Strong-Field QED Processes in Intense Laser Pulses

Daniel Seipt

21.07.2016

PHELMHOLTZ
ASSOCIATION
Helmholtz Institute Jena

Outline

(1) Strong EM Fields and Intense Lasers
(2) Classical Considerations \& Light-Front Coordinates

- Coherent States
- The Furry Picture \& Volkov States
- Non-Linear Compton Scattering
- Effects of Finite Pulse Duration

What are Strong EM Fields?

Compare field strength F with QED scales e, m : $e E_{Q E D} \lambda_{C}=m\left(c^{2}\right)$

$$
E_{\mathrm{QED}}=1.8 \times 10^{18} \mathrm{~V} / \mathrm{m}, \quad B_{\mathrm{QED}}=4 \times 10^{9} \mathrm{~T}, \quad I_{\mathrm{QED}}=2 \times 10^{29} \mathrm{~W} / \mathrm{cm}^{2}
$$

Sources of Strong EM Fields

[Uni Frankfurt]

[NASA]

[LLNL,RAL]
Coulomb Field in highly charged ions (U^{91+}): $E \sim 10^{18} \mathrm{~V} / \mathrm{m}$

Heavy ion collisions (chiral magnetic effect): $B \sim 10^{14} \mathrm{~T}$

Pulsars and Magnetars (rotating neutron stars): $B \sim 10^{8} \ldots 10^{11} \mathrm{~T}$

Optical (multi)-PW high-intensity lasers $/=$ $10^{22} \ldots 10^{23} \mathrm{~W} / \mathrm{cm}^{2}$
Ultra-short duration (single-cycle, few fs), pulse shape and CEP control

Strong Field Parameters

- (Plane-wave) laser field is characterized by Gauge potential A^{μ} and wave vector $k^{\mu}=(\omega, 0,0,-\omega)$:

$$
A^{\mu}=A^{\mu}(\phi)=A(\phi) \epsilon^{\mu}
$$

with phase $\phi=k \cdot x$ and transversality property $A \cdot k=0$

- For intense lasers the field invariants

$$
\mathcal{F}=\frac{1}{4} F_{\mu \nu} F^{\mu \nu}, \quad \mathcal{G}=\frac{1}{4} F_{\mu \nu}{ }^{\star} F^{\mu \nu}
$$

are (almost) zero: Laser beams are (almost) null-fields: $\mathcal{F}=\mathcal{G}=0$.

- Null fields cannot produce pairs, the vacuum is stable.
- We need probe to see nonlinear strong-field effects: matter/photons In other words: We need additional momenta to form non-vanishing invariants

Strong Field Parameters II

- Classical nonlinearity parameter/normalized vector potential:

$$
a_{0}=\frac{e A}{m}=\frac{e E \lambda_{L}}{m}=\frac{e E \lambda_{C}}{\omega}
$$

- Electron kinetic energy equals rest mass
- \# of laser photons absorbed in Compton wavelength
- Multi-Photon effects
- Inverse Keldysh adiabadicity parameter
- Quantum nonlinearity/efficiency parameter for a probe particle with momentum p :

$$
\chi=\frac{e}{m^{3}} \sqrt{\left(F_{\mu \nu} p^{\nu}\right)^{2}} \sim 2 \gamma \frac{E}{E_{\mathrm{QED}}}
$$

- Classical and Quantum nonlinearity parameter are related by quantum energy parameter:

$$
b_{0}=\frac{k \cdot p}{m^{2}}, \quad \chi=a_{0} b_{0}
$$

The SLAC E-144 Experiment

Boom! From Light Comes Matter

$$
\begin{aligned}
& e+n \gamma_{L} \rightarrow e^{\prime}+\gamma^{\prime} \\
& \gamma^{\prime}+n^{\prime} \gamma_{L} \rightarrow e^{+} e^{-}
\end{aligned}
$$

$a_{0}=0.6(=\eta)$
$\chi \sim 1$

Light-Front Physics

- Laser field depends only on the phase variable $\phi=\omega(t+z)=k \cdot x=\omega x^{+}$
- Light-front coordinates (I.f.c.) are the coordinates of choice $x^{+}=t \pm z: x^{\mu}=\left(x^{+}, x^{-}, x^{1}, x^{2}\right)$
- Laser wavevector has just one component in I.f.c. $k^{-}=2 \omega$
- Three cyclic coordinates \Rightarrow three conserved canonical momenta
- Non-diagonal scalar product:

$$
a \cdot b=\frac{1}{2} a^{+} b^{-}+\frac{1}{2} a^{-} b^{+}-\boldsymbol{a}^{\perp} \cdot \boldsymbol{b}^{\perp}
$$

- Light-front mass shell $p^{2}=m^{2}: E=\sqrt{\boldsymbol{p}^{2}+m^{2}} \Leftrightarrow p^{-}=\frac{\left(\boldsymbol{p}^{\perp}\right)^{2}+m^{2}}{p^{+}}$

Classical EOM of an Electron

Electrons in Intense Laser Fields are Always Relativistic!

- Consider the classical equation of motion of an electron in a plane wave laser field

$$
\frac{d \pi^{\mu}}{d \tau}=\frac{e}{m} F^{\mu \nu}(\phi) \pi_{\nu}, \quad m \frac{d x^{\mu}}{d \tau}=\pi^{\mu}
$$

- Three conserved momenta: $p^{+}, \boldsymbol{p}^{\perp} \rightarrow$ integrability

Replace proper time derivative by laser phase derivative $\frac{d \phi}{d \tau}=\omega p^{+} / \mathrm{m}$

- Solution for classical kinetic momentum

$$
\pi^{\mu}(\phi)=p^{\mu}-e A^{\mu}+k^{\mu}\left(\frac{e A p}{k p}-\frac{e^{2} A^{2}}{2 k p}\right)
$$

Note: Mass shell condition: $\pi^{2}=m^{2}$

Hamilton Jacobi

- Classical dynamics can be described using Hamilton-Jacobi equation

$$
\left(\partial_{\mu} S_{H J}+e A_{\mu}\right)\left(\partial^{\mu} S_{H J}+e A^{\mu}\right)=m^{2}
$$

with the kinetic momentum $\pi^{\mu}=-\partial^{\mu} S_{H J}-e A^{\mu}$.

- The solution of the Hamilton Jacobi action is given by

$$
S_{H J}=-p \cdot x-(2 k \cdot p)^{-1} \int d \phi\left(2 e A \cdot p-e^{2} A^{2}\right)
$$

Classical Motion of an Electron

- Cycle averages:
$\left\langle\pi^{\mu}(\phi)\right\rangle=p^{\mu}+U^{\mu}(\phi)=q^{\mu}(\phi)$,

$$
U^{\mu}(\phi)=\frac{e^{2}\langle-A \cdot A\rangle}{2 k \cdot p} k^{\mu}
$$

- Electron motion in average rest frame
- Linear Laser Polarization: Figure-8
- Circular Laser Polarization: Micro-Synchrotron

Limits of the Classical Description

Radiation emitted by accelerated electron:

$$
\begin{aligned}
\mathbb{P}^{\mu} & \sim \int d^{4} k \delta\left(k^{2}\right) \operatorname{sign}\left(k^{0}\right) j(k) \cdot j(-k) \\
j(k) & \sim \int d \phi \pi(\phi) \exp \left\{i \int d \phi \frac{k \cdot \pi}{k_{L} \cdot p}\right\}
\end{aligned}
$$

(Non-linear) Thomson Sources, ...
\checkmark Radiative losses \rightarrow "friction" term in force equation (LAD, LL, ...)
\times Electron Recoil: $b_{0}=\gamma \omega_{L} / m \sim 1$
\times Stochasticity in Photon Emission
\times Pair Production: $\gamma \rightarrow e^{+} e^{-}$
\times Coherent Multi-Photon Emission, Higer-order Processes, Loops, ...

Radiation Back-reaction

- The electron emits the average power: Larmor formula $P=\frac{2 \alpha}{3} \dot{u} \cdot \dot{u}(\pi=m u)$

Radiation Back-reaction

- The electron emits the average power: Larmor formula $P=\frac{2 \alpha}{3} \dot{u} \cdot \dot{u}(\pi=m u)$
- Using EOM in a strong laser field/synchrotron emission formula: $P \sim \alpha \omega^{2} \gamma^{2} a_{0}^{2}$

Radiation Back-reaction

- The electron emits the average power: Larmor formula $P=\frac{2 \alpha}{3} \dot{u} \cdot \dot{u}(\pi=m u)$
- Using EOM in a strong laser field/synchrotron emission formula: $P \sim \alpha \omega^{2} \gamma^{2} a_{0}^{2}$
- In general: Radiated energy $\propto \alpha \gamma^{2} a_{0}^{2} \omega^{2} T$ comparable to the particle energy $m \gamma$

Radiation Back-reaction

- The electron emits the average power: Larmor formula $P=\frac{2 \alpha}{3} \dot{u} \cdot \dot{u}(\pi=m u)$
- Using EOM in a strong laser field/synchrotron emission formula: $P \sim \alpha \omega^{2} \gamma^{2} a_{0}^{2}$
- In general: Radiated energy $\propto \alpha \gamma^{2} a_{0}^{2} \omega^{2} T$ comparable to the particle energy $m \gamma$
- But: The Lorentz-force equation does not take this into the back-reaction!

Self-consistent solution of EOM and radiation

$$
\begin{gathered}
m_{0} \frac{d u^{\mu}}{d \tau}=e\left(\partial^{\mu} A_{\text {total }}^{\nu}-\partial^{\mu} A_{\text {total }}^{\nu}\right) u_{\nu} \\
\oplus \\
\square A_{\text {total }}=e \int d \tau u^{\nu}(\tau) \delta(x-x(\tau)) \\
A_{\text {total }}=A_{\text {ext }}+A_{\text {radiation }}
\end{gathered}
$$

Green's function method

$$
A_{\mathrm{total}}^{\mu}=A_{\mathrm{ext}}^{\mu}+\int d^{4} x^{\prime} D\left(x-x^{\prime}\right) j^{\mu}\left(x^{\prime}\right)
$$

Lorentz-Abraham-Dirac (LAD) equation

$$
\underbrace{\left(m_{0}+\delta m\right)}_{m_{\text {physical }}} \frac{d u^{\mu}}{d \tau}=e F_{\mathrm{ext}}^{\mu \nu} u_{\nu}+\frac{2}{3} \alpha\left(\ddot{u}^{\mu}+\dot{u} \cdot \dot{u} u^{\mu}\right)
$$

Radiation field completely eliminated \rightarrow effective self-force terms

- Mass renormalization \rightarrow related to electron as point particle (divergent self energy $\delta m \propto 1 / r_{e}$)

Lorentz-Abraham-Dirac (LAD) equation

$$
\underbrace{\left(m_{0}+\delta m\right)}_{m_{\text {physical }}} \frac{d u^{\mu}}{d \tau}=e F_{\mathrm{ext}}^{\mu \nu} u_{\nu}+\frac{2}{3} \alpha\left(\ddot{u}^{\mu}+\dot{u} \cdot \dot{u} u^{\mu}\right)
$$

Radiation field completely eliminated \rightarrow effective self-force terms

- Mass renormalization \rightarrow related to electron as point particle (divergent self energy $\delta m \propto 1 / r_{e}$)
- Larmor term $\propto \dot{u} \cdot \dot{u}:$ Energy loss

Lorentz-Abraham-Dirac (LAD) equation

$$
\underbrace{\left(m_{0}+\delta m\right)}_{m_{\text {physical }}} \frac{d u^{\mu}}{d \tau}=e F_{\mathrm{ext}}^{\mu \nu} u_{\nu}+\frac{2}{3} \alpha\left(\ddot{u}^{\mu}+\dot{u} \cdot \dot{u} u^{\mu}\right)
$$

Radiation field completely eliminated \rightarrow effective self-force terms

- Mass renormalization \rightarrow related to electron as point particle (divergent self energy $\delta m \propto 1 / r_{e}$)
- Larmor term $\propto \dot{u} \cdot \dot{u}:$ Energy loss
- Schott term $\propto \ddot{u}:$ Required to ensure the relativistic constraints $\dot{u} u=0$ and $u^{2}=1$ (mass shell)

Lorentz-Abraham-Dirac (LAD) equation

$$
\underbrace{\left(m_{0}+\delta m\right)}_{m_{\text {physical }}} \frac{d u^{\mu}}{d \tau}=e F_{\mathrm{ext}}^{\mu \nu} u_{\nu}+\frac{2}{3} \alpha\left(\ddot{u}^{\mu}+\dot{u} \cdot \dot{u} u^{\mu}\right)
$$

Radiation field completely eliminated \rightarrow effective self-force terms

- Mass renormalization \rightarrow related to electron as point particle (divergent self energy $\delta m \propto 1 / r_{e}$)
- Larmor term $\propto \dot{u} \cdot \dot{u}:$ Energy loss
- Schott term $\propto \ddot{u}$: Required to ensure the relativistic constraints $\dot{u} u=0$ and $u^{2}=1$ (mass shell)
- The Schott term is the problematic one: Third derivative of position \dddot{x}, need to specify initial value of the acceleration $\ddot{x}(0)=\dot{u}(0)$

Lorentz-Abraham-Dirac (LAD) equation

$$
\underbrace{\left(m_{0}+\delta m\right)}_{m_{\text {physical }}} \frac{d u^{\mu}}{d \tau}=e F_{\mathrm{ext}}^{\mu \nu} u_{\nu}+\frac{2}{3} \alpha\left(\ddot{u}^{\mu}+\dot{u} \cdot \dot{u} u^{\mu}\right)
$$

Radiation field completely eliminated \rightarrow effective self-force terms

- Mass renormalization \rightarrow related to electron as point particle (divergent self energy $\delta m \propto 1 / r_{e}$)
- Larmor term $\propto \dot{u} \cdot \dot{u}:$ Energy loss
- Schott term $\propto \ddot{u}:$ Required to ensure the relativistic constraints $\dot{u} u=0$ and $u^{2}=1$ (mass shell)
- The Schott term is the problematic one: Third derivative of position \dddot{x}, need to specify initial value of the acceleration $\ddot{x}(0)=\dot{u}(0)$
- Runaway solutions, pre-acceleration, ...

Landau and Lifshitz argument (LL)

- Whenever $\left|F_{\text {ext }}\right| \ll E_{\text {CED }}, B_{\text {CED }}$ in the instantaneous rest frame: Series expansion applicable (in charge e): Replace the four-acceleration in the RR-force by the zero-th order result: Lorentz-force equation

$$
m \dot{u}^{\mu}=e F^{\mu \nu} u_{\nu}+\frac{2}{3} \alpha\left(\frac{e}{m}\left(u^{\alpha} \partial_{\alpha} F^{\mu \nu}\right) u_{\nu}-\frac{e^{2}}{m^{2}} F^{\mu \nu} F_{\alpha \nu} u^{\alpha}+\frac{e^{2}}{m^{2}}\left(F^{\alpha \nu} u_{\nu}\right)^{2} u^{\mu}\right)
$$

$F=F_{\text {ext }}, m=m_{\text {physical }}$

- Field strengths $F_{\mathrm{CED}}=F_{\mathrm{QED}} / \alpha=\frac{m^{2}}{e \alpha}$
- Therefore: Low order \hbar corrections are much more important than higher order e corrections!
- H. Spohn, Europhys. Lett. 50, 287 (2000): all physical solutions of LAD are solutions of LL

Quantum Description: Why Naive Pert Theory Fails

- Lagrangian for QED

$$
\mathcal{L}=\bar{\Psi}(i \not \partial-m) \Psi-\frac{1}{4} F_{\mu \nu} F^{\mu \nu}-e \bar{\Psi} \gamma_{\mu} \Psi A^{\mu}
$$

- Split the vector potential: $A^{\mu} \rightarrow A_{\text {laser }}^{\mu}+A_{\text {non-laser }}^{\mu}$
- Perturbation Theory: Interaction picture \Rightarrow Feynman diagrams \Rightarrow S-matrix elements

$$
S \sim\left\langle n_{e}^{\prime}, n_{\text {laser }}^{\prime}, n_{\text {non-laser }}^{\prime}\right| H_{\text {int }}\left|n_{e}, n_{\text {laser }}, n_{\text {non-laser }}\right\rangle
$$

- Estimate for number of laser photons: $n_{\text {laser }} \sim 10^{14} a_{0}^{2} / \lambda^{3}$

```
Nonlinear Scattering in the presence of quantized radiation fields:
[J. Bergou and S. Varr, J. Phys. A 14 1469 (1981).]
[J. Bergou and S. Varr, J. Phys. A 14 2281 (1981).]
This is super-complicated!!!
```


Coherent Photon States

- Laser light is coherent light. Number of photons scattered out of the coherent mode much smaller than the number in the laser mode.
- Coherent states $|c\rangle$ are Eigenstates of annihilation operators:

$$
\hat{a}|c\rangle=c|c\rangle
$$

- They are displaced vacuum states, with displacement operator $\hat{D}=e^{\hat{a}^{\dagger}-c^{*} \hat{a}}$:

$$
|c\rangle=\hat{D}|0\rangle
$$

- Generalization to multi-mode fields $\hat{a} \rightarrow \hat{\mathcal{A}}^{(+)}, c \rightarrow C(\boldsymbol{k})$, then:

$$
\hat{D}^{\dagger} \hat{\mathcal{A}} \hat{D}=\hat{\mathcal{A}}+\underbrace{F T[C]}_{A_{\text {class }}}, \quad\langle C| \hat{\mathcal{A}}|C\rangle=A_{\text {class }}
$$

- Matrix Elements:

$$
\langle f ; C| S[\Psi, \bar{\Psi}, \mathcal{A}]|i ; C\rangle=\langle f| S\left[\Psi, \bar{\Psi}, \mathcal{A}+A_{\text {class }}\right]|i\rangle
$$

Transition to the Furry Picture

- Lagrangian of QED with background field A :

$$
\begin{array}{lll}
L_{e}=\bar{\Psi}(i \not \partial-m) \Psi & L_{e}^{(F)}=\bar{\Psi}(i \not \partial-e \mathcal{A}-m) \Psi \\
L_{r}=-\frac{1}{4} F^{2} & \rightarrow & L_{r}^{(F)}=-\frac{1}{4} F^{2} \\
L_{i}=-e \bar{\Psi} \gamma_{\mu} \Psi\left(\mathcal{A}^{\mu}+A^{\mu}\right) & & L_{i}^{(F)}=-e \bar{\Psi} \gamma_{\mu} \Psi \mathcal{A}^{\mu}
\end{array}
$$

- Volkov States are solutions of the Dirac equation in the laser background field A^{μ}

$$
(i \not \partial-e \not A-m) \Psi=0
$$

- Laser field A^{μ} is taken into account nonperturbatively
- Use Volkov states as basis set for expansion of the electron field operator

$$
\hat{\Psi}_{(F)}(x)=\sum_{\alpha} \hat{c}_{\alpha} \Psi_{\alpha}^{(+)}(x)+\hat{d}_{\alpha}^{\dagger} \Psi_{\alpha}^{(-)}(x)
$$

Volkov States

- Volkov States can be written in the following form:

$$
\Psi_{p}(x, A)=\Omega_{p}[A(\phi)] \psi_{p}(x)
$$

- Ω is unitary matrix that acts on the free electron wavefunction $\psi_{p}(x)$

$$
\Omega(\phi)=\left(1+\frac{e k A(\phi)}{2 k p}\right) \exp \left\{-i \frac{1}{2 k p} \int d \phi\left(2 e p A-e^{2} A^{2}\right)\right\}
$$

- Another representation uses the classical Hamilon-Jacobi action: $\psi=\Gamma(\phi) e^{-i S_{H J}} u_{p}$

Volkov States

Explicit solution of the Dirac Equation

- Three momentum components are conserved \boldsymbol{p}^{\perp} and p^{+}, the corresponding operators commute with the Hamiltonian. The quantum number p is the asymptotic electron momentum outside the laser pulse.
- Transform into 2nd order equation
- Ansatz for wave function $\Psi_{p}(x, A)=\Omega_{p}(\phi) e^{-i p x} u_{p}$, find solution for Ω_{p}
- ODE for unknown function $\Omega_{p}(\phi)$

$$
2 i(k p) \frac{d \Omega_{p}}{d \phi}=\left(2 e(p A)-e^{2} A^{2}-i e k A^{\prime}\right) \Omega_{p}
$$

- BLACKBOARD

Properties of Volkov States

$$
\mathcal{S}=\operatorname{tr}\left[e^{-i p x} \Omega_{p}(\phi)\right]
$$

$$
\mathcal{T}_{\mu \nu}=\operatorname{tr}\left[e^{-i p x} \sigma_{\mu \nu} \Omega_{p}(\phi)\right]
$$

Properties of Volkov States

$$
\Phi_{S}(x)=\int \frac{d p^{+}}{p^{+}} h\left(p^{+}\right) e^{-i p x} \operatorname{tr} \Omega_{p}(\phi)
$$

Momentum Spectrum of Volkov States

$$
\Omega_{p}(\phi)=\int \frac{d s}{2 \pi} e^{-i s \phi} \sum_{j=0,+,-} d_{j} \mathscr{K}_{j}(s)
$$

IPW Limit of the Volkov States

IPW limit: Discrete spectrum

$$
\begin{gathered}
\mathscr{K}_{j}(s) \rightarrow \sum_{n} \delta\left(s-n-U_{p}^{-} / k^{-}\right) K_{j}^{(n)}(s) \\
\Psi=\sum_{n} e^{-i(q+n k) \times} \Psi_{n}
\end{gathered}
$$

Probing the Momentum Structure of Volkov States

Using x-ray Compton Scattering: Pump-probe set-up

intense laser pulse

[^0]
Lippmann-Schwinger Equation

Transform the Dirac equation into an integral equation

$$
\Psi_{p}(x, A)=\psi_{p}(x)+\int d^{4} z G_{0}(x-z) e \mathbb{A}(z) \Psi_{p}(z, A)
$$

with iterative solution

$$
\begin{aligned}
& \psi_{p}^{(N)}(x, A)=\sum_{n}\left[G_{0} e A(z)\right]^{n} \psi_{p} \\
& \overline{=}+\square \\
& =-+\square+\frac{\vdots}{\square}+\cdots \vdots \vdots+
\end{aligned}
$$

[^0]: [DS et al, New J. Phys. 18, 023044 (2016).]

