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The many facets of the decay

H → τ
+
τ
−
τ
+
τ
−



Higgs properties

◮ mH = 125 GeV

◮ The Higgs is a very narrow particle (ΓH(theoretical)= 4.07 MeV)

ΓH/mH = 3.3 · 10−5

Compare to

ΓW /mW = 2.59 · 10−2

ΓZ/mZ = 2.74 · 10−2

Γt/mt ≈ 8 · 10−3

◮ Production rate

Present: LHC at 14 GeV produces ≈ 3 · 106/year
Future: HL-LHC at 14 GeV produces ≈ 30 · 106/year

◮ Branching ratios (2mZ > mH , 2mW > mH)

BR(H → Z
∗
Z

∗) = 2.64 · 10−2

BR(H → W
∗+

W
∗−) = 2.15 · 10−1

BR(H → τ+τ−τ+τ−) = 3.02 · 10−5



Sample of other branching ratios

Compare to other branchng ratios that were recently calculated (König,
Neubert, Santorelli, Colangelo et al.)

H → ρ0 + γ 1.68 · 10−5

H → ω + γ 1.48 · 10−6

H → φ+ γ 2.31 · 10−6

H → J/ψ + µ+µ− 9.1 · 10−8

H → J/ψ + γ 2.95 · 10−6

H → Υ+ γ 4.61 · 10−9

This is not the whole story. Relevant for the detection of a decay mode is
the product

Branching Ratio × Detection Efficiency

τ–modes can only be detected through their hadronic decays, e.g.
τ− → (π−, ρ−, a−1 ) + ντ which make up 45.6 % of the τ− decay rate.
Dominant modes are leptonic modes τ− → ℓ−ν̄ℓντ .



Lepton mass effects and identical particle effects

◮ Lepton mass effects

◮ Scale of lepton mass effects is set by off-shellness of the Z -boson

4m2
ℓ ≤ q2 ≤ (mH −mZ )

2

and not by the Higgs mass mH .

◮ τ mass effects are not negligible. (me,µ = 0 is a good approximation).

◮ Numerical example:

Γ(H → Z + Z∗(→ ττ))/Γ(H → Z + Z∗(→ µµ)) = 0.96 (−4.0%)

◮ Angular decay distribution of leptons changes. Can mimic the
contributions of new effective operators. Later.

◮ Test of lepton universality

◮ Identical particle effects

◮ In the decay Z → (τ+τ+)(τ−τ−) the two tauons in the two pairs (τ+τ+)
and (τ−τ−) are undistinguishable.

◮ Statistical factor of 1/4
◮ Quantum interference effects, i.e. more Feynman diagrams



Two Feynman diagrams

There are two Feynman diagrams that contribute to H → τ+τ−τ+τ−

H

Z*(pa)

Z*(pb)

τ−(p1)

τ+(p3)

τ+(p4)

τ−(p2)

H

Z*(pc)

Z*(pd)

τ−(p1)

τ+(p4)

τ+(p3)

τ−(p2)

Figure: Feynman diagrams (A) and (B) contributing to H → τ+τ−τ+τ−.

They contribute to the rate as follows

|MA +MB |
2 = |MA|

2 + 2Re(MAM
∗
B) + |MB |

2



The diagonal contributions

◮ Diagrams describing the contributions from |MA|
2 and |MB |

2 are
topologically equivalent, i.e. |MA|

2 = |MB |
2

◮ Diagonal terms contribute as (add statistical factor of 1/2! 2!)

1

4
(|MA|

2 + |MB |
2) =

1

2
|MA|

2

◮ If interference contribution 2Re(MAM
∗
B) (and lepton mass effects) are

neglected one finds

Γ(H → τ+τ−τ+τ−) =
1

2
Γ(H → τ+τ−µ+µ−)



Sign of interference contribution

The interference contribution is given by the absorptive part of a one-loop
contribution compared to the two-loop contributions of the diagonal
graphs. Take a minus sign into account.

H H

Z

Z

Z

Z

H H

Z

Z

Z

Z

Figure: Squared Feynman diagrams ∼ |MA|
2 and ∼ Re(MAM

∗
B
) contributing to

H → τ+τ−τ+τ−.

Including the dynamics the interference contribution adds constructively.



A calculational detail

NB: Calculating the diagonal diagram Re(MAM
∗
B) involves the trace

|MA|
2 ∝ tr

{
(p/1 −mτ )γ

µ(gV + gAγ5)(p/3 −mτ )γ
ν(gV + gAγ5)

}

⊗ tr
{
(p/2 −mτ )γµ(gV + gAγ5)(p/4 −mτ )γν(gV + gAγ5)

}

= L
µν(p)Lµν(q)

NB: Calculating the nondiagonal diagram Re(MAM
∗
B) involves the trace

Re(MAM
∗
B) ∝ tr

{
(p/1 −mτ )γ

µ(gV + gAγ5)(p/3 −mτ )γ
ν(gV + gAγ5)

(p/2 −mτ )γµ(gV + gAγ5)(p/4 −mτ )γν(gV + gAγ5)
}

Even though the rate is only contributed to by γ5– and γ–even terms the
trace calculation cannot be done by hand.



Width dependence of interference contribution

◮ As the width of the Z becomes smaller and smaller the momentum
mismatch of the leptons in the interference contribution will become
bigger and bigger. One expects

lim
ΓZ→0

Γinterference

Γdiagonal

=⇒ 0

◮ Question: Does the relative suppression go like (ΓZ/mZ ) or like
(ΓZ/mZ )

2 ?



Some numerical results

Numerically one has (mZ fixed)

ΓZ Γnondiag/Γdiag Γnondiag/Γdiag

[GeV] [ΓZ/mZ ]

2.4952 10.31% 3.77
1.0 4.73% 4.32
0.5 2.50% 4.56
0.2 1.03% 4.71
0.1 0.53% 4.79
0.05 0.27% 4.89

Table: Dependence of the rate ratios of nondiagonal and diagonal contributions on the
Z–width for the decay H → Z∗(→ τ+τ−) + Z∗(→ τ+τ−).



Power of the width suppression

Use the δ–function representation

lim
ΓZ→0

1

(q2 −m2
Z )

2 +m2
ZΓ

2
Z

=
π

mZΓZ

δ(q2 −m
2
Z )

to analyze the diagonal contribution in the vicinity of q2 = m2
Z (keep MZ

fixed)

lim
ΓZ→0

∫
dq

2 F (q2)

(q2 −m2
Z )

2 +m2
ZΓ

2
Z

=
π

mZΓZ

∫
dq

2 δ(q2 −m
2
Z )F (q

2)

=
π

mZΓZ

F (m2
Z )

where the function F (q2) is regular at q2 = m2
Z . A similar analysis leads to

lim ΓZ→0 Γinterference = const. One finds

lim
ΓZ→0

Γinterference

Γdiagonal

= const. · mZ ΓZ

= const. ·m2
Z [ΓZ/mZ ]



Factorization of phase space

Consider the cascade decay process H → Z (→ τ+τ−) + Z∗(→ τ+τ−) with
momenta

Z (p) → τ+(p1)τ
−(p3) H(pH) → Z (p)Z∗(q) Z (p) → τ+(p2)τ

−(p4)

Factorize the four-dimensional phase space

Φ4 =

∫
d3p1

(2π)32E1

d3p2

(2π)32E2

d3p3

(2π)32E3

d3p4

(2π)32E4
(2π)4δ(4)(p1+p2+p3+p4−pH) ,

using the identity e.g.

1 =

∫
dp

2 d
3p

2Ep

δ(4)(p − p1 − p3) .

leading to

∫
dp2

2π

∫
dq2

2π
Φ2(pH ; p, q)Φ2(p; p1, p3)Φ2(q; p2, p4) .



The cascade decay H → Z (→ e
+
e
−) + Z

∗(→ τ+τ−)

Z Z

χ

θqθp

+

τ+

x
z

−

−τ

e

e

∗H

qp

Figure: Definition of the momenta p and q, the polar angles θp and θq , and the
azimuthal angle χ in the cascade decay H → Z(→ e+e−) + Z∗(→ τ+τ−)



Two-dimensional phase spaces

Z (p) → τ+(p1)τ
−(p3) :

Φ2(p; p1, p3) =

∫
d3p1

(2π)32E1

d3p3

(2π)32E3
(2π)4δ(4)(p1 + p3 − p) =

=
1

8(2π)

√
1− 4m2/p2

∫
d cos θp,

Z (q) → τ+(p2)τ
−(p4):

Φ2(q; p2, p4) =

∫
d3p2

(2π)32E2

d3p4

(2π)32E4
(2π)4δ(4)(p2 + p4 − q) =

=
1

8(2π)2

√
1− 4m2/q2

∫
dχ

∫
d cos θq ,

H(pH) → Z (p)Z∗(q) :

Φ2 := Φ2(pH ; p, q) =

∫
d3p

(2π)32Ep

d3q

(2π)32Eq

(2π)4δ(4)(p+q−pH) =

√
λ(p2

H , p
2, q2)

4p2
H(2π)

.



Narrow Width Approximation (NWA)

To illustrate the use of the Narrow Width Approximation we take a less
involved process, namely t → b +W+(→ ℓ+ νℓ). As we shall see the phrase
“Narrow Width Approximation” is not quite correct. One should really say
“Zero Width Limit”.
Consider the three body decay decay rate formula

Γ3 =
1

2mt

∫
1

(2π)3
d3~pb
2Eb

∫
1

(2π)3
d3~pl+

2El+

∫
1

(2π)3
d3~pνl
2Eνl

|M3|
2(2π)4δ(4)(pt−pb−pℓ+−pνl )

Use the identity

1 =

∫
dq

2

∫
d3q

2EW

δ(4)(q − pℓ+ − pνl ))

to factorize the phase space integrals.
Proof of the identity. The invariant identity can be seen to be true in the W+

rest frame where q2 = E 2
W (= m2

W ), c.f.

1 =

∫
dE 2

W

2EW

δ(EW − Eℓ+ − Eνl )

∫
d
3
qδ(3)(~q − ~pℓ+ − ~pνl )



Factorization of phase space

Use the identity to factorize the three-body phase space into two
two-body phase spaces.

R3 = 2mW

∫
dq2

(2π)

R2(t→b+W+)︷ ︸︸ ︷
1

2mt

{∫
1

(2π)3
d3pb

2Eb

∫
1

(2π)3
d3q

2EW

(2π)4δ(4)(pt − pb − q)

}

1

2mW

{∫
1

(2π)3
d3pℓ+

2Eℓ+

∫
1

(2π)3
d3pνl
2Eνl

(2π)4δ(4)(q − pℓ+ − pνl ))

}

︸ ︷︷ ︸
R2(W+→l++νl )

.

Γ3 = 2mW

∫
dq2

(2π)

{
1

2mt

∫
1

(2π)3
d3~pb
2Eb

∫
1

(2π)3
d3~q

2EW

(2π)4δ4(pt − pb − q)

}

{
1

2mt

∫
1

(2π)3
d3~pℓ+

2Eℓ+

∫
1

(2π)3
d3~pνl
2Eνl

δ4(q − pℓ+ − pνl ))

}
1

2
|M3|

2

Phase space nicely factorizes. But how about the factorization of |M3|
2?



Factorization of squared matrix element

Matrix element squared also factorizes after angular integration :
∫
dΩ

∣∣∣Hµ(−gµν +
qµqν

m2
W

)Lν
∣∣∣
2

=

∫
dΩ

∣∣∣
∑

m

Hµε∗µ(m)εν(m)Lν
∣∣∣
2

−→
1

3

∣∣∣
∑

m

Hµε∗µ(m)
∣∣∣
2∣∣∣
∑

n

Lνεν(n)
∣∣∣
2

Factor 1/3 is important. It provides for the statistical factor 1/(2sW + 1)
in the W+ width formula.
Narrow–width approximation consists in the replacement of the
Breit-Wigner line shape by a δ–function, cif.
Result as expected from physical intuition.



Finite width correction

Finite width correction can be calculated by keeping the original
Breit-Wigner form of the propagator and integrating over q2, cif .

∫ m2
t

0

dq
2 δ(q2 −m

2
W ) →

∫ m2
t

0

dq
2mWΓW

π

1

(q2 −m2
W )2 +m2

WΓ2
W

Numerically one finds a −1.56% correction which is of the order of
ΓW /mW = 2.64%.



The diagonal contribution ∼ |A|2

Remember that for e.g. H → Z∗(→ µ+µ−) + Z∗(→ τ+τ−) one only has
the diagonal contribution.

◮ The width formula for H → Z∗(p2) + Z∗(q2) (Grau, Pancheri, Phillips
1990)

Γ(H → allZ
∗
Z

∗) =

∫ m2
H

0

dp2mZΓZ

π[(p2 −m2
Z )

2 + (mZΓZ )2]

×

∫ (mH−p)2

0

dq2mZΓZ

π[(q2 −m2
Z )

2 + (mZΓZ )2]
Γ(H → Z

∗
Z

∗)

where

Γ(H → Z
∗
Z

∗) =
1

2

g 2
W

8π cos2 θW

|~p|

m2
Hm

2
Z

(
p
2
q
2
)
(−g

µν +
qµqν

q2
)(−gµν +

pµpν

p2
)

︸ ︷︷ ︸
(2p2q2+pq pq)

p2q2



Choice of gauge

◮ unitary gauge

Γ(H → Z
∗
Z

∗) ∼
∑

m

εα(m, p2)ε∗ β(m, p2)
∑

n

εβ(n, q2)ε∗α(n, q2)

= (−g
µν +

pµpν

m2
Z

)(−gµν +
qµqν

m2
Z

)

=

(
4−

p2

m2
Z

−
q2

m2
Z

+
pq pq

m4
Z

)

◮ Spin 1 (Lorenz/Landau) gauge

Γ(H → Z
∗
Z

∗) ∼ (−g
µν +

pµpν

p2
)(−gµν +

qµqν

q2
)

=

(
2 +

pq pq

p2q2

)

◮ Feynman gauge

Γ(H → Z
∗
Z

∗) ∼ (−g
µν)(−gµν)

= 4



Correct result

The result is obviously gauge variant.

The problem is that the concept of an external off-shell gauge boson is
not a gauge invariant concept. One must attach fermion pairs to the
off-shell gauge boson to get a gauge invariant result. In addition one must
use the unitary gauge to get a gauge invariant result.



The unitary gauge

Consider the gauge boson propagator in the general Rξ gauge and rewrite
it into a convenient form.

D
µν =

i

q2 −m2
Z

(
−g

µν +
qµqν(1− ξW )

q2 − ξZm2
Z

)
(1)

=
i

q2 −m2
Z

(
−g

µν +
qµqν

m2
Z

)
− i

qµqν

m2
Z

1

q2 − ξZm2
Z

. (2)

The first term is the unitary propagator. The second gauge-dependent
term is cancelled by the contribution of the neutral Goldstone φ0.

Again one needs to attach fermion pairs to the gauge boson Z and to the
neutral Goldstone boson φ0 to see the cancellation. Explicit examples of
this cancellation can be found in the book of Peskin-Schroeder
(fermion-fermion scattering ps. 734-736) and in Körner [1402.2787] for
the decay t → b +W+(→ ℓ+ νℓ).



Feynman diagrams for t → b +W
+(→ ℓ+ νℓ) in the Rξ gauge

To demonstrate the cancellation of the gauge parameter Rξ we take the
simpler decay t → b +W+(→ ℓ+ νℓ). In the Rξ gauge there are two
Feynman diagrams that contribute to t → b +W+(→ ℓ+ νℓ)

t

b

W+

l+

νl

t

b

φ+

l+

νl

Figure: Feynman diagrams for the decay t → b +W+(→ ℓ+ νℓ) in the Rξ gauge

where φ+ is the charged Goldstone boson. In our case one would have
from W+-exchange

q
ν
ūνγν(1− γ5)vℓ = +mℓūν(1 + γ5)vℓ,

q
µ
ūbγµ(1− γ5)ut = mt ūb(1 + γ5)ut −mbūb(1− γ5)ut .

Using the Feynman rules for charged Goldstone boson φ+-exchange one
can see that the gauge parameter dependent terms exactly cancel.



Attaching (massless) fermion pairs to the off-shell gauge bosons

Split the unitary gauge propagator into a spin 1 (Pνβ
1 (q)) and a spin 0

piece (Pνβ
0 (q)):

− g
νβ +

qνqβ

m2
V

=

(
−g

νβ +
qνqβ

q2

︸ ︷︷ ︸
spin 1

)
−

qνqβ

q2

(
1−

q2

m2
V

)

︸ ︷︷ ︸
spin 0

,

For massless external fermions the spin 0 piece gives zero contribution.
When zero mass fermions are attached to off-shell gauge bosons one can
use the spin 1 gauge.

The correct result is

Γ(H → Z
∗
Z

∗) ∼

(
p2q2

m4
Z

)
Γ(spin 1 gauge)

Where do the factors p2 and q2 come from? They come from attaching a
fermion pair to the off-shell gauge bosons. To keep things simple take
mℓ = 0.

∫
dΩpL

µν(p) =
4π

3
p
2
P

µν
1 (p))

∫
dΩqL

µν(q) =
4π

3
q
2
P

µν
1 (q)



Attaching (massless) fermion pairs to the off-shell gauge bosons

Factorization for H → Z∗(→ fi f̄i ) + Z∗(→ fj f̄j) (i 6= j)

dΓi j

dp2dq2
(p2, q2) = 2 · Bi Bj

1

π

mZΓ

(p2 −m2
Z )

2 +m2
ZΓ

2
Z

1

π

mZΓ

(q2 −m2
Z )

2 +m2
ZΓ

2
Z

·

(
p2q2

m4
Z

)
Γ(H → Z

∗ + Z
∗)spin 1 gauge

Sum over the channels (factorization!)

∑

i,j

Bi Bj ≈
1

2

(∑

i

Bi

)(∑

j

Bj

)
=

1

2

i) i 6= j Bi Bj = Bj Bi

ii) i = j Bi Bi ≈
1
2
Bi Bj



Angular decay distribution 1

Covariant expression:

W (θp, θq, χ) = gαα′ P
αµ
1 (p)Pα′µ′

0⊕1 (q) L(p)
µν(p) L

(q)

µ′ν′(q)P
νβ
1 (p)Pν′β′

0⊕1 (q) g
∗
ββ′

Z Z

χ

θqθp

+

τ+

x
z

−

−τ

e

e

∗H

qp

Figure: Definition of the momenta p and q, the polar angles θp and θq , and the
azimuthal angle χ in the cascade decay H → Z(→ e+e−) + Z∗(→ τ+τ−)



Angular decay distribution 2

Two routes to proceed:

◮ Define momenta in three frames. Boost momenta to Higgs rest
frame. Do the contractions.
(Cabibbo, Maksymowicz 1965, Buchalla et al. 2014)

◮ Helicity method (Jacob, Wick 1959)

Transform covariant distribution to a helicity distribution with the help of
the completeness relations for polarization vectors. To make life a bit
simpler we treat the on-shell (p)– off-shell (q) case.

◮ Off-shell spin 1+spin 0 propagator (unitary gauge)

P
µ′α′

0⊕1 (q) = −g
µ′α′

+
qµ′

qα′

m2
V

= −
∑

λV∗=t,±1,0

εµ
′

(λV∗)ε∗α′

(λV∗) ĝλV∗λV∗ .

◮ On-shell spin 1 propagator (p2 = m2
Z )

P
αµ
1 (p) = −g

αµ +
pαpµ

p2
=

∑

λV=±1,0

ε̄α(λV )ε̄
∗µ(λV )



Angular decay distribution 3

Helicity representation of angular decay distribution

W (θp, θq, χ) =∑

λV ,λ′

V
J,J′λV∗ ,λ′

V∗

(−FS)
2−J−J′

L
(p)

λV λ′

V

(cos θp)HλV ,λV∗H
∗
λ′

V
,λ′

V∗

L
(q)

λV∗ λ′

V∗

(cos θq, χ)

with J, J ′ = 0, 1 λV∗ , λ′
V∗ = t,±1, 0, λV , λ

′
V = ±1, 0



Angular decay distribution 4; a sample result

Normalized angular decay distribution (see also Cheng, Sinha et al.)

(
∫
angles

W̃ (θp, θq, χ) = 1 )

W̃ (θp, θq, χ) =
1

8π

(
1 +

7∑

i=1

F̃ihi (θp, θq, χ)

)

i F̃Z
i (mℓ = 0) F̃Z

i (mℓ = mτ ) hi (θp, θq, χ)

1 −0.9115 −0.6257 P2(cos θq)

2 −0.9115 −0.9391 P2(cos θp)

3 +0.9557 +0.6561 P2(cos θp)P2(cos θq)

4 +0.0030 +0.0023 cos θp cos θq

5 +0.0167 +0.0132 sin θp sin θq cosχ

6 +0.1875 +0.1287 sin 2θp sin 2θq cosχ

7 +0.0332 +0.0228 sin2 θp sin
2 θq cos 2χ

Table: Numerical results for the normalized coefficient functions F̃i (q
2) at

q2 = 50GeV
2. Legendre polynomial P2(cos θ) =

1
2
(3 cos2 θ − 1).



Legendre polynomial

It is quite convenient and is now a common praxis to expand the angular
decay distribution W̃ (θp, θq, χ) in terms of Legendre polynomial because of
their orthogonality properties. In fact, one has

∫ +1

−1

Pm(x)Pn(x) = 0 m 6= n

∫ +1

−1

Pm(x)Pm(x) =
2

2m + 1

The first three Legendre polynomials are

P0(x) = 1

P1(x) = x

P2(x) = 1
2
(3x2 − 1)

Note, in particular,
∫
P2(x)dx = 0.



Helicity composition of the gauge bosons

On-shell – off-shell case

Figure: Differential rates dΓZα/dq
2 (indices α = U, L, S for the decay

H → Z(→ e+e−) + Z∗(→ ℓ+ℓ−) with mℓ = 0 and mℓ = mτ .

◮ L refers to (ZZ∗) double density matrix element ρLL
◮ U – ′′ – ρTT
◮ S – ′′ – ρLS



On-shell – off-shell vs. Off-shell – off-shell decays

ΓZ [GeV ] ΓZ
U/Γ

Z ΓZ
L /Γ

Z ΓZ
S /Γ

Z

H → Z (→ e+e−) + Z∗(→ ℓ+ℓ−)
(mℓ = mµ) 1.01× 10−7 GeV 0.41 0.59 0

(mℓ = mτ ) 0.97× 10−7 GeV 0.41 0.55 0.04

H → Z∗(→ e+e−) + Z∗(→ ℓ+ℓ−)
(mℓ = mµ) 1.22× 10−7 GeV 0.39 0.61 0

(mℓ = mτ ) 1.20× 10−7 GeV 0.39 0.59 0.02

Table: Total and normalized partial decay rates for the four-body decays
H → Z(→ e+e−) + Z∗(→ ℓ+ℓ−) and H → Z∗(→ e+e−) + Z∗(→ ℓ+ℓ−).



Opening Pandora’s box

◮ Using the two Feynman diagrams A and B we find

Γ(H → 4τ ;mτ 6= 0) < Γ(H → 4τ ;mτ = 0)

This is expected since mass effects reduce the available phase space.

◮ MadGraph instead finds

Γ(H → 4τ ;mτ 6= 0) > Γ(H → 4τ ;mτ = 0)

counter to naive intuition

◮ The solution to the problem is that, with mτ 6= 0, there are altogether
28 instead of 2 contributing Feynman diagrams.

◮ And MadGraph is so kind to display them for you.
Here they are:



More Feynman diagrams

Four diagrams including our diagrams A and B
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(1a) (1b) (1c) (1d)

Diagrams {(1c); (1d)} are topologically equivalent to {(1a); (1b)}, as
before



More Feynman diagrams cont’d

Diagrams that come in for mτ 6= 0 through the Yukawa coupling
gHττ ∝ mτ
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All diagrams are topologically nonequivalent. Experience from having
calculated e+e− → qq̄qq̄ in 1979/80 came in handy (Ali et al.).



More Feynman diagrams cont’d

Attaching lepton pairs to the process H → γγ
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(4a) (4b) (4c) (4d)

MadGraph results (without diagrams 4):

mτ = 0 Γ = 1.33 · 10−7
GeV

mτ 6= 0 Γ = 1.43 · 10−7
GeV 28x28 terms

mτ 6= 0 but gHττ = 0 Γ = 1.28 · 10−7
GeV

Most important of the extra contributions are diagrams that allow for
Z–pole contributions. We are presently calculating contributions of
|2a + 3a|2, |2b + 3b|2, |2c + 3c|2 and |2d + 3d |2.



Some final remarks

◮ There is a great deal of interesting physics in the process
H → τ+τ+τ+τ+. Gauge invariance, identical particle effects, lepton
mass effects, topology of Feynman diagrams, momentum mismatch,
no external off-shell gauge bosons, ....

◮ Experimentalists are getting better and better in the identification of
tauons. Taus from the process H → τ+τ−τ+τ− are used to train tau
finding algorithms for the gold plated process H → τ+τ−.

◮ My office mate and friend Jian Wang calculated many of the rates in
minutes using MadGraph. We took two years. There is essential
agreement but some differences in detail. My congratulations for the
MadGraph team for having done a tantalizingly good job.

◮ Many thanks to my colleagues Stefan Groote, Lauri Kaldamäe and
Jian Wang for collaboration and PRISMA for support.


