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1. Introduction t

Quantum Electrodynamics in 2 + 1 dimensions (QED3) has been

extensively studied during more than three decades now.

Originally, the interest in QED3 came from its similarities to

(3 + 1)-dimensional QCD and the fact that phenomena such as

dynamical chiral symmetry breaking (DχSB) and mass generation

may be studied systematically in such a toy model

(Pisarski, 1984, 1991), (Appelquist et al., 1984, 1988, 1999), (Nash,

1989), (Atkinson et al., 1998), (Dagotto et al., 1989, 1998), (Bashir

et al., 2007, 2009), (Giombi, 2016), (Di Pietro, 2016)



Later, a strong interest in QED3 arose in connection with planar

condensed matter physics systems having relativistic-like low-energy

excitations such as some two-dimensional antiferromagnets

(A. Marston and L. Ioffe, 1989)

and graphene

(F.F. Semenoff and Wallace, 1984)

[see reviews (Kotov, 2012) (S. Miransky, 2015)]

In all cases, the understanding of the phase structure of QED3

is a crucial pre-requisite to understand non-perturbative dynamic

phenomena in more realistic particle and condensed matter physics

models.



Despite the fact that a large number of investigations have been

carried out to study DχSB in QED3, very different results have

been obtained.

Pisarski solved the Schwinger-Dyson (SD) gap equation

(Pisarski, 1984)

using a leading order (LO) 1/N -expansion and found that a fermion

mass is generated for all values of N , decreasing exponentially with

N and vanishing only in the limit N →∞.

Later, he confirmed his finding by a renormalization group analysis

(Pisarski, 1991)

Support of Pisarski’s result was given by

(Pennington, 1991, 1992)

who adopted a more general non-perturbative approach to solving

the SD equations.



On the other hand, in a more refined analysis of the gap equation

at LO of the 1/N -expansion, (Appelquist et al., 1988) have shown

that the theory exhibits a critical behaviour as the number N of

fermion flavours approaches Nc = 32/π2; that is, a fermion mass

is dynamically generated only for N < Nc.

Contrary to all previous results, an alternative non-perturbative

study by (Atkinson et al., 1998) suggested that chiral symmetry is

unbroken at sufficiently large N .



The theory has also been simulated on the lattice

(K.K.Dagotto, 1989, 1990), (Azcoiti, 1993, 1996), (K.N.Karthik.

2016)

The conclusions of (K.K.Dagotto, 1989, 1990) are in the agree-

ment with the existence of a critical N as predicted in the analysis

of (Appelquist et al., 1988).

The second paper (Azcoiti, 1993, 1996) finds DχSB for all N .

The recent third one (K.N.Karthik. 2016): no sign of DχSB at

all.



Even in the case where a finite Nc is found, its value is subject

to uncertainty with estimates ranging from Nc = 1 to Nc = 4

(see (Appelquist et al., 1984) for a review).

Moreover, (Appelquist et al., 1999) found an upper bound, Nc <

3/2.

More recently, (K.T. Giombi et al., 2016) found that Nc < 4.4

and (K.S. DiPietro et al., 2016) that Nc < 9/4.

Clearly, all these disagreements reflect our poor understanding of

this problem.



The purpose of the present work is to include 1/N corrections to

the LO result of (Appelquist et al., 1988)

Because the critical value Nc is not large, the contribution of

such higher orders in the 1/N expansion can be essential and their

proper study may lead to a better understanding of the problem.

The well-known results of (D. Nash, 1989) demonstrated a quite

strong stability of the 1/N expansion. The results was obtained

using a different gauge parameters for various part of calculations.



The last years witnessed a strong progress in the study of the

gauge dependence of DχSB in various models. (A. Ahmad, 2016).

The progress is related to the use of the Landau-Khalatnikov-

Fradkin transformation.

(L.D. Landau and I.M. Khalatnikov, 1956), (E.S. Fradkin, , 1956)

On the School there was the talk of Muhammad Jamil Aslam

about continuation of LKF-transformations to QCD.
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Figure 1: A dependence of the (normalized) dynamical mass on the gauge parameter.

In the case of QED3 in the 1/N -expansion, the application of

this transformation (R. Bashir et al., 2009) has revealed the almost

complete lack of gauge dependence for Nc. This confirms that we

can limit our analysis to the case of the Landau gauge.



2. Model and Schwinger-Dyson equations

The Lagrangian of massless QED3 with N flavours of fermions

reads

L = Ψ(i∂̂ − eÂ)Ψ− 1

4
F 2
µν , (1)

where Ψ is taken to be a four component complex spinor. In the

massless case the model contains infrared divergences.

The latter soften when the model is analysed in a 1/N expansion.

(P. Appelquist, 1981), (T.Jackiw and P. Appelquist, 1981)

Since the theory is super-renormalizable, the mass scale is given

by the dimensionful coupling constant: a = Ne2/8, which is kept

fixed as N →∞.



In the four component case, we can introduce the matrices γ3

and γ5 which anticommute with γ0, γ1 and γ2. Then, the massless

case is invariant under the transformations: Ψ→ exp(iα1γ3)Ψ and

Ψ→ exp(iα2γ5)Ψ. Together with the identity matrix and [γ3, γ5],

we have a U(2) symmetry for each spinor and the full global “chi-

ral” (or rather flavour) symmetry is U(2N ). A mass term will break

this symmetry to U(N )× U(N ).

Following (P. Appelquist, 1988), we now study the solution of

the SD equation. The inverse fermion propagator has the form

S−1(p) = [1 + A(p)] (ip̂ + Σ(p)) , (2)

where A(p) is the wave-function renormalization and Σ(p) is the

dynamically generated parity-conserving mass which is taken to be

the same for all the fermions.



Notice that in our definition of Σ(p), the choice of the free vertex

corresponds to the so-called central Ball-Chiu vertex

(C. Ball, 1989)

for the “more standard”definition Σ̃(p) = Σ(p)[1 + A(p)].



With these conventions, the SD equation for the fermion prop-

agator may be decomposed into scalar and vector components as

follows:

Σ̃(p) =
2a

N
Tr

∫ d3k

(2π)3
γµDµν(p− k)Σ(k)Γν(p, k)

[1 + A(k)]
(

k2 + Σ2(k)
) , (3)

A(p)p2 = −2a
N

Tr
∫ d3k

(2π)3
Dµν(p− k)p̂γµk̂Γν(p, k)

[1 +A(k)]
(

k2 + Σ2(k)
) , (4)

where Dµν(p) is the photon propagator in the Landau gauge:

Dµν(p) =
gµν − pµpν/p

2

p2 [1 + Π(p)]
, (5)

Π(p) is the polarization operator and Γν(p, k) is the vertex function.
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Figure 2: LO diagram to the dynamically generated mass Σ(p). The crossed line denotes mass insertion.

3. Leading order

The LO approximations in the 1/N expansion are given by:

A(p) = 0, Π(p) = a/|p|, Γν(p, k) = γν , (6)

where the fermion mass has been neglected in the calculation of

Π(p).

A single diagram contributes to the mass gap equation at LO,

see Fig. 2, and the latter reads:

Σ(p) =
16a

N

∫ d3k

(2π)3
Σ(k)

(

k2 + Σ2(k)
)

[(p− k)2 + a |p− k|] . (7)



Performing the angular integration in Eq. (7) yields:

Σ(p) =
4a

π2N |p|
∫∞
0 d|k|

|k|Σ(|k|)
k2 + Σ2(|k|) ln













|k| + |p| + a

|k − p| + a













. (8)

The study of the last equation (P. Appelquist, 1988) has revealed

the existence of a critical number of fermion flavours Nc, such that

for N > Nc, Σ(p) = 0.

As it was argued in (P. Appelquist, 1988), QED3 is strongly

damped for |p| > a, i.e., all relevant physics occur at |p|/a < 1.

Hence, only the lowest order terms in |p|/a have to be kept on

the r.h.s. with a hard cut-off at |p| = a. Moreover, considering

N close to Nc, the value of Σ(|k|) can be made arbitrarily small.

Thus, k2 +Σ2(|k|) can be replaced by k2 on the r.h.s. which then

further simplifies as:

Σ(p) =
8

π2N

∫ a
0d|k|

Σ(|k|)
Max(|k|, |p|) . (9)



Following (P. Appelquist, 1988), the mass function may then be

parametrized as:

Σ(k) = B (k2)−α , (10)

(with an arbitrary B value) where the index α has to be self-

consistently determined. Substituting (10) in Eq. (9), the gap

equation reads:

1 =
2β

L
where β =

1

α (1/2− α)
and L ≡ π2N . (11)



Solving the gap equation, the following values of α are obtained:

α± =
1

4













1±
√

√

√

√

√

√

√1− 32

L













, (12)

which reproduces the solution given by (P. Appelquist, 1988):

Nc = 32/π2 ≈ 3.24 (i.e., Lc = 32),

such that Σ(p) = 0 for N > Nc and

Σ(0) ≃ exp[−2π/(Nc/N − 1)1/2] , (13)

for N < Nc.

Thus, DχSB occurs when α becomes complex, that is for N < Nc.



As it was shown in (A.V.K. 1993, 2012), the same result for Σ(p)

can be obtained in another way. Taking the limit of large a, the

linearized version of Eq. (7) has the following form:

Σ(p) =
16

N

∫ d3k

(2π)3
Σ(k)

k2 |p− k| . (14)

With the help of the ansatz (10), one can then see that the r.h.s.

of Eq. (14) may be calculated with the help of the standard rules

of perturbation theory for massless Feynman diagrams as in

(D.Kazakov, 1983)



Indeed, the computation of Eq. (14) is straightforward and reads:

Σ(LO)(p) =
8B

N

(p2)−α

(4π)3/2
2β

π1/2
. (15)

This immediately yields the gap equation (11) and, hence, the re-

sults of Eq. (12) together with the critical value Nc = 32/π2 at

which the index α becomes complex.



Similarly, such rules allow for a straightforward evaluation of the

wave function renormalization. At LO,

A(p)p2 = − 2

N
Tr

∫ dDk

(2π)D

(gµν − (p−k)µ(p−k)ν
(p−k)2 )p̂γµk̂γν

k2|p− k| , (16)

where the integral has been dimensionally regularized with D =

3− 2ε.

Taking the trace and computing the integral on the r.h.s. yields:

A(p) =
Γ(1 + ε)(4π)εµ2ε

p2ε
C1 =

µ2ε

p2ε
C1 + O(ε) , (17)

where theMS parameter µ has the standard form µ2 = 4πe−γEµ2

with the Euler constant γE and

C1 = +
4

3π2N











1

ε
+
7

3
− 2 ln 2











. (18)



The corresponding anomalous scaling dimension of the fermion

field then reads:

η = µ2
d

dµ2
A(p) =

4

3π2N
,

and coincides with the one in (D. Gracey, 1993)



Some rules for calculations (λ = D/2− 1)

On the School there were some discussions about some rules for

calculations in the talks of Andrey Grozin and Michal Czakon

Loop

∫

dDx
1

x2α(x− y)2β
=

1

(4π)D/2

1

y2(α+β−λ−1)
A(α, β),

where

A(α, β) =
a(α)a(β)

a(α + β − λ− 1)
, a(α) =

Γ(α̃)

Γ(α)
, α̃ = D/2− α



Unical triangle (∑31 αi = D)

T (α1, α2, α3) ≡
∫

dDx
1

(x− y1)2α1(x− y2)2α2(x− y3)2α2

=
1

(4π)D/2
A(α1, α2)

1

y
2α̃3
12 y

2α̃2
13 y

2α̃1
23

, y2α13 ≡ (y1 − y3)
2α



IBP procedure for triagle T (α1, α2, α3):

∫

dDx
d

dxµ











(x− y1)
µ

(x− y1)2α1(x− y2)2α2(x− y3)2α2











=
∫

dDx[
D

(x− y1)2α1(x− y2)2α2(x− y3)2α2

+(x− y1)
µ d

dxµ











1

(x− y1)2α1(x− y2)2α2(x− y3)2α2











] = 0

produces the relation

(D − 2α1 − α2 − α3)T (α1, α2, α3)

= α2[T (α1 − 1, α2 + 1, α3)− y212T (α1, α2 + 1, α3)]

+α3[T (α1 − 1, α2, α3 + 3)− y213T (α1, α2, α3 + 1)]



Gegenbauer Polynomials

Following (Chetyrkin, Kataev,Tkachev, 1980) D-space integra-

tion can be represented in the form

dDx =
1

2
SD−1(x

2)λdx2dx̂,

where x̂ = ~x/
√
x2, and SD−1 = 2πλ+1/Γ(λ+1) is the surface of

the unit hypersphere in RD. The Gegenbauer polynomials Cδ
n(t)

are defined as

(1− 2rt + r2)−δ =
∞
∑

n=0
Cδ
n(t)r

n (r ≤ 1), Cδ
n(1) =

Γ(n + 2δ)

n!Γ(2δ)
whence the expansion for the propagator is:

1

(x1 − x2)2δ
=

∞
∑

n=0
Cδ
n(x̂1x̂2) [

(x21)
n/2

(x22)
n/2+δ

Θ(x22 − x21) + (x21←→ x22)],

where

Θ(y) =































1, if y ≥ 0

0, if y < 0



Orthogonality of the Gegenbauer polynomials is expressed by the

equation

∫

Cλ
n(x̂1x̂2) x̂2 C

λ
m(x̂2x̂3) =

λ

n + λ
δmn Cλ

n(x̂1x̂3),

where δmn is the Kroneker symbol.

The following formulae are useful:

Cδ
n(x) =

∑

p≥0
(2x)n−2p(−1)pΓ(n− p + δ)

(n− 2p)!p!Γ(δ)
and

(2x)n

n!
=

∑

p≥0
Cδ
n−2p(x)

(n− 2p + δ)Γ(δ)

p!Γ(n− p + δ + 1)

Substituding the latter equation for δ = λ to the first one, we

have the following equation after the separate analysis at odd and

even n:

Cδ
n(x) =

[n/2]
∑

k=0
Cλ
n−2p(x)

(n− 2k + λ)Γ(λ)

k!Γ(δ)

Γ(n + δ − k)Γ(k + δ − λ)

Γ(n + λ + 1− k)Γ(δ − λ)



The rules of calculations have the following form (A.V.K, 1995)

:
∫

dDx
1

x2α(x− y)2β
Θ(x2 − y2)

=
1

(4π)D/2

1

y2(α+β−λ−1)
∞
∑

m=0

B(m, 0|β, λ)
m + α + β − λ− 1

(β=λ)
=

1

(4π)D/2

1

y2(α−1)
1

Γ(λ + 1)

1

(α− 1)

∫

dDx
1

x2α(x− y)2β
Θ(y2 − x2)

=
1

(4π)D/2

1

y2(α+β−λ−1)
∞
∑

m=0

B(m, 0|β, λ)
m− α + λ + 1

(β=λ)
=

1

(4π)D/2

1

y2(α−1)
1

Γ(λ + 1)

1

(λ + 1− α)



where

B(m,n|β, λ) =
Γ(m + β + n)

m!Γ(m + n + 1 + λ)Γ(β)

Γ(m + β − λ)

Γ(β − λ)

Hereafter we add this specific case β = λ to our rules.

The sum of above diagrams does not contain Θ-terms and should

reproduce the above result for Loop in then form of Γ-functions..

It can be obtained by usage of the transformation of 3F2-hypergeometric

function with unit argument:

3F2(a, b, c; e, f ; 1) =
Γ(1− a)Γ(e)Γ(f )Γ(c− b)

Γ(e− b)Γ(f − b)Γ(1 + b− a)Γ(c)
·

3F2(b, b− e + 1, b− f + 1; 1 + b− c, 1 + b− a; 1) + (b←→ c)



When e = b + 1 (it is our case), the 3F2-function can be repre-

sented as the sum of another 3F2-function and a term containing

only Γ-function products:

∞
∑

k=0

Γ(k + a)Γ(k + c)

k!Γ(k + f )

1

k + b
=

Γ(a)Γ(1− a)Γ(b)Γ(c− b)

Γ(f − b)Γ(1 + b− a)

− Γ(1− a)Γ(a)

Γ(f − c)Γ(1 + c− f )
· ∞∑

k=0

Γ(k + c− f + 1)Γ(k + c)

k!Γ(k + 1 + c− a)

1

k + c− b
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Figure 3: NLO diagrams to the dynamically generated mass Σ(p). .

3. Next-to-leading order

The use at which the standard rules for computing massless Feyn-

man diagrams allowed us to derive LO results suggests the possi-

bility to extend these computations beyond LO. We therefore con-

sider the NLO contributions to the dynamically generated mass and

parametrize them as:

Σ(NLO)(p) =











8

N











2
B

(p2)−α

(4π)3
(ΣA + Σ1 + 2Σ2 + Σ3) , (19)

where each NLO contribution is represented graphically in Fig. 3.



Because we are dealing with the linearized gap equation, each

contribution contains a single mass insertion. Adding these con-

tributions to the LO result, Eq. (15), the gap equation has the

following general form:

1 =
2β

L
+

π

L2 [ΣA + Σ1 + 2Σ2 + Σ3] . (20)

After very tedious and lengthy calculations, all NLO contributions

could be evaluated exactly using the rules for computing massless

Feynman diagrams. For the most complicated scalar diagrams, see

I1(α) and I2(α) below, the Gegenbauer-polynomial technique has

been used following (A.V.K., 1995) We now summarize our results.



The contribution ΣA, see Fig. 3 A), originates from the LO value

of A(p) and is singular. Using dimensional regularization, it reads:

ΣA = +
16

3

µ2ε

p2ε
β











1

ε
+ Ψ1 +

4

3
− β

4











+ O(ε) , (21)

where Σi = πΣi, (i = 1, 2, 3.A) and

Ψ1 = Ψ(α) + Ψ(1/2− α)− 2Ψ(1) +
3

1/2− α
− 2 ln 2 , (22)

and Ψ is the digamma function.

The contribution of diagram 1) in Fig. 3 is finite and reads:

Σ1 = −4Π̂β, Π̂ =
92

9
− π2 , (23)



The contribution of diagram 2) in Fig. 3 is again singular. Di-

mensionally regularizing it yields:

2Σ2 = −
16

3

µ2ε

p2ε
β











1

ε
+ Ψ1 +

7

3
+
5β

8











− 2Σ̂2 + O(ε) , (24)

where

Σ̂2 = (1− 4α)β[Ψ′(α)− Ψ′(1/2− α)]

− π

2α
Ĩ1(α)−

π

2(1/2− α)
Ĩ1(α + 1) , (25)

and Ψ′ is the trigamma function. Notice that the singularities in

ΣA and Σ2 cancel each other and their sum is therefore finite:

ΣA + 2Σ2 = −
2

3
β(7β + 8)− 2Σ̂2 . (26)

This cancellation corresponds to the one of the logarithms, ln(p/α),

in (D. Nash, 1989)



The dimensionless integral Ĩ1(α) appearing in Eq. (25) is defined

as:

I1(α) ≡
(p2)−α

(4π)3
Ĩ1(α) (27)

=
∫ d3k1
(2π)3

d3k2
(2π)3

1

|p− k1|k2α1 (k1 − k2)2(p− k2)2|k2|
,

and obeys the following relation (it can be obtained by analogy with

the ones in (D. Kazakov, 1983)):

Ĩ1(α + 1) =
(α− 1/2)2

α2
Ĩ1(α)−

1

πα2
[Ψ′(α)− Ψ′(1/2− α)] .(28)



Using (A.V.K., 1995) the integral Ĩ1(α) can be represented in the

form of a two-fold series

Ĩ1(α) =
∞
∑

n=0

∞
∑

l=0

B(l, n, 1, 1/2)

(n + 1/2) Γ(1/2)

×[ 2

n + 1/2













1

l + n + α
+

1

l + n + 3/2− α













+
1

(l + n + α)2
+

1

(l + n + 3/2− α)2
], (29)

where

B(m,n, α, 1/2) =
Γ(m + n + α)Γ(m + α− 1/2)

m!Γ(m + n + 3/2)Γ(α)Γ(α− 1/2)
. (30)



Finally, the contribution of diagram 3) in Fig. 3 is finite and reads:

Σ3 = Σ̂3 + 3β2,

Σ̂3 = (1/2− α)πĨ2(1 + α) +
π

2
Ĩ2(α) + (α− 2)πĨ3(α) .(31)

The dimensionless integrals are defined as:

Ĩ2(α) = Ĩ(γ = 1/2, α) and Ĩ3(α) = Ĩ(γ = −1/2, 1 + α), where:

I(γ, α) ≡ (p2)−α−γ+1/2

(4π)3
Ĩ(γ, α)

=
∫ d3k1
(2π)3

d3k2
(2π)3

1

(p− k1)2γk
2
1(k1 − k2)2α(p− k2)2|k2|

. (32)

They satisfy the following relations:

Ĩ2(α) = Ĩ2(3/2− α),

Ĩ3(α) =
2

4α− 1
(αĨ2(1 + α)− (1/2− α)Ĩ2(α))−

β2

π
, (33)

and, thus, only one of them is independent.



Using (A.V.K., 1985), the integral Ĩ2(α) can be represented in

the form of a three-fold series:

Ĩ2(α) =
∞
∑

n=0

∞
∑

m=0
B(m,n, β, 1/2)

∞
∑

l=0
B(l, n, 1, 1/2)× C(n,m, l, α) ,(34)

C(n,m, l, α) =
1

(m + n + α)(l + n + α)

+
1

(m + n + α)(l +m + n + 1)
+

1

(m + n + 1/2)(l +m + n + α)

+
1

(m + n + 1/2)(l + n + 3/2− α)
+

1

(n + l + α)(l +m + n + α)

+
1

(l + n + 3/2− α)(l + n +m + α)
. (35)



Combining all of the above results, the gap equation (20) may

be written in an explicit form as:

1 =
2β

L
+

1

L2 [8S(α)−
5

3
β2 − 16

3
β − 4Π̂β] , (36)

where

S(α) = (Σ̂3(α)− 2Σ̂2(α))/8 . (37)

At this point, we consider Eq. (36) directly at the critical point

α = 1/4, i.e., at β = 16. This yields:

L2
c − 32Lc − 8(S − 64− 8Π̂) = 0 , (38)

where S = S(α = 1/4). Solving Eq. (38), we have two standard

solutions:

Lc,± = 16±
√
D, D = 8(S − 32− 8Π̂) . (39)

It turns out that the “−” solution is unphysical and has to be re-

jected because Lc,− < 0. So, the physical solution is Lc = Lc,+.



In order to provide a numerical estimate for Nc, we have used the

series representations in order to evaluate the integrals:

πĨ1(α = 1/4) ≡ R1 and

πĨ2(α = 1/4 + iδ) ≡ R2 − iP2δ +O(δ2)

where δ → 0 regulates an artificial singularity in

πĨ3(α = 1/4) = R2 + P2/4.



With 10000 iterations for each series, we obtain the following

numerical estimates:

R1 = 163.7428, R2 = 209.175, P2 = 1260.720 . (40)

From these results, we may then obtain the numerical value of

S = R1 − R2/8− 7P2/128

which, combined with the one of Π̂, yields Lc = 32.45 and there-

fore Nc = 3.29. This result shows that the inclusion of the 1/N

corrections increases the critical value of Nc by only 1.5% with

respect to its LO value.



Conclusion

We have included O(1/N2) contributions to the SD equation

exactly and found that the critical value Nc increased by 1.5% with

respect to the LO result.

• Our analysis is in nice agreement with (D. Nash, 1989) and

therefore gives further evidence in favour of the solution found

by (P. Appelquist, 1988).

• Our results are in support of the fact that the 1/N expansion

of the kernel of the SD equation describes reliably the critical

behaviour of the theory.

• Our good agreement with (D. Nash, 1989) is nice but rather

strange because the two analyses are done in quite different

ways.



•While we have used the Landau gauge (in accordance with recent

results (R.S. Bashir, 2009) showing the gauge invariance of Nc),

Nash worked with an arbitrary gauge fixing parameter, ξ.

• He has resummed the most important NLO terms (∝ β2 in our

definition) which, together with the LO ones, lead to a gauge

invariant result for Nc. This result is larger by a factor 4/3 than

the pure LO one (P. Appelquist, 1988).

• The rest of the NLO terms (∝ β) were evaluated (mostly numer-

ically) in the Feynman gauge, which modifies Nc another time

and gives the final result of Nash: Nc = 3.28, which in-turn is

very close to LO one.



• For these reasons, and despite the surprising closeness of the

final results, our analysis substantially differs from that of Nash

and intermediate expressions are difficult to compare.

• In order to clear up the beautiful agreement we have with Nash’s
results (D. Nash, 1989), we plan to take into account of all ξ-

dependent terms in our forthcoming publication.

• Really we have calculated already the ξ-dependent terms (through
srong discussions with Valery Gusynin from Kiev). We have been

waiting for publishing the him similar paper. It came today (e-

Print: arXiv:1607.08582 [hep-ph]). So, I think we will prepare

our paper just after our vacations.


