC reach)

\section*{S, T, U parameters (Peskin-Takeuchi)}

\section*{modified in NP models}
in terms of vacuum polarization amplitudes
\[
\begin{aligned}
& \gamma \sim \sim \operatorname{\sim n} \gamma=i e^{2} \Pi_{Q Q} g^{\mu v}+\cdots \\
& Z \sim \sim \sim \sim \gamma=i \frac{e^{2}}{c s}\left(\Pi_{3 Q}-s^{2} \Pi_{Q Q}\right) g^{\mu v}+\cdots \\
& Z \sim \sim \sim \sim Z=i \frac{e^{2}}{c^{2} s^{2}}\left(\Pi_{33^{2}}-2 s^{2} \Pi_{3 Q}+s^{4} \Pi_{Q Q}\right) g^{\mu v}+\cdots \\
& W \sim \sim \sim \sim W=i \frac{e^{2}}{s^{2}} \Pi_{11} g^{\mu v}+\cdots
\end{aligned}
\]
\[
\begin{aligned}
& \alpha S \equiv 4 e^{2}\left[\Pi_{33}^{\prime}(0)-\Pi_{3 Q}^{\prime}(0)\right], \\
& \alpha T \equiv \frac{e^{2}}{s^{2} c^{2} m_{Z}^{2}}\left[\Pi_{11}(0)-\Pi_{33}(0)\right], \\
& \alpha U \equiv 4 e^{2}\left[\Pi_{11}^{\prime}(0)-\Pi_{33}^{\prime}(0)\right]
\end{aligned}
\]

\section*{modification of the Peskin-Takeuchi parameters}

In RS without custodial protection:

large correction to the \(T\) parameter expected (T quantifies the strength of weak isospin breaking)

RS with custodial protection

compact ED -> tower of Kaluza-Klein (KK) excitatios for each particle
SM particles identified with zero-modes
boundary conditions on the branes distinguish particles with a SM counterpart from those without it

Neumann BC on both branes (++) -> zero-modes (SM states)
Neumann BC on the IR brane + Dirichlet BC on the UV brane-> no zero-modes

\section*{enlarged Higgs sector}

Higgs field \(H(x, y)\) transforms as a bidoublet under \(S U(2)_{\llcorner } \times S U(2)_{R}\)
\[
H(x, y)=\left(\begin{array}{cc}
\frac{\pi^{+}}{\sqrt{2}} & -\frac{h^{0}-i \pi^{0}}{2} \\
\frac{h^{0}+i \pi^{0}}{2} & \frac{\pi^{-}}{\sqrt{2}}
\end{array}\right)
\]

KK decomposition \(H(x, y)=\frac{1}{\sqrt{L}} \sum_{k} H^{(k)}(x) h^{(k)}(y)\)
only \(\mathrm{h}^{0}\) has a non vanishing vev \(\mathrm{v}=246.22 \mathrm{GeV}\)
localization on the IR brane fulfilled by choosing
\[
h(y) \equiv h^{(0)}(y) \simeq e^{k L} \delta(y-L)
\]

\section*{extended gauge group -> new gauge bosons}
\(S U(2)_{L} \rightarrow W_{L}^{a, u}\)
\(S U(2)_{R} \rightarrow W_{R}^{a, \mu}\)
\(U(1)_{X} \rightarrow X^{\mu}\)

\section*{charged}
\[
W_{L(R) \mu}^{ \pm}=\frac{W_{L(R) \mu}^{1} \mp i W_{L(R) \mu}^{2}}{\sqrt{2}}
\]
neutral: two-step mixing

- gluons
\[
G_{\mu}(++)
\]
- charged bosons \(W_{L}^{ \pm}(++)\)and \(W_{R}^{ \pm}(-+)\)
- neutral bosons \(A(++), Z(++)\) and \(Z_{X}(-+)\)


\section*{+ KK towers}
further mixing occurs between zero-modes and higher KK states
\[
\left(\begin{array}{c}
W^{ \pm} \\
W_{H}^{ \pm} \\
W^{\prime \pm}
\end{array}\right)=\mathcal{G}_{W}\left(\begin{array}{c}
W_{L}^{ \pm(0)} \\
W_{L}^{ \pm(1)} \\
W_{R}^{ \pm(1)}
\end{array}\right)
\]
\[
\left(\begin{array}{c}
Z \\
Z_{H} \\
Z^{\prime}
\end{array}\right)=\mathcal{G}_{Z}\left(\begin{array}{l}
Z^{(0)} \\
Z^{(1)} \\
Z_{X}^{(1)}
\end{array}\right)
\]

free action
\[
S_{\text {gauge }}=\int d^{5} x \sqrt{G}\left(-\frac{1}{4} F_{M N} F^{M N}\right)
\]
- eqs of motion derived
- solutions depend on the BC
- provide the gauge boson profiles

\section*{fermions}
```

ordinary fermions in suitable representations of the enlarged gauge group
together with new massive fermions
quark mass eigenstates obtained upon rotation of the flavor eigenstates
4 rotation matrices:
UL,R

```
\[
V_{C K M}=\mathscr{U}_{L}^{\dagger} \mathscr{D}_{L}
\]
one of the 4 matrices can be eliminated in favor of the CKM the others enter in the Feynman rules of neutral and charged current interactions

\section*{fermions}
- left-handed fermions + new fermions transform as bi-doublets under \(\operatorname{SU}(2){ }_{\llcorner } \times \operatorname{SU}(2)_{R}\)
- right-handed up-type quarks are singlets
- right-handed down-type quarks + leptons + new fermions placed in multiplets transforming as \((3,1) \oplus(1,3)\) under \(S U(2)_{\llcorner } \times S U(2)_{R}\)
- electric charge \(Q=T_{L}^{3}+T_{R}^{3}+Q_{X}\)
\[
\begin{aligned}
& \xi_{1 L}^{i}=\left(\begin{array}{cc}
\chi_{L}^{u_{i}}(-+)_{5 / 3} & q_{L}^{u_{i}}(++)_{2 / 3} \\
\chi_{L}^{d_{i}}(-+)_{2 / 3} & q_{L}^{d_{i}}(++)_{-1 / 3}
\end{array}\right)_{2 / 3}, \\
& \xi_{2 R}^{i}=u_{R}^{i}(++)_{2 / 3}, \\
& \xi_{3 R}^{i}=T_{3 R}^{i} \oplus T_{4 R}^{i}=\left(\begin{array}{c}
\psi_{R}^{\prime i}(-+)_{5 / 3} \\
U_{R}^{\prime i}(-+)_{2 / 3} \\
D_{R}^{\prime i}(-+)_{-1 / 3}
\end{array}\right)_{2 / 3} \oplus\left(\begin{array}{c}
\psi_{R}^{\prime \prime i}(-+)_{5 / 3} \\
U_{R}^{\prime \prime i}(-+)_{2 / 3} \\
D_{R}^{i}(++)_{-1 / 3}
\end{array}\right)_{2 / 3}
\end{aligned}
\]

\section*{tree-level FCNC in RS \({ }_{c}\) model}

\[
X=A^{(1)}(1 \text { st } K K \text { of the } \gamma)
\]
\(Z, Z_{H}, Z^{\prime}\) (from mixing of 0 - and 1 -modes) \(\mathrm{G}^{(1)}\) (1st KK of the g )

> FCNC involving quarks other than top suppressed

\section*{many ingredients}

\section*{FIRST WITCH}

Round about the cauldron go; In the poison'd entrails throw. Toad, that under cold stone Days and nights has thirty-one Swelter'd venom sleeping got, Boil thou first \(i\) ' the charmed pot.

\section*{ALL}

Double, double toil and trouble; Fire burn, and cauldron bubble.

\section*{SECOND WITCH}

Fillet of a fenny snake, In the cauldron boil and bake; Eye of newt and toe of frog, Wool of bat and tongue of dog, Adder's fork and blind-worm's sting, Lizard's leg and owlet's wing, For a charm of powerful trouble, Like a hell-broth boil and bubble.

\section*{ALL}

Double, double toil and trouble; Fire burn and cauldron bubble.

\section*{THIRD WITCH}

Scale of dragon, tooth of wolf,
Witches' mummy, maw and gulf
Of the ravin'd salt-sea shark, Root of hemlock digg'd i' the dark, Liver of blaspheming Jew, Gall of goat, and slips of yew Silver'd in the moon's eclipse, Nose of Turk and Tartar's lips, Finger of birth-strangled babe Ditch-deliver'd by a drab, Make the gruel thick and slab: Add thereto a tiger's chaudron, For the ingredients of our cauldron.

ALL
Double, double toil and trouble; Fire burn and cauldron bubble.

\section*{SECOND WITCH}

Cool it with a baboon's blood,
Then the charm is firm and good.

Macbeth, act 4, scene 1
```

modified Wilson coefficients in RS codel

```
\[
\begin{aligned}
\Delta C_{9} & =\left[\frac{\Delta Y_{s}}{\sin ^{2}\left(\theta_{W}\right)}-4 \Delta Z_{s}\right] \\
\Delta C_{9}^{\prime} & =\left[\frac{\Delta Y_{s}^{\prime}}{\sin ^{2}\left(\theta_{W}\right)}-4 \Delta Z_{s}^{\prime}\right] \\
\Delta C_{10} & =-\frac{\Delta Y_{s}}{\sin ^{2}\left(\theta_{W}\right)}, \\
\Delta C_{10}^{\prime} & =-\frac{\Delta Y_{s}^{\prime}}{\sin ^{2}\left(\theta_{W}\right)},
\end{aligned}
\]
\[
\begin{aligned}
\Delta Y_{s} & =-\frac{1}{V_{t b} V_{t s}^{*}} \sum_{X} \frac{\Delta_{L}^{\ell \ell}(X)-\Delta_{R}^{\ell \ell}(X)}{4 M_{X}^{2} g_{S M}^{2}} \Delta_{L}^{b s}(X) \\
\Delta Y_{s}^{\prime} & =-\frac{1}{V_{t b} V_{t s}^{*}} \sum_{X} \frac{\Delta_{L}^{\ell \ell}(X)-\Delta_{R}^{\ell \ell}(X)}{4 M_{X}^{2} g_{S M}^{2}} \Delta_{R}^{b s}(X) \\
\Delta Z_{s} & =\frac{1}{V_{t b} V_{t s}^{*}} \sum_{X} \frac{\Delta_{R}^{\ell \ell}(X)}{8 M_{X}^{2} g_{S M}^{2} \sin ^{2}\left(\theta_{W}\right)} \Delta_{L}^{b s}(X) \\
\Delta Z_{s}^{\prime} & =\frac{1}{V_{t b} V_{t s}^{*}} \sum_{X} \frac{\Delta_{R}^{\ell \ell}(X)}{8 M_{X}^{2} g_{S M}^{2} \sin ^{2}\left(\theta_{W}\right)} \Delta_{R}^{b s}(X)
\end{aligned}
\]
\[
H^{e f f}=-4 \frac{G_{F}}{\sqrt{2}} V_{t b} V_{t s}^{*}\left\{C_{1} O_{1}+C_{2} O_{2}+\sum_{i=3, \ldots, 6} C_{i} O_{i}+\sum_{i=7, \ldots, 10, P, S}\left[C_{i} O_{i}+C_{i}^{\prime} O_{i}^{\prime}\right]\right\}
\]
\[
\begin{aligned}
& O_{9}=\frac{e^{2}}{16 \pi^{2}}\left(\bar{s}_{L \alpha} \gamma^{\mu} b_{L \alpha}\right) \bar{\ell} \gamma_{\mu} \ell \\
& O_{9}^{\prime}=\frac{e^{2}}{16 \pi^{2}}\left(\bar{s}_{R \alpha} \gamma^{\mu} b_{R \alpha}\right) \bar{\ell} \gamma_{\mu} \ell \\
& O_{10}=\frac{e^{2}}{16 \pi^{2}}\left(\bar{s}_{L \alpha} \gamma^{\mu} b_{L \alpha}\right) \bar{\ell} \gamma_{\mu} \gamma_{5} \ell \\
& O_{10}^{\prime}=\frac{e^{2}}{16 \pi^{2}}\left(\bar{s}_{R \alpha} \gamma^{\mu} b_{R \alpha}\right) \bar{\ell} \gamma_{\mu} \gamma_{5} \ell
\end{aligned}
\]
```

modified Wilson coefficients in RS model

```
\[
\begin{aligned}
& \Delta C_{9}=\left[\frac{\Delta Y_{s}}{\sin ^{2}\left(\theta_{W}\right)}-4 \Delta Z_{s}\right] \quad \Delta Y_{s}=-\frac{1}{V_{t b} V_{t s}^{*}} \sum_{X} \frac{\Delta_{L}^{\ell \ell}(X)-\Delta_{R}^{\ell \ell}(X)}{4 M_{X}^{2} 9_{S M}^{2}} \Delta_{L}^{b s}(X), \\
& \Delta C_{9}^{\prime}=\left[\frac{\Delta Y_{s}^{\prime}}{\sin ^{2}\left(\theta_{W}\right)}-4 \Delta Z_{s}^{\prime}\right] \quad \Delta Y_{s}^{\prime}=-\frac{1}{V_{t b} V_{t s}^{*}} \sum_{X} \frac{\Delta_{L}^{\mu}(X)-\Delta_{R}^{\ell \ell}(X)}{4 M_{X}^{2} g_{S M}^{2}} \Delta_{R}^{b s}(X) \text {, } \\
& \Delta C_{10}=-\frac{\Delta Y_{s}}{\sin ^{2}\left(\theta_{W}\right)}, \\
& \Delta C_{10}^{\prime}=-\frac{\Delta Y_{s}^{\prime}}{\sin ^{2}\left(\theta_{W}\right)}, \\
& \text { Blanke et al, JHEP } 0903 \text { (09) } 108 \\
& \text { Albrecht et al, JHEP } 0909 \text { (09) } 064 \\
& \text { couplings of new heavy particles to leptons }
\end{aligned}
\]
```

modified Wilson coefficients in RS model

```
\[
\begin{aligned}
& \Delta C_{9}=\left[\frac{\Delta Y_{s}}{\sin ^{2}\left(\theta_{W}\right)}-4 \Delta Z_{s}\right] \quad \Delta Y_{s}=-\frac{1}{V_{t b} V_{t s}^{*}} \sum_{X} \frac{\Delta_{L}^{\ell \ell}(X)-\Delta_{R}^{\ell \ell}(X)}{4 M_{X}^{2} 9_{S M}^{2}} \Delta_{L}^{b_{s}^{s}}(x), \\
& \Delta C_{9}^{\prime}=\left[\frac{\Delta Y_{s}^{\prime}}{\sin ^{2}\left(\theta_{W}\right)}-4 \Delta Z_{s}^{\prime}\right] \quad \Delta Y_{s}^{\prime}=-\frac{1}{V_{t b} V_{t s}^{*}} \sum_{X} \frac{\Delta_{s}^{\ell \ell}(X)-\Delta_{R}^{\ell \ell}(X)}{4 M_{X}^{2} g_{S M}^{2}} \Delta_{R}^{b s}(X), \\
& \Delta C_{10}=-\frac{\Delta Y_{s}}{\sin ^{2}\left(\theta_{W}\right)}, \\
& \Delta C_{10}^{\prime}=-\frac{\Delta Y_{s}^{\prime}}{\sin ^{2}\left(\theta_{W}\right)},
\end{aligned}
\]

\section*{modified Wilson coefficients in \(\mathrm{RS}_{\mathrm{c}}\)}

\section*{new contributions to \(C_{7,8}\)}


Biancofiore, De Fazio, PC, in the effective 4D theory PRD 89 (2014) 09501

Blanke et al. in 5D
Malm, Neubert, Schmell in 5D, arXiv:1509.02539

\section*{parameters}

KK decomposition:

fermion profiles (0-mode) \(f^{(0)}(y, c)=\sqrt{\frac{(1-2 c) k L}{e^{(1-2 c) k L}-1}} e^{-c k y}\)
bulk mass
bulk mass parameters are the same for left-handed fermions of the same generation \((u d)_{L} \quad(c s)_{L} \quad(t b)_{L} \quad\left(e v_{e}\right)_{L} \quad\left(\mu v_{\mu}\right)_{L} \quad\left(\tau v_{\tau}\right)_{L}\)

\section*{parameters}

4D Yukawas
\[
Y_{i j}^{u(d)}=\frac{1}{\sqrt{2}} \frac{1}{L^{3 / 2}} \int_{0}^{L} d y \lambda_{i j}^{u(d)} f_{q_{L}^{L}}^{(0)}(y) f_{u_{R}^{j}\left(d_{R}^{j}\right)}^{(0)}(y) h(y)
\]

5D Yukawa matrices
constraints:
\(\lambda^{u, d}\) should reproduce
- quark masses
- CKM elements
quark rotation matrices depend on \(\lambda^{u, d}\)
\[
\begin{aligned}
m_{u} & =\frac{v}{\sqrt{2}} \frac{\operatorname{det}\left(\lambda^{u}\right)}{\lambda_{33}^{u} \lambda_{22}^{u}-\lambda_{23}^{u} \lambda_{32}^{u}} \frac{e^{k L}}{L} f_{u_{L}} f_{u_{R}} \\
m_{c} & =\frac{v}{\sqrt{2}} \frac{\lambda_{33}^{u} \lambda_{22}^{u}-\lambda_{23}^{u} \lambda_{32}^{u}}{\lambda_{33}^{u}} \frac{e^{k L}}{L} f_{c_{L}} f_{c_{R}} \\
m_{t} & =\frac{v}{\sqrt{2}} \lambda_{33}^{u} \frac{e^{k L}}{L} f_{t_{L}} f_{t_{R}}
\end{aligned}
\]

\section*{additional contraints with respect to previous analyses}

constraints from \(\mathrm{V}_{\mathrm{us}}\) and \(\mathrm{V}_{\mathrm{ub}}\) constraints from \(\mathrm{V}_{\mathrm{cb}}\) and \(\mathrm{V}_{\mathrm{ub}}\) constraints from Brs
\[
\begin{aligned}
& B\left(B \rightarrow X_{s} \gamma\right)_{\exp }=(3.43 \pm 0.21 \pm 0.07) \times 10^{-4} \\
& B\left(B \rightarrow K^{*} \mu^{+} \mu^{-}\right)_{\exp }=\left(1.02_{-0.13}^{+0.14} \pm 0.05\right) \times 10^{-6}
\end{aligned}
\]

Heavy Flavor Averaging Group (HFAG) 2015

largest deviations from SM:
\[
\begin{array}{r}
\left|\Delta C_{7}\right|_{\text {max }} \simeq 0.046 \\
\left|\Delta C_{7}^{\prime}\right|_{\text {max }} \simeq 0.05 \\
\left|\Delta C_{9}\right|_{\text {max }} \simeq 0.0023 \\
\left|\Delta C_{9}^{\prime}\right|_{\text {max }} \simeq 0.038 \\
\left|\Delta C_{10}\right|_{\text {max }} \simeq 0.030 \\
\left|\Delta C_{10}^{\prime}\right|_{\text {max }} \simeq 0.50
\end{array}
\]

largest deviations from SM:
\[
\begin{array}{r}
\left|\Delta C_{7}\right|_{\text {max }} \simeq 0.046 \\
\left|\Delta C_{\mid}^{\prime}\right|_{\text {max }} \simeq 0.05 \\
\left|\Delta C_{9}\right|_{\text {max }} \simeq 0.0023 \\
\mid \Delta C_{9 \text { max }}^{\prime} \simeq 0.038 \\
\left|\Delta C_{10}\right|_{\text {max }} \simeq 0.030 \\
\left|\Delta C_{10}^{\prime}\right|_{\text {max }} \simeq 0.50
\end{array}
\]
not enough to accommodate the \(\mathrm{P}_{5}^{\prime}\) anomaly


\(\square\)

\section*{SM}
including uncertainty on form factors (FF) (LCSR + lattice)

RS \({ }_{c}\)
uncertainty reflects only the variation of input parameters


RS
uncertainty from the variation of input parameters \& FF

LHCb

- deviations from SM hidden by the hadronic uncertainties
- anomaly in \(\mathrm{P}_{5}^{\prime}\) not explained

\section*{\(\tau\) in the final state}


P. Biancofiore, F. De Fazio, PC, PRD 89, 09501
\[
\mathrm{B}_{\mathrm{s,d}} \rightarrow \mu^{+} \mu^{-}
\]

- in a region of the parameter space the SM result is reproduced
- the allowed range in \(\mathrm{RS}_{c}\) is larger than in SM
\[
\begin{aligned}
& \left.B\left(B_{s} \rightarrow \mu^{+} \mu^{-}\right)\right|_{R S} \in[2.64-3.83] \times 10^{-9} \\
& \left.B\left(B_{d} \rightarrow \mu^{+} \mu^{-}\right)\right|_{R S} \in[0.70-1.16] \times 10^{-10}
\end{aligned}
\]
- \(B r\) for \(B_{d}\) still lower than exp
\[
\text { B }->K^{(*)} \nu \bar{v}
\]

the relative weight can be assessed using
\[
\epsilon^{2}=\frac{\left|C_{L}\right|^{2}+\left|C_{R}\right|^{2}}{\left|C_{L}^{S M}\right|^{2}}, \quad \eta=-\frac{\operatorname{Re}\left(C_{L} C_{R}^{*}\right)}{\left|C_{L}\right|^{2}+\left|C_{R}\right|^{2}}
\]

SM:
 similar correlation in Buras, De Fazio, Girrbach, JHEP 1302 (2013) 116

\(\mathcal{B}\left(B^{0} \rightarrow K^{0} \nu \bar{\nu}\right)_{S M}=(4.6 \pm 1.1) \times 10^{-6}\)
\(\mathcal{B}\left(B^{0} \rightarrow K^{0} \nu \bar{\nu}\right)_{R S} \in[3.45-6.65] \times 10^{-6}\)
Belle
\[
\begin{aligned}
\mathcal{B}\left(B^{+} \rightarrow K^{+} \nu \bar{\nu}\right) & <5.5 \times 10^{-5} \\
\mathcal{B}\left(B^{0} \rightarrow K_{S}^{0} \nu \bar{\nu}\right) & <9.7 \times 10^{-5} \\
\mathcal{B}\left(B^{+} \rightarrow K^{*+} \nu \bar{\nu}\right) & <4.0 \times 10^{-5} \\
\mathcal{B}\left(B^{0} \rightarrow K^{* 0} \nu \bar{\nu}\right) & <5.5 \times 10^{-5} .
\end{aligned}
\]

\[
\mathcal{B}\left(B^{0} \rightarrow K^{* 0} \nu \bar{\nu}\right)_{S M}=(10.0 \pm 2.7) \times 10^{-6}
\]
\[
\mathcal{B}\left(B^{0} \rightarrow K^{* 0} \nu \bar{\nu}\right)_{R S} \in[6.1-14.3] \times 10^{-6}
\]

BaBar
\[
\begin{aligned}
\mathcal{B}\left(B^{+} \rightarrow K^{+} \nu \bar{\nu}\right) & <1.6 \times 10^{-5} \\
\mathcal{B}\left(B^{0} \rightarrow K^{0} \nu \bar{\nu}\right) & <4.9 \times 10^{-5} \\
\mathcal{B}\left(B^{+} \rightarrow K^{*+} \nu \bar{\nu}\right) & <6.4 \times 10^{-5} \\
\mathcal{B}\left(B^{0} \rightarrow K^{* 0} \nu \bar{\nu}\right) & <12 \times 10^{-5},
\end{aligned}
\]

\section*{observables in \(\mathrm{B}->\mathrm{K}^{(*)} v \bar{v}\)}

\section*{integrated K* polarization fractions}
\[
F_{L, T}=\frac{1}{\Gamma} \int_{0}^{1-\bar{m}_{K}^{2}} d s_{B} \frac{d F_{L, T}}{d s_{B}}
\]

ratio of BRs of K mode and K* mode with transversely polarized K*
\[
R_{K / K^{*}}=\frac{\mathcal{B}(B \rightarrow K \nu \bar{\nu})}{\mathcal{B}\left(B \rightarrow K_{h=-1}^{*} \nu \bar{\nu}\right)+\mathcal{B}\left(B \rightarrow K_{h=+1}^{*} \nu \bar{\nu}\right)}
\]

```

transverse asymmetry

```
\[
A_{T}=\frac{\mathcal{B}\left(B \rightarrow K_{h=-1}^{*} \nu \bar{\nu}\right)-\mathcal{B}\left(B \rightarrow K_{h=+1}^{*} \nu \bar{\nu}\right)}{\mathcal{B}\left(B \rightarrow K_{h=-1}^{*} \nu \bar{\nu}\right)+\mathcal{B}\left(B \rightarrow K_{h=+1}^{*} \nu \bar{\nu}\right)}
\]



\[
\mathrm{B}_{\mathrm{s}}->\phi v \bar{v}
\]

\section*{integrated \(\phi\) polarization fractions}
\[
F_{L, T}=\frac{1}{\Gamma} \int_{0}^{1-\bar{m}_{K}^{2} \cdot} d s_{B} \frac{d F_{L, T}}{d s_{B}}
\]

\[
\mathrm{B}_{\mathrm{s}}->\left(\phi, \eta, \eta^{\prime}, \mathrm{f}_{0}\right) v \bar{v}
\]
\[
\begin{aligned}
\mathcal{B}\left(B_{s} \rightarrow \eta \nu \bar{\nu}\right)_{S M} & =(2.3 \pm 0.5) \times 10^{-6} \\
\mathcal{B}\left(B_{s} \rightarrow \eta^{\prime} \nu \bar{\nu}\right)_{S M} & =(1.9 \pm 0.5) \times 10^{-6} \\
\mathcal{B}\left(B_{s} \rightarrow \phi \nu \bar{\nu}\right)_{S M} & =(13.2 \pm 3.3) \times 10^{-6}
\end{aligned}
\]

\[
\begin{gathered}
\mathcal{B}\left(B_{s} \rightarrow \eta \nu \bar{\nu}\right)_{R S} \in[1.7-3.3] \times 10^{-6} \\
\mathcal{B}\left(B_{s} \rightarrow \eta^{\prime} \nu \bar{\nu}\right)_{R S} \in[1.5-2.8] \times 10^{-6} \\
\mathcal{B}\left(B_{s} \rightarrow \phi \nu \bar{\nu}\right)_{R S} \in[8.4-18.0] \times 10^{-6} .
\end{gathered}
\]

important role of \(f_{0}(980)\) in rare \(B_{(s)}\) decays
\(\mathcal{B}\left(B_{s} \rightarrow f_{0}(980) \nu \bar{\nu}\right)_{S M}=\left(8.95 \pm_{2.5}^{2.9}\right) \times 10^{-7}\) \(\mathcal{B}\left(B_{s} \rightarrow f_{0}(980) \nu \bar{\nu}\right)_{R S} \in[5-17] \times 10^{-7}\).
\(B_{(s)}->f_{0}(980)\) FF by LCSR
F. De Fazio, W. Wang, PC, PRD 81, 074001


\section*{Conclusions}
small tensions accumulating in various flavor observables, although individually not enough significant, seem altogether to point to deviations from SM
correlations among the observables are specific of the BSM realisations
I have shown the changes induced in a particular NP model: RS \({ }_{c}\)
- small deviations obtained for the Wilson coefficients in b->s processes in \(\mathrm{RS}_{c}\) not enough to accommodate the present anomaly in B-> \(K^{*} \mu^{+} \mu\)
- role of modes with \(\tau\)
- precise multiple correlation patterns among different observables
- important role of b-> s vv modes (Belle II)
```

We do not know if Nature has chosen this particular way of extending the
Standard Model:
We have to scrutinize all measurable implications in this as well as in the other
possible NP scenarios

```
```

