Domain wall nework as QCD vacuum: confinement, chiral symmetry, hadronization

Sergei Nedelko

Bogoliubov Laboratory of Theoretical Physics, JINR

July 29, 2016

S. Nedelko (BLTP JINR)

 ↓
 ■
 ●
 ■
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •<

An overall task pursued by most of approaches to QCD vacuum structure is an identification of the properties of nonperturbative gauge field configurations able to provide a coherent resolution of the confinement, chiral symmetry breaking, the $U_{\rm A}(1)$ symmetry realization and the strong CP problems, both in terms of color-charged fields and colorless hadrons.

Present approach: QCD Vacuum is considered as a medium characterized by condensates describable in terms of the nonperturbative gauge field configurations.

The other side of this task is identification of the conditions for deconfinement and chiral symmetry restoration.

《曰》 《圖》 《문》 《문》

July 29, 2016

2 / 42

45 years ago - Harmonic confinement – 4-dim. oscillator R. P. Feynman, M, Kislinger, and F. Ravndal, Phys. Rev. D **3** (1971) 2706. • Confinement of both static and dynamical quarks \rightarrow

$$W(C) = \langle \operatorname{Tr} \mathbf{P} \ e^{i \int_C dz_\mu \hat{A}_\mu} \rangle$$
$$S(x, y) = \langle \psi(y) \bar{\psi}(x) \rangle$$

- Dynamical Breaking of chiral $SU_L(N_f) \times SU_R(N_f)$ symmetry $\longrightarrow \langle \bar{\psi}(x)\psi(x) \rangle$
- $U_A(1)$ **Problem** $\longrightarrow \eta'(\chi, \text{Axial Anomaly})$
- Strong CP Problem $\longrightarrow Z(\theta)$
- Colorless Hadron Formation: \longrightarrow Effective action for colorless collective modes: hadron masses and "wave functions", form factors, scattering

Light mesons and baryons, Regge spectrum of excited states of light hadrons, heavy-light hadrons, heavy quarkonia

What would be a formalism for coherent simultaneous description of all these nonperturbative features of QCD?

QCD vacuum as a medium characterized by certain condensates, quarks and gluons - elementary coloured excitations (confined), mesons and baryons - collective colorless excitations (masses, form factors, etc)

Quantum effective action of QCD!

- QCD effective action and vacuum gluon configurations
- Gluon condensates and domain wall network as QCD vacuum
- Testing the domain model static characteristics of QCD vacuum
- Bosonization Effective meson action
- Meson mass spectrum, decay constants
- Form factors
- Comparison with other approaches: FRG, DSE+BS, AdS/QCD and Light-Front Holography
- Summary

QCD effective action and vacuum gluon configurations

In Euclidean functional integral for YM theory one has to allow the gluon condensates to be nonzero:

$$Z = N \int\limits_{\mathcal{F}_B} DA \int\limits_{\Psi} D\psi D\bar{\psi} \exp\{-S[A,\psi,\bar{\psi}]\}$$

$$\mathcal{F}_{B} = \left\{ A : \lim_{V \to \infty} \frac{1}{V} \int_{V} d^{4}x g^{2} F^{a}_{\mu\nu}(x) F^{a}_{\mu\nu}(x) = B^{2} \right\}.$$
Phys. Rev. D84 (2011) 094017
L. D. Faddeev,
[arXiv:0911.1013 [math-ph]]
H. Leutwyler,
Nucl. Phys. B 179 (1981) 129

 $A^a_\mu = B^a_\mu + Q^a_\mu$, background gauge fixing condition D(B)Q = 0:

$$1 = \int_{\mathcal{B}} DB\Phi[A, B] \int_{\mathcal{Q}} DQ \int_{\Omega} D\omega \delta[A^{\omega} - Q^{\omega} - B^{\omega}] \delta[D(B^{\omega})Q^{\omega}]$$

 Q^a_{μ} – local (perturbative) fluctuations of gluon field with zero gluon condensate: $Q \in \mathcal{Q}$; B^a_{μ} are long range field configurations with nonzero condensate: $B \in \mathcal{B}$.

$$Z = N' \int_{\mathcal{B}} DB \int_{\mathcal{Q}} DQ \int_{\Psi} D\psi D\bar{\psi} \det[D(B)D(B+Q)]\delta[D(B)Q] \exp\{-S[B+Q,\psi,\bar{\psi}]\}$$

B.V. Galilo and S.N. Nedelko,

The character of long range fields has yet to be identified by the dynamics of fluctuations:

$$Z = N' \int_{\mathcal{B}} DB \int_{\Psi} D\psi D\bar{\psi} \int_{\mathcal{Q}} DQ \det[D(B)D(B+Q)]\delta[D(B)Q] \exp\{-S_{\text{QCD}}[B+Q,\psi,\bar{\psi}]\}$$
$$= \int_{\mathcal{B}} DB \exp\{-S_{\text{eff}}[B]\}$$

Global minima of $S_{\text{eff}}[B]$ – field configurations that are dominant in the thermodynamic limit $V \to \infty$. Homogeneous Abelian (anti-)self-dual fields are of particular interest.

$$\langle F^2 \rangle : \quad A_\mu = -\frac{1}{2} n F_{\mu\nu} x_\nu, \ \tilde{F}_{\mu\nu} = \pm F_{\mu\nu}$$
$$n = T^3 \ \cos\xi + T^8 \ \sin\xi.$$

$$(z^2) \sim \frac{e^{-Bz^-}}{z^2}, \quad \tilde{G}(p^2) \sim \frac{1}{p^2} \left(1 - e^{-p^2/B}\right)$$

Gluon propagator \Rightarrow Regge trajectories

D 2

H. Leutwyler, Phys. Lett. B 96 (1980) 154

G.V. Efimov, and S.N. Nedelko, Phys. Rev. D 51 (1995)

A. Eichhorn, H. Gies and J. M. Pawlowski, Phys. Rev. D 83, 045014 (2011)

(ロ) (日) (日) (日) (日)

G

Gluon condensates and domain wall network

$$\mathcal{L}_{\text{eff}} = -\frac{1}{4B^2} \left(D_{\nu}^{ab} F_{\rho\mu}^b D_{\nu}^{ac} F_{\rho\mu}^c + D_{\mu}^{ab} F_{\mu\nu}^b D_{\rho}^{ac} F_{\rho\nu}^c \right) - U_{\text{eff}}$$
$$U_{\text{eff}} = \frac{B^4}{12} \text{Tr} \left(C_1 F^2 + \frac{4}{3} C_2 F^4 - \frac{16}{9} C_3 F^6 \right),$$

D. P. George, A. Ram,
 J. E. Thompson and R.
 R. Volkas, Phys. Rev.
 D 87, 105009 (2013)
 [arXiv:1203.1048 [hep-th]]

where

$$\begin{split} D^{ab}_{\mu} &= \delta^{ab} \partial_{\mu} - i A^{ab}_{\mu} = \partial_{\mu} - i A^{c}_{\mu} (T^{c})^{ab}, \\ F^{a}_{\mu\nu} &= \partial_{\mu} A^{a}_{\nu} - \partial_{\nu} A^{a}_{\mu} - i f^{abc} A^{b}_{\mu} A^{c}_{\nu}, \\ F_{\mu\nu} &= F^{a}_{\mu\nu} T^{a}, \quad T^{a}_{bc} = -i f^{abc} \\ C_{1} &> 0, \ C_{2} > 0, \ C_{3} > 0. \end{split}$$

《曰》 《圖》 《문》 《문》

 $U_{\rm eff}$ possesses 12 degenerate discrete minima:

$$A_{\mu} = -\frac{1}{2} n_k F_{\mu\nu} x_{\nu}, \ \tilde{F}_{\mu\nu} = \pm F_{\mu\nu},$$

where the matrix n_k belongs to the Cartan subalgebra of su(3)

$$n_k = T^3 \cos(\xi_k) + T^8 \sin(\xi_k),$$

$$\xi_k = \frac{2k+1}{6}\pi, \ k = 0, 1, \dots, 5.$$

Domain wall network

$$\mathcal{L}_{\text{eff}} = -\frac{1}{2}\Lambda^2 b_{\text{vac}}^2 \partial_\mu \omega \partial_\mu \omega - b_{\text{vac}}^4 \Lambda^4 \left(C_2 + 3C_3 b_{\text{vac}}^2 \right) \sin^2 \omega,$$

leads to sine-Gordon equation

$$\partial^2 \omega = m_\omega^2 \sin 2\omega, \quad m_\omega^2 = b_{\rm vac}^2 \Lambda^2 \left(C_2 + 3C_3 b_{\rm vac}^2 \right),$$

and the standard kink solution

$$\omega(x_{\nu}) = 2 \operatorname{arctg} \left(\exp(\mu x_{\nu}) \right)$$

"Domain wall involving the topological charge density, su(3) angle ξ and the field strength simultaneously"

E

・ロト ・回ト ・ヨト ・

"Non-topological solitonic excitations - extended objects in QCD vacuum under extreme conditions"

The general kink configuration can be parametrized as

$$\zeta(\mu_i, \eta_\nu^i x_\nu - q^i) = \frac{2}{\pi} \arctan \exp(\mu_i (\eta_\nu^i x_\nu - q^i)).$$

A single lump in two, three and four dimensions is given by

$$\omega(x) = \pi \prod_{i=1}^k \zeta(\mu_i, \eta_\nu^i x_\nu - q^i).$$

for k = 4, 6, 8, respectively. The general kink network is then given by the additive superposition of lumps

$$\omega = \pi \sum_{j=1}^{\infty} \prod_{i=1}^{k} \zeta(\mu_{ij}, \eta_{\nu}^{ij} x_{\nu} - q^{ij})$$

S.N. Nedelko, V.E. Voronin, Eur.Phys.J. A51 (2015) 4

H. Pagels, and E. Tomboulis, Nucl. Phys. B 143 (1978) 485

P. Minkowski, Phys. Lett. B 76 (1978) 439

H. Leutwyler, Nucl. Phys. B 179 (1981);

G.V. Efimov, and S.N. Nedelko, Phys. Rev. D 51 (1995) 176

Domain bulk - harmonic confinement

Elementary color charged excitations - fluctuations decaying in all four directions.

Eigenvalue problem for scalar field in \mathbb{R}^4 :

H. Leutwyler, Nucl. Phys. B 179 (1981);

$$B_{\mu} = B_{\mu\nu} x_{\nu}, \widetilde{B}_{\mu\nu} = \pm B_{\mu\nu}, B_{\mu\alpha} B_{\nu\alpha} = B^2 \delta_{\mu\nu}.$$

$$-\left(\partial_{\mu} - iB_{\mu}\right)^{2}G = \delta \quad \longrightarrow \quad G\left(x - y\right) \sim \frac{e^{-B(x - y)^{2}/4}}{(x - y)^{2}}$$

$$-\left(\partial_{\mu}-i\breve{B}_{\mu}\right)^{2}\Phi = \lambda\Phi \quad \longrightarrow \quad \left[\beta_{\pm}^{+}\beta_{\pm}+\gamma_{+}^{+}\gamma_{+}+1\right]\Phi = \frac{\lambda}{4B}\Phi,$$

$$\beta_{\pm} = \frac{1}{2}(\alpha_{1}\mp i\alpha_{2}), \quad \gamma_{\pm} = \frac{1}{2}(\alpha_{3}\mp i\alpha_{4}), \quad \alpha_{\mu} = \frac{1}{\sqrt{B}}x_{\mu}+\partial_{\mu},$$

$$\beta_{\pm}^{+} = \frac{1}{2}(\alpha_{1}^{+}\pm i\alpha_{2}^{+}), \quad \gamma_{\pm}^{+} = \frac{1}{2}(\alpha_{3}^{+}\pm i\alpha_{4}^{+}), \quad \alpha_{\mu}^{+} = \frac{1}{\sqrt{B}}x_{\mu}-\partial_{\mu}.$$

The eigenfunctions and eigenvalues - 4-dim. harmonic oscillator

$$\Phi_{nmkl}(x) = \frac{1}{\pi^2 \sqrt{n!m!k!l!}} \left(\beta_+^+\right)^k \left(\beta_-^+\right)^l \left(\gamma_+^+\right)^n \left(\gamma_-^+\right)^m \Phi_{0000}, \ \Phi_{0000} = e^{-\frac{1}{2}Bx^2}$$

$$\lambda_r = 4B(r+1), \ r = k+n \text{ self-dual field}, \ r = l+n \text{ anti-self-dual field}$$

3

Domain wall junctions - deconfinement

S.N. Nedelko, V.E. Voronin, Eur.Phys.J. A51 (2015) 4

The color charged scalar field inside junction:

$$-\left(\partial_{\mu} - i\breve{B}_{\mu}\right)^{2} \Phi = 0, \quad \Phi(x) = 0, \quad x \in \mathcal{T} = \left\{x_{1}^{2} + x_{2}^{2} < R^{2}, \ (x_{3}, x_{4}) \in \mathbb{R}^{2}\right\}$$

The solutions are quasi-particle excitations

$$\phi^{a}(x) = \sum_{lk} \int_{-\infty}^{+\infty} \frac{dp_{3}}{2\pi} \frac{1}{\sqrt{2\omega_{alk}}} \left[a^{+}_{akl}(p_{3})e^{ix_{0}\omega_{akl} - ip_{3}x_{3}} + b_{akl}(p_{3})e^{-ix_{0}\omega_{akl} + ip_{3}x_{3}} \right] e^{il\vartheta}\phi_{alk}(r),$$

$$\phi^{a\dagger}(x) = \sum_{lk} \int_{-\infty}^{+\infty} \frac{dp_3}{2\pi} \frac{1}{\sqrt{2\omega_{alk}}} \left[b^+_{akl}(p_3) e^{-ix_0\omega_{akl} + ip_3x_3} + a_{akl}(p_3) e^{ix_0\omega_{akl} - ip_3x_3} \right] e^{-il\vartheta} \phi_{alk}(r),$$

$$\begin{split} p_0^2 &= p_3^2 + \mu_{akl}^2, \quad p_0 = \pm \omega_{akl}(p_3), \quad \omega_{akl} = \sqrt{p_3^2 + \mu_{akl}^2}, \\ &\quad k = 0, 1, \dots, \infty, \quad l \in \mathbb{Z}, \end{split}$$

"Polarization of QCD vacuum by the strong electromagnetic fields"

• Relativistic heavy ion collisions - strong electromagnetic fields

V. Voronyuk, V. D. Toneev, W. Cassing, E. L. Bratkovskaya,

V. P. Konchakovski and S. A. Voloshin, Phys. Rev C 84 (2011)

(日) (四) (三) (三) (三)

Strong electro-magnetic field plays catalyzing role for deconfinement and anisotropies!

B.V. Galilo and S.N. Nedelko, Phys. Rev. D84 (2011) 094017.

M. D'Elia, M. Mariti and F. Negro, Phys. Rev. Lett. 110, 082002 (2013)

G. S. Bali, F. Bruckmann, G. Endrodi, F. Gruber and A. Schaefer, JHEP 1304, 130 (2013)

An ensemble of almost everywhere (in \mathbb{R}^4) homogeneous Abelian (anti-)self-dual gluon fields

P. Minkowski, Phys. Lett. B 76 (1978) 439.
H. Pagels, and E. Tomboulis, Nucl. Phys. B 143 (1978) 485.
P. Minkowski, Nucl. Phys. B177 (1981) 203.
H. Leutwyler, Nucl. Phys. B 179 (1981) 129.

$$\langle :g^2F^2:\rangle \neq 0, \quad \chi = \int d^4x \langle Q(x)Q(0)\rangle \neq 0, \quad \langle Q(x)\rangle = 0$$

Topological charge density $Q(x) = \frac{g^2}{32\pi^2} F^a_{\mu\nu}(x) \tilde{F}^a_{\mu\nu}(x)$

Domain wall network (S.N., V.E. Voronin, EPJA (2015); A. Kalloniatis, S.N., PRD (2001))

Lattice confining configuration (P.J. Moran, D.B. Leinweber, arXiv:0805.4246v1 [hep-lat])

(日) (四) (三) (三) (三)

Testing the model: characteristics of the domain wall network ensemble

Spherical domains

A.C. Kalloniatis and S.N. Nedelko, Phys. Rev. D 64 (2001); Phys. Rev. D 69 (2004); Phys.
Rev. D 71 (2005); Phys. Rev. D 73 (2006), Eur.Phys.J. A51 (2015), arXiv:1603.01447
[hep-ph] (2016)

Area law Spontaneous chiral symmetry breaking $U_A(1)$ is broken by anomaly There is no strong CP violation

イロト イヨト イヨト イヨト

July 29, 2016

17 / 42

Hadronization

G.V. Efimov and S.N. Nedelko, Phys. Rev. D 51 (1995); Phys. Rev. D 54 (1996)
A.C. Kalloniatis and S.N. Nedelko, Phys. Rev. D 64 (2001); Phys. Rev. D 69 (2004); Phys. Rev. D 71 (2005); Phys. Rev. D 73 (2006)

$$\begin{split} \mathcal{Z} &= \int dB \int_{\Psi} \mathcal{D}\psi \mathcal{D}\bar{\psi} \int_{\mathcal{Q}} \mathcal{D}Q\delta[D(B)Q] \Delta_{\mathrm{FP}}[B,Q] e^{-S^{\mathrm{QCD}}[Q+B,\psi,\bar{\psi}]} = \\ &\int dB \int_{\Psi} \mathcal{D}\psi \mathcal{D}\bar{\psi} \exp\left\{\int dx \bar{\psi} \left(i \not \partial + g \not B - m\right) \psi\right\} W[j] \end{split}$$

$$W[j] = \int_{\mathcal{Q}} \mathcal{D}Q\delta[D(B)Q]\Delta_{\rm FP}[B,Q] \exp\left\{-\frac{1}{2}\int dx \,\operatorname{Tr}G^2\left[B+Q\right] + g\int dx \,\,Q^a_\mu j^a_\mu\right\},$$
$$j^a_\mu = \bar{\psi}\gamma_\mu t^a\psi$$

Recalling the definition of Green's functions

$$G^{a_1...a_n}_{\mu_1...\mu_n}(x_1,...,x_n|B) = \frac{1}{g^n} \frac{\delta^n \ln W[j]}{\delta j^{a_1}_{\mu_1}(x_1) \dots \delta j^{a_n}_{\mu_n}(x_n)},$$

we obtain

$$W[j] = \exp\left\{\sum_{n} \frac{g^{n}}{n!} \int dx_{1} \dots \int dx_{n} j^{a_{1}}_{\mu_{1}}(x_{1}) \dots j^{a_{n}}_{\mu_{n}}(x_{n}) G^{a_{1}\dots a_{n}}_{\mu_{1}\dots\mu_{n}}(x_{1},\dots,x_{n}|B)\right\}$$

W[j] is truncated up to the term including two-point gluon correlation function

$$\begin{aligned} \mathcal{Z} &= \int dB \int_{\Psi} \mathcal{D}\psi \mathcal{D}\bar{\psi} \exp\left\{ \int dx \bar{\psi} \left(i \partial \!\!\!/ + g \partial \!\!\!/ - m\right) \psi \right. \\ &\left. + \frac{g^2}{2} \int dx_1 dx_2 G^{a_1 a_2}_{\mu_1 \mu_2}(x_1, x_2 | B) j^{a_1}_{\mu_1}(x_1) j^{a_2}_{\mu_2}(x_2) \right\} \end{aligned}$$

Fierz transform, center of mass coordinates $\longrightarrow \int dz dx G(z|B) J^{aJ}(x,z) J^{aJ}(x,z)$

$$\alpha_s \cdots = \alpha_s(0) \cdots \left[1 + \Pi^{\mathrm{R}}(p^2)\right]; \ \Pi^{\mathrm{R}}(0) = 0$$

$$0 \cdots z \rightarrow \frac{e^{-\frac{1}{4}Bz^2}}{4\pi^2 z^2} \int dx_1 \ dx_2 \xrightarrow{x_1} \cdots \xrightarrow{x_{2^{\prime}}} = \int dx \sum_{aJln} aJln \xrightarrow{x} aJln$$

$$\rightarrow \alpha_s(p^2) \frac{1 - \exp\left(-p^2/B\right)}{p^2}$$

$$J^{aJ}(x,z) = \sum_{nl} (z^2)^{l/2} f^{nl}_{\mu_1\dots\mu_l}(z) J^{aJln}_{\mu_1\dots\mu_l}(x), \quad J^{aJln}_{\mu_1\dots\mu_l}(x) = \bar{q}(x) V^{aJln}_{\mu_1\dots\mu_l}\left(\frac{\overleftarrow{D}(x)}{B}\right) q(x),$$
$$f^{nl}_{\mu_1\dots\mu_l} = L_{nl} (z^2) T^{(l)}_{\mu_1\dots\mu_l}(n_z), \quad n_z = \frac{z}{\sqrt{z}}.$$

 $T^{(l)}_{\mu_1...\mu_l}$ are irreducible tensors of four-dimensional rotational group

S. Nedelko (BLTP JINR)

Running coupling constant included:

Propagator:

 $\alpha_s(p^2)[1 - \exp(-p^2/B)]/p^2$

Dressing function: $\alpha_s(p^2)[1 - \exp(-p^2/B)]$

Tree level approximation:

 $lpha_s(0)[1 - \exp(-p^2/B)]/p^2$ $lpha_s(0)[1 - \exp(-p^2/B)]$

М. Mitter. М. Pawlowski J. and N. Strodthoff, Phys. Rev. D 91, 054035 (2015)doi:10.1103/PhysRevD.91.054035 [arXiv:1411.7978 [hep-ph]]. P. O. Bowman, U. M. Heller, D. B. Leinweber, M. B. Parappilly and A. G. Williams, Phys. Rev. 70. 034509 (2004)doi:10.1103/PhysRevD.70.034509 [heplat/0402032]. A. Sternbeck, E.-M. Ilgenfritz, M. Muller-

A. Sternbeck, E.-M. Ilgenfritz, M. Muller-Preussker, A. Schiller and I. L. Bogolubsky, PoS LAT 2006, 076 (2006) [hep-lat/0610053].

Effective meson action for composite colorless fields:

$$\begin{split} Z &= \mathcal{N} \lim_{V \to \infty} \int D\Phi_{\mathcal{Q}} \exp\left\{-\frac{B}{2} \frac{h_{\mathcal{Q}}^2}{g^2 C_{\mathcal{Q}}} \int dx \Phi_{\mathcal{Q}}^2(x) - \sum_k \frac{1}{k} W_k[\Phi]\right\}, \quad \mathcal{Q} = (aJln) \\ & 1 = \frac{g^2 C_{\mathcal{Q}}}{B} \tilde{\Gamma}_{\mathcal{Q}\mathcal{Q}}^{(2)}(-M_{\mathcal{Q}}^2|B), \quad h_{\mathcal{Q}}^{-2} = \frac{d}{dp^2} \tilde{\Gamma}_{\mathcal{Q}\mathcal{Q}}^{(2)}(p^2)|_{p^2 = -M_{\mathcal{Q}}^2}. \\ W_k[\Phi] &= \sum_{\mathcal{Q}_1 \dots \mathcal{Q}_k} h_{\mathcal{Q}_1} \dots h_{\mathcal{Q}_k} \int dx_1 \dots \int dx_k \Phi_{\mathcal{Q}_1}(x_1) \dots \Phi_{\mathcal{Q}_k}(x_k) \Gamma_{\mathcal{Q}_1 \dots \mathcal{Q}_k}^{(k)}(x_1, \dots, x_k|B) \\ & \Gamma_{\mathcal{Q}_1 \mathcal{Q}_2}^{(2)} = \overline{G_{\mathcal{Q}_1 \mathcal{Q}_2}^{(2)}(x_1, x_2)} - \Xi_2(x_1 - x_2) \overline{G_{\mathcal{Q}_1}^{(1)} G_{\mathcal{Q}_2}^{(1)}}, \\ \Gamma_{\mathcal{Q}_1 \mathcal{Q}_2 \mathcal{Q}_3}^{(3)} &= \overline{G_{\mathcal{Q}_1 \mathcal{Q}_2 \mathcal{Q}_3}^{(3)}(x_1, x_2, x_3)} - \frac{3}{2} \Xi_2(x_1 - x_3) \overline{G_{\mathcal{Q}_1 \mathcal{Q}_2}^{(1)}(x_1, x_2)} G_{\mathcal{Q}_3}^{(1)}(x_3)} \\ & + \frac{1}{2} \Xi_3(x_1, x_2, x_3) \overline{G_{\mathcal{Q}_1}^{(1)}(x_1) G_{\mathcal{Q}_2}^{(1)}(x_2)} G_{\mathcal{Q}_3}^{(1)}(x_3)}, \\ \Gamma_{\mathcal{Q}_1 \mathcal{Q}_2 \mathcal{Q}_3 \mathcal{Q}_4}^{(4)} &= \overline{G_{\mathcal{Q}_1 \mathcal{Q}_2 \mathcal{Q}_3 \mathcal{Q}_4}^{(4)}(x_1, x_2, x_3, x_4)} - \frac{4}{3} \Xi_2(x_1 - x_2) \overline{G_{\mathcal{Q}_1}^{(1)}(x_1)} G_{\mathcal{Q}_2 \mathcal{Q}_3 \mathcal{Q}_4}^{(3)}(x_2, x_3, x_4)} \\ & - \frac{1}{2} \Xi_2(x_1 - x_3) \overline{G_{\mathcal{Q}_1}^{(2)}(x_2) G_{\mathcal{Q}_3 \mathcal{Q}_4}^{(2)}(x_3, x_4)} \\ & + \Xi_3(x_1, x_2, x_3) \overline{G_{\mathcal{Q}_1}^{(1)}(x_1) G_{\mathcal{Q}_2}^{(2)}(x_2) G_{\mathcal{Q}_3}^{(2)}(x_3)} G_{\mathcal{Q}_4}^{(1)}(x_4). \end{split}$$

・ロト ・日 ・ ・ エ ・ ・ 日 ・ うへの

$$\overline{G_{\mathcal{Q}_1\dots\mathcal{Q}_k}^{(k)}(x_1,\dots,x_k)} = \int dB_j \operatorname{Tr} V_{\mathcal{Q}_1}\left(x_1|B^{(j)}\right) S\left(x_1,x_2|B^{(j)}\right)\dots\dots\dots\dotsV_{\mathcal{Q}_k}\left(x_k|B^{(j)}\right) S\left(x_k,x_1|B^{(j)}\right)$$

$$\overline{G_{Q_{1}\dots Q_{l}}^{(l)}(x_{1},\dots,x_{l})G_{Q_{l+1}\dots Q_{k}}^{(k)}(x_{l+1},\dots,x_{k})} = \int dB_{j}\operatorname{Tr}\left\{V_{Q_{1}}\left(x_{1}|B^{(j)}\right)S\left(x_{1},x_{2}|B^{(j)}\right)\dots V_{Q_{k}}\left(x_{l}|B^{(j)}\right)S\left(x_{l},x_{1}|B^{(j)}\right)\right\} \times \operatorname{Tr}\left\{V_{Q_{l+1}}\left(x_{l+1}|B^{(j)}\right)S\left(x_{l+1},x_{l+2}|B^{(j)}\right)\dots V_{Q_{k}}\left(x_{k}|B^{(j)}\right)S\left(x_{k},x_{l+1}|B^{(j)}\right)\right\},$$

Bar denotes integration over all configurations of the background field with measure dB_j .

$$\langle \exp(iB_{\mu\nu}J_{\mu\nu})\rangle = \frac{\sin W}{W}$$
$$W = \sqrt{2B^2 \left(J_{\mu\nu}J_{\mu\nu} \pm J_{\mu\nu}\widetilde{J}_{\mu\nu}\right)}$$

 $J_{\mu\nu}$ is a tensor, composed of the momenta $p_{1\mu_1}\dots p_{n\mu_n}$ - arguments of the meson vertex

$$\tilde{\Gamma}^{(n)}(p_{1\mu_1}\dots p_{n\mu_n})$$

<ロ> (四) (四) (三) (三) (三)

July 29, 2016

22 / 42

불 ▶ 4 Ē ▶ Ē ∽ Q (~ July 29, 2016 23 / 42

Meson-quark vertex operators $\Leftarrow J^{aJln}_{\mu_1...\mu_l} = \bar{q}(x) V^{aJln}_{\mu_1...\mu_l} q(x)$

$$V^{a,Jln}_{\mu_1\dots\mu_l}(x) = M^a \Gamma^J \left\{ \left\{ F_{nl} \left(\frac{\overleftrightarrow{D}^2(x)}{B^2} \right) T^{(l)}_{\mu_1\dots\mu_l} \left(\frac{1}{i} \frac{\overleftrightarrow{D}(x)}{B} \right) \right\} \right\},$$

$$F_{nl}(s) = s^n \int_0^1 dt t^{n+l} \exp(st) = \int_0^1 dt t^{n+l} \frac{\partial^n}{\partial t^n} \exp(st),$$

$$\overleftrightarrow{D} = \overleftarrow{D} \xi_{f'} - \overrightarrow{D} \xi_f, \xi_f = \frac{m_f}{m_f + m_{f'}}$$

Quark propagator in homogeneous Abelian (anti-)self-dual field

$$\longrightarrow = \frac{1}{m(0)} \left[1 + \Sigma^{\mathrm{R}}(p^2) \right]; \ \Sigma^{\mathrm{R}}(0) = 0 \qquad \qquad S(x, y) = \exp\left(-\frac{i}{2}x_{\mu}B_{\mu\nu}y_{\nu}\right) H(x - y),$$

$$\begin{split} \tilde{H}_{f}(p|B) &= \frac{1}{\upsilon B^{2}} \int_{0}^{1} ds e^{(-p^{2}/\upsilon B^{2})s} \left(\frac{1-s}{1+s}\right)^{m_{f}^{2}/2\upsilon B^{2}} \left[p_{\alpha}\gamma_{\alpha} \pm is\gamma_{5}\gamma_{\alpha}\frac{B_{\alpha\beta}}{\upsilon B^{2}}p_{\beta} + m_{f} \left(P_{\pm} + P_{\mp}\frac{1+s^{2}}{1-s^{2}} - \frac{i}{2}\gamma_{\alpha}\frac{B_{\alpha\beta}}{\upsilon B^{2}}\gamma_{\beta}\frac{s}{1-s^{2}} \right) \right] \end{split}$$

The parameters of the model are

 $lpha_{s}(0) = m_{u/d}(0) = m_{s}(0) = m_{c}(0) = m_{b}(0) = B = R$

$$\langle \alpha_s F^2 \rangle = \frac{B^2}{\pi} \quad \chi_{\rm YM} = \frac{B^4 R^4}{128\pi^2}$$

S. Nedelko (BLTP JINR)

≣ א ל ≣ א יש א פארי July 29, 2016 24 / 42

Weak and electromagnetic interactions

S. Nedelko (BLTP JINR)

July 29, 2016 25 / 42

æ

Masses of radially excited mesons

 η and $\eta'!$

Table : Model parameters fitted to the masses of $\pi, \rho, K, K^*, \eta', J/\psi, \Upsilon$ and used in calculation of all other quantities.

$m_{u/d}, \mathrm{MeV}$	$m_s, {\rm MeV}$	$m_c, {\rm MeV}$	$m_b, {\rm MeV}$	Λ , MeV	α_s	R, fm
145	376	1566	4879	416	3.45	1.12

Polarization operator

Polarization operation for l = 0:

$$\begin{split} \Pi_{J}^{nn'} \left(-M^{2}; m_{f}, m_{f'}; B \right) = \\ & \frac{B}{4\pi^{2}} \operatorname{Tr}_{v} \int_{0}^{1} dt_{1} \int_{0}^{1} dt_{2} \int_{0}^{1} ds_{1} \int_{0}^{1} ds_{2} \left(\frac{1-s_{1}}{1+s_{1}} \right)^{m_{f}^{2}/4vB} \left(\frac{1-s_{2}}{1+s_{2}} \right)^{m_{f'}^{2}/4vB} \times \\ & \times t_{1}^{n} t_{2}^{n'} \frac{\partial^{n}}{\partial t_{1}^{n'}} \frac{\partial^{n'}}{\partial t_{2}^{n'}} \frac{1}{\Phi_{2}^{2}} \left[\frac{M^{2}}{B} \frac{F_{1}^{(J)}}{\Phi_{2}^{2}} + \frac{m_{f}m_{f'}}{B} \frac{F_{2}^{(J)}}{(1-s_{1}^{2})(1-s_{2}^{2})} + \frac{F_{3}^{(J)}}{\Phi_{2}} \right] \exp\left\{ \frac{M^{2}}{2vB} \frac{\Phi_{1}}{\Phi_{2}} \right\}. \\ & \Phi_{1} = s_{1}s_{2} + 2\left(\xi_{1}^{2}s_{1} + \xi_{2}^{2}s_{2}\right)\left(t_{1} + t_{2}\right)v, \\ \Phi_{2} = s_{1} + s_{2} + 2(1+s_{1}s_{2})(t_{1} + t_{2})v + 16\left(\xi_{1}^{2}s_{1} + \xi_{2}^{2}s_{2}\right)t_{1}t_{2}v^{2}, \\ F_{1}^{(P)} = \left(1 + s_{1}s_{2}\right)\left[2\left(\xi_{1}s_{1} + \xi_{2}s_{2}\right)\left(t_{1} + t_{2}\right)v + 4\xi_{1}\xi_{2}(1+s_{1}s_{2})\left(t_{1} + t_{2}\right)^{2}v^{2} + s_{1}s_{2}(1-16\xi_{1}\xi_{2}t_{1}t_{2}v^{2})\right], \\ F_{1}^{(V)} = \left(1 - \frac{1}{3}s_{1}s_{2}\right)\left[s_{1}s_{2} + 16\xi_{1}\xi_{2}t_{1}t_{2}v^{2} + 2\left(\xi_{1}s_{1} + \xi_{2}s_{2}\right)\left(t_{1} + t_{2}\right)v\right] + 4\xi_{1}\xi_{2}(1-s_{1}^{2}s_{2}^{2})\left(t_{1} - t_{2}\right)^{2}v^{2}, \\ F_{2}^{(P)} = \left(1 + s_{1}s_{2}\right)^{2}, \quad F_{2}^{(V)} = \left(1 - s_{1}^{2}s_{2}^{2}\right), \\ F_{3}^{(P)} = 4v(1 + s_{1}s_{2})\left(1 - 16\xi_{1}\xi_{2}t_{1}t_{2}v^{2}\right), \quad F_{3}^{(V)} = 2v(1 - s_{1}s_{2})\left(1 - 16\xi_{1}\xi_{2}t_{1}t_{2}v^{2}\right). \\ \approx 2Netko \ (BLTP JINK \end{matrix}$$

Masses of radially excited mesons: light mesons

Asymptotic relation for spectrum (Regge trajectories):

$$M_n^2 \sim Bn, n \gg 1$$
 G.V. Efimov and S.N. Nedelko, Phys. Rev. D 51
 $M_l^2 \sim Bl, l \gg 1$ (1995)

$$\widetilde{m} = 136 \text{ MeV}$$

$$\mu_{u/d} = m_{u/d} - \widetilde{m}$$

$$\mu_s = m_s - \widetilde{m}$$

$$\frac{\mu_s}{\mu_{u/d}} = 26.7$$

M. Mitter, J. M. Pawlowski and
 N. Strodthoff, Phys. Rev. D 91, 054035 (2015) doi:10.1103/PhysRevD.91.054035 [arXiv:1411.7978 [hep-ph]].

P. O. Bowman, U. M. Heller, D. B. Leinweber, M. B. Parappilly and P. O. Bowman, U. M. Heller, D. B. Leinweber, M. B. Parappilly, A. G. Williams and J. b. Zhang, Phys. Rev. D **71**, 054507 (2005) doi:10.1103/PhysRevD.71.054507 [hep-lat/0501019].

Figure : Scalar quark condensate (LHS). Momentum dependence of the scalar (solid line), pseudoscalar (long dash), vector (dash), axial (dash dot) and tensor (dot) form factors (central plot) in the quark propagator (1), and scalar, pseudoscalar and tensor form factors (RHS plot) multiplied by the quark mass.

$$\tilde{H}(p) = \frac{m}{2v\Lambda^2} \mathcal{H}_S(p^2) \mp \gamma_5 \frac{m}{2v\Lambda^2} \mathcal{H}_P(p^2) + \gamma_\alpha \frac{p_\alpha}{2v\Lambda^2} \mathcal{H}_V(p^2) \pm i\gamma_5 \gamma_\alpha \frac{f_{\alpha\beta}p_\beta}{2v\Lambda^2} \mathcal{H}_A(p^2)$$
(1)
+ $\sigma_{\alpha\beta} \frac{mf_{\alpha\beta}}{4v\Lambda^2} \mathcal{H}_T(p^2).$

・ロト ・日下・・日下

Meson	n	$M_{\rm exp}$	M	\widetilde{M}	Meson	n	$M_{\rm exp}$	M	\widetilde{M}
		(MeV)	(MeV)	(MeV)			(MeV)	(MeV)	(MeV)
π	0	140	140	0	ρ	0	775	775	769
$\pi(1300)$	1	1300	1310	1301	$\rho(1450)$	1	1450	1571	1576
$\pi(1800)$	1	1812	1503	1466	ρ	2	1720	1946	2098
K	0	494	494	0	K^*	0	892	892	769
K(1460)	1	1460	1302	1301	$K^{*}(1410)$	1	1410	1443	1576
K	2		1655	1466	$K^{*}(1717)$	1	1717	1781	2098
η	0	548	621	0	ω	0	775	775	769
η'	0	958	958	872	ϕ	0	1019	1039	769
$\eta(1295)$	1	1294	1138	1361	$\phi(1680)$	1	1680	1686	1576
$\eta(1475)$	1	1476	1297	1516	ϕ	2	2175	1897	2098

Table : Masses of light mesons. \tilde{M} denotes the value in the chiral limit.

・ロト ・御ト ・ヨト ・ヨト

Meson	n	$M_{\rm exp}$	M	Meson	n	$M_{\rm exp}$	M
		(MeV)	(MeV)			(MeV)	(MeV)
D	0	1864	1715	D^*	0	2010	1944
D	1		2274	D^*	1		2341
D	2		2508	D^*	2		2564
D_s	0	1968	1827	D_s^*	0	2112	2092
D_s	1		2521	D_s^*	1		2578
D_s	2		2808	D_s^*	2		2859
В	0	5279	5041	B^*	0	5325	5215
B	1		5535	B^*	1		5578
B	2		5746	B^*	2		5781
B_s	0	5366	5135	B_s^*	0	5415	5355
B_s	1		5746	B_s^*	1		5783
B_s	2		5988	B_s^*	2		6021
B_c	0	6277	5952	B_c^*	0		6310
B_c	1		6904	B_c^*	1		6938
B_c	2		7233	$B_c^{\tilde{*}}$	2		7260

Table : Masses of heavy-light mesons and their lowest radial excitations .

(日) (四) (王) (王) (王)

Meson	n	M_{exp}	M
		(MeV)	(MeV)
$\eta_c(1S)$	0	2981	2751
$\eta_c(2S)$	1	3639	3620
η_c	2		3882
$J/\psi(1S)$	0	3097	3097
$\psi(2S)$	1	3686	3665
$\psi(3770)$	2	3773	3810
$\Upsilon(1S)$	0	9460	9460
$\Upsilon(2S)$	1	10023	10102
$\Upsilon(3S)$	2	10355	10249

Table : Masses of heavy quarkonia.

Meson	n	f_{P}^{\exp}	f_P	Meson	n	$g_{V\alpha}^{\exp}$	$g_{V\gamma}$
		(MeV)	(MeV)			υvγ	0.7
π	0	130	140	ρ	0	0.2	0.2
$\pi(1300)$	1	_	29	ρ	1		0.034
K	0	156	175	ω	0	0.059	0.067
K(1460)	1	_	27	ω	1		0.011
D	0	205	212	ϕ	0	0.074	0.069
D	1		51	ϕ	1		0.025
D_s	0	258	274	J/ψ	0	0.09	0.057
D_s	1	_	57	J/ψ	1		0.024
В	0	191	187	Υ	0	0.025	0.011
B	1		55	Υ	1		0.0039
B_s	0	253	248				
B_s	1		68				
B_c	0	489	434				
B_c	1		135				

Table : Decay and transition constants of various mesons

◆□ > ◆□ > ◆三 > ◆三 > 三 の < ⊙

Stong decays: g_{VPP}

Decay	g_{VPP} [*]	g_{VPP}
$\rho^0 \to \pi^+ \pi^-$	5.95	7.58
$\omega \to \pi^+ \pi^-$	0.17	0
$K^{*\pm} \to K^{\pm} \pi^0$	3.23	3.54
$K^{*\pm} \to K^0 \pi^{\pm}$	4.57	5.01
$\varphi \rightarrow K^+K^-$	4.47	5.02
$D^{*\pm} \to D^0 \pi^{\pm}$	8.41	7.9
$D^{*\pm} \rightarrow D^{\pm} \pi^0$	5.66	5.59

local color gauge invariance

・ロ・ ・ 日・ ・ ヨ・ ・

[*] K.A. Olive et al. (Particle Data Group) Chinese Phys. C 38,090001, 2014

E

Pion transition form factor – "BaBar puzzle"

$$T_a^{\mu\nu}(x,y,z) = h_P \sum_n u_n^a \int d\sigma_B \operatorname{Tr} t_a e_f^2 V^n(x) \gamma_5 S(x,y|B) \gamma_\mu S(y,z|B) \gamma_\nu S(z,x|B),$$

In momentum representation, the diagram has the following structure:

$$T_a^{\mu\nu}(p^2,k_1^2,k_2^2) = ie^2\delta^{(4)}(p-k_1-k_2)\varepsilon_{\mu\nu\alpha\beta}k_{1\alpha}k_{2\beta}T_a(p^2,k_1^2,k_2^2).$$

$$F_{P\gamma} \left(Q^2 \right) = T \left(-M_P^2, Q^2, 0 \right).$$
$$\Gamma(P \to \gamma \gamma) = \frac{\pi}{4} \alpha^2 M_P^3 g_{P\gamma\gamma}^2$$

$$g_{P\gamma\gamma} = T(-M_P^2, 0, 0) = F_{P\gamma}(0)$$

ł

 $g_{\pi\gamma\gamma} = 0.272 \text{GeV}^{-1} \quad (g_{\pi\gamma\gamma}^{\exp} = 0.274 \text{GeV}^{-1}).$

S. Nedelko (BLTP JINR)

July 29, 2016 37 / 42

イロン スロン メヨン メヨ

$$F_{\pi\gamma^*\gamma^*}(Q^2) = T(-M_P^2, Q^2, Q^2).$$

・ロト ・回ト ・モト ・モト

Bethe-Salpeter approach

S. Kubrak, C. S. Fischer and R. Williams, arXiv:1412.5395 [hep-ph]
C. S. Fischer, S. Kubrak and R. Williams, Eur. Phys. J. A **51**, no. 1, 10 (2015) [arXiv:1409.5076 [hep-ph]]
C. S. Fischer, S. Kubrak and R. Williams, Eur. Phys. J. A **50**, 126 (2014) [arXiv:1406.4370 [hep-ph]].

S. M. Dorkin, L. P. Kaptari and B. Kampfer, arXiv:1412.3345 [hep-ph]
S. M. Dorkin, L. P. Kaptari, T. Hilger and B. Kampfer, Phys. Rev. C 89, no. 3, 034005 (2014) [arXiv:1312.2721 [hep-ph]]

$$S^{-1}(p) = Z_2 S_0^{-1}(p) + 4\pi Z_2^2 C_F \int \frac{d^4k}{(2\pi)^4} \gamma^{\mu} S(k+p) \gamma^{\nu} (\delta_{\mu\nu} - k_{\mu}k_{\nu}/k^2) \frac{\alpha_{\rm eff}(k^2)}{k^2},$$

$$\alpha_{\rm eff}(q^2) = \pi \eta^7 x^2 e^{-\eta^2 x} + \frac{2\pi \gamma_m \left(1 - e^{-y}\right)}{\ln\left[e^2 - 1 + (1+z)^2\right]}, \ x = q^2/\Lambda^2, \ y = q^2/\Lambda_t^2, \ z = q^2/\Lambda_{\rm QCD}^2$$

S. Kubrak, C. S. Fischer and R. Williams, arXiv:1412.5395 [hep-ph]

Harmonic confinement – Light-Front Holography – soft-wall AdS/QCD

R. P. Feynman, M, Kislinger, and F. Ravndal, Phys. Rev. D 3 (1971) 2706.

H. Leutwyler and J. Stern, Phys. Lett. B 73 (1978) 75; Annals Phys. 112 (1978) 94.

G. F. de Teramond and S. J. Brodsky, Phys. Rev. Lett. **94** (2005) 201601; Phys. Rev. Lett. **96** (2006) 201601; Phys. Rev. Lett. **102** (2009) 081601;

A. Karch, E. Katz, D. T. Son and M. A. Stephanov, Phys. Rev. D **74**, 015005 (2006) [hep-ph/0602229]

$$S_{\Phi} = \frac{(-1)^J}{2} \int d^d x \, dz \left(\frac{R}{z}\right)^{d+1} e^{-\kappa^2 z^2} \left(\partial_N \Phi_J \partial^N \Phi_J - \mu_J^2(z) \Phi_J \Phi^J\right)$$
$$M_{nJ} = 4\kappa^2 \left(n + \frac{l+J}{2}\right) \qquad \qquad \Phi_J(x, z) = \sum_n \phi_{nJ}(z) \Phi_{nJ}(x),$$
$$\phi_{nJ} = R^{J - (d-1)/2} \kappa^{1+l} z^{l-J+2} L_n^l(\kappa^2 z^2)$$

Laguerre polynomials

$$S_{2} = -\frac{1}{2} \int d^{4}x \int d^{4}z D(z) \Phi_{Jc}^{2}(x, z)$$

$$-2g^{2} \int d^{4}x d^{4}x' d^{4}z d^{4}z' D(z) D(z') \Phi_{Jc}(x, z) \Pi_{Jc, J'c'}(x, x'; z, z') \Phi_{J'c'}(x', z'),$$

$$\Phi^{aJ}(x, z) = \sum_{nl} (z^{2})^{l/2} \varphi^{nl}(z) \Phi^{aJln}(x), \quad \Phi^{aJln}(x) = \bar{q}(x) V^{aJln}(x) q(x)$$

Functional RG, DSE, Lattice QCD

・ロト ・日 ・ ・ 日 ・ ・ 日

Summary

An ensemble of almost everywhere Abelian homogeneous (anti-)self-dual gluon fields represented by a domain wall networks – highly promising framework for studying mechanisms of confinement, chiral symmetry realisation and hadronization as well as new nonperturbative phenomena related to the hadronic matter under extreme conditions.

$\langle g^2 F^2 \rangle \neq 0$

Nonlocal form of quark and gluon propagators. Nonlocal colorless hadron effective action.

Rich and quantitatively correct phenomenology.

(日) (四) (王) (王) (王) (王)