Heavy Quark Symmetry and Hidden Charm Pentaquarks

Abdur Rehman

NCP, Islamabad

[arXiv:1607.00987] in collaboration with:

A. Ali (DESY), I. Ahmed (NCP), M. J. Aslam (QAU)

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

- Introduction
- Closer look at the data on Λ⁰_b decays
- Heavy quark symmetry and observed pentaquarks
- Spectrum: $\bar{c}[cq][q'q'']$ with $q, q', q'' \in [u, d, s]$
- Weak decays of the b-baryons into pentaquark states
- Summary

Introduction

 $P_c^+(4380)$ and $P_c^+(4450)$: $pp \rightarrow b\bar{b} \rightarrow \Lambda_b^0 X$, $\Lambda_b^0 \rightarrow J/\psi p K^-$, $c\bar{c}uud$ with preferred J^P : $\frac{3}{2}^-$ and $\frac{5}{2}^+$, [arXiv:1507.03414].

Maiani et al. [arXiv:1507.08252] assignments:

$$P_{c}^{+}(4450) = \{\bar{c}[cu]_{s=1}[ud]_{s=0}; L_{p} = 1, J^{p} = \frac{5}{2}^{+}\}$$

$$P_{c}^{+}(4380) = \{\bar{c}[cu]_{s=1}[ud]_{s=1}; L_{p} = 0, J^{p} = \frac{3}{2}^{-}\}$$

◊ $P = (-1)^{L+1}$, $ΔM^{\{Meson, Baryon, X, Y, Z\}}(L: 0 → 1) ~ 300$ MeV. The bad-diquark, s = 1, is heavier than good-diquark, s = 0, by 200 MeV. Explains mass difference between two states of about 70 MeV.

Closer look at the data on Λ_b^0 decays

K. A. Olive et al. (PDG), Chin. Phys. C, 38, 090001 (2014)

$$\begin{split} \mathcal{B}(\Lambda_{b}^{0} \to \Lambda_{c}^{+}\ell^{-}\bar{\nu}_{\ell}) &= (\mathbf{6.2}_{-1.2}^{+1.4})\% \quad j^{p}: 0^{+} \to 0^{+} \\ \mathcal{B}(\Lambda_{b}^{0} \to \Sigma_{c}^{+}\ell^{-}\bar{\nu}_{\ell}) &= \mathbf{non-existent} \quad j^{p}: 0^{+} \to 1^{+} \\ \frac{\mathcal{B}(\Lambda_{b}^{0} \to \Sigma_{c}^{0}(2455)\pi^{+}\pi^{-})}{\mathcal{B}(\Lambda_{b}^{0} \to \Lambda_{c}^{+}\pi^{-})} &\simeq 0.1 \quad j^{p}: 0^{+} \to 1^{+} \\ \frac{\frac{1}{2}\Gamma(\Lambda_{b}^{0} \to \Sigma_{c}^{0}\pi^{+}\ell^{-}\bar{\nu}_{\ell}) + \frac{1}{2}\Gamma(\Lambda_{b}^{0} \to \Sigma^{++}\pi^{-}\ell^{-}\bar{\nu}_{\ell})}{\Gamma(\Lambda_{b}^{0} \to \Lambda_{c}^{+}\ell^{-}\bar{\nu}_{\ell})} &= 0.054 \pm 0.022^{+0.021}_{-0.018} \end{split}$$

The $\Lambda_b^0 \to \Sigma^0 \pi^+ \ell^- \bar{\nu}_\ell$ and $\Lambda_b^0 \to \Sigma^{++} \pi^- \ell^- \bar{\nu}_\ell$, facilitating an $0^+ \to 1^+$ transition are suppressed.

In heavy quark limit, the spin of the light diquark in heavy baryons has consequences for the *b*-baryon decays i.e., constraining the states which can otherwise be produced in *b*-baryon decays.

Closer look at the data on Λ_b^0 decays

K. A. Olive et al. (PDG), Chin. Phys. C, 38, 090001 (2014)

$$\begin{split} \mathcal{B}(\Lambda_{b}^{0} \to \Lambda_{c}^{+}\ell^{-}\bar{\nu}_{\ell}) &= (\mathbf{6.2}_{-1.2}^{+1.4})\% \quad j^{p}: 0^{+} \to 0^{+} \\ \mathcal{B}(\Lambda_{b}^{0} \to \Sigma_{c}^{+}\ell^{-}\bar{\nu}_{\ell}) &= \mathbf{non-existent} \quad j^{p}: 0^{+} \to 1^{+} \\ \frac{\mathcal{B}(\Lambda_{b}^{0} \to \Sigma_{c}^{0}(2455)\pi^{+}\pi^{-})}{\mathcal{B}(\Lambda_{b}^{0} \to \Lambda_{c}^{+}\pi^{-})} &\simeq 0.1 \quad j^{p}: 0^{+} \to 1^{+} \\ \frac{\frac{1}{2}\Gamma(\Lambda_{b}^{0} \to \Sigma_{c}^{0}\pi^{+}\ell^{-}\bar{\nu}_{\ell}) + \frac{1}{2}\Gamma(\Lambda_{b}^{0} \to \Sigma^{++}\pi^{-}\ell^{-}\bar{\nu}_{\ell})}{\Gamma(\Lambda_{b}^{0} \to \Lambda_{c}^{+}\ell^{-}\bar{\nu}_{\ell})} &= 0.054 \pm 0.022^{+0.021}_{-0.018} \end{split}$$

The $\Lambda_b^0 \to \Sigma^0 \pi^+ \ell^- \bar{\nu}_\ell$ and $\Lambda_b^0 \to \Sigma^{++} \pi^- \ell^- \bar{\nu}_\ell$, facilitating an $0^+ \to 1^+$ transition are suppressed.

In heavy quark limit, the spin of the light diquark in heavy baryons has consequences for the *b*-baryon decays i.e., constraining the states which can otherwise be produced in *b*-baryon decays. Whether the HQS holds in *b*-baryon decays to pentaquarks? We currently lack data to test it, but it is worthwhile to work out its implications for the interpretation of the LHCb data and the pentaquark phenomenology.

Heavy quark symmetry and observed pentaquarks

Selection rules from the the data on $b \rightarrow c$ baryonic decays and so HQS.

$$P_{c}^{+}(4450) = \{\bar{c}[cu]_{s=1}[ud]_{s=0}; L_{\mathcal{P}} = 1, J^{P} = \frac{5}{2}^{+}\}$$
 Favored
$$P_{c}^{+}(4380) = \{\bar{c}[cu]_{s=1}[ud]_{s=1}; L_{\mathcal{P}} = 0, J^{P} = \frac{3}{2}^{-}\}$$
Disfavored

$\implies \frac{3}{2}^{-}$ state may be required a different interpretation.

Look, $m[\Lambda_c^+(2625); J^P = \frac{3}{2}^-] - m[\Lambda_c^+(2286); J^P = \frac{1}{2}^+] \simeq 341 \text{ MeV}, \implies \text{ the mass of } J^P = 3/2^- \text{ state to be about 4110 MeV.}$

In **diquark-diquark-antiquark** spectrum, $\frac{3}{2}^{-}$ state is accomodated favored by HQS,

$$4130 \to \{\bar{c}[cu]_{s=1}[ud]_{s=0}; L_{\mathcal{P}} = 0, J^{\mathrm{P}} = \frac{3}{2} \},\$$

Third state anticipated in 4110-4130 MeV range. A renewed fit of the LHCb data by allowing a third resonance is called for.

Diquark-diquark-antiquark model

$$H_{\bar{c}[cq][q'q'']} = H_{[\mathcal{Q}\mathcal{Q}']} + H_{\bar{c}[\mathcal{Q}\mathcal{Q}']} + H_{S_{\mathcal{P}}L_{\mathcal{P}}} + H_{L_{\mathcal{P}}L_{\mathcal{P}}}$$

Parameters are fixed from X, Y, Z states, under the assumption that they are diquark-antidiquark states, Type-I: L. Maiani et al. [hep-ph/0412098], Type-II: L. Maiani et al. [arXiv:1405.1551].

Diquark – Diquark – Antiquark Model of Pentaquarks

$$\begin{split} \mathbf{H}_{[\mathbf{Q}\mathbf{Q}']} &= m_{\mathbf{Q}} + m_{\mathbf{Q}'} + H_{SS}(\mathcal{Q}\mathcal{Q}') + H_{SL}(\mathcal{Q}\mathcal{Q}') + H_{LL}(\mathcal{Q}\mathcal{Q}'), \\ \mathbf{H}_{\mathbf{c}[\mathbf{Q}\mathbf{Q}']}^{II} &= m_{c} + 2\,\mathcal{K}_{\bar{c}c}(\mathbf{S}_{\bar{c}}\cdot\mathbf{S}_{c}) + 2\mathcal{K}_{\bar{c}q}(\mathbf{S}_{\bar{c}}\cdot\mathbf{S}_{q}) + 2\mathcal{K}_{\bar{c}q'}(\mathbf{S}_{\bar{c}}\cdot\mathbf{S}_{q'}) + 2\mathcal{K}_{\bar{c}q''}(\mathbf{S}_{\bar{c}}\cdot\mathbf{S}_{q''}) \\ \mathbf{H}_{\mathbf{S}_{\mathcal{P}}\mathbf{L}_{\mathcal{P}}} &= 2A_{\mathcal{P}}(\mathbf{S}_{\mathcal{P}}\cdot\mathbf{L}_{\mathcal{P}}), \ H_{L_{\mathcal{P}}L_{\mathcal{P}}} = B_{\mathcal{P}}\frac{L_{\mathcal{P}}(L_{\mathcal{P}}+1)}{2}, \\ \mathbf{H}_{SS}(\mathcal{Q}\mathcal{Q}') &= 2(\mathcal{K}_{cq})_{\bar{3}}(\mathbf{S}_{c}\cdot\mathbf{S}_{q}) + 2(\mathcal{K}_{q'q''})_{\bar{3}}(\mathbf{S}_{q'}\cdot\mathbf{S}_{q''}) \\ \mathbf{H}_{SL}(\mathcal{Q}\mathcal{Q}') &= 2A_{\mathcal{Q}\mathcal{Q}'}\mathbf{S}_{\mathcal{Q}\mathcal{Q}'}\cdot\mathbf{L}_{\mathcal{Q}\mathcal{Q}'}, \ H_{LL} = B_{\mathcal{Q}\mathcal{Q}'}\frac{L_{\mathcal{Q}\mathcal{Q}'}(L_{\mathcal{Q}\mathcal{Q}'}+1)}{2}, \\ \mathbf{H}_{\mathbf{c}[\mathcal{Q}\mathcal{Q}']}^{II} &= H_{\mathbf{c}[\mathcal{Q}\mathcal{Q}']}^{II} + 2(\mathcal{K}_{cq})_{\bar{3}}(\mathbf{S}_{c}\cdot\mathbf{S}_{q}) + 2(\mathcal{K}_{q'q''})_{\bar{3}}(\mathbf{S}_{q'}\cdot\mathbf{S}_{q''}) + 2(\mathcal{K}_{cq'})_{\bar{3}}(\mathbf{S}_{c}\cdot\mathbf{S}_{q'}) \\ &+ 2(\mathcal{K}_{cq''})_{\bar{3}}(\mathbf{S}_{c}\cdot\mathbf{S}_{q''}) + 2(\mathcal{K}_{qq'})_{\bar{3}}(\mathbf{S}_{q}\cdot\mathbf{S}_{q'}) + 2(\mathcal{K}_{cq''})_{\bar{3}}(\mathbf{S}_{q}\cdot\mathbf{S}_{q''}) \end{split}$$

The $B_{\mathcal{P}}$ is estimated by identify $|1_{\mathcal{Q}}, 0_{\mathcal{Q}'}, 1; \frac{5}{2}^+\rangle_2$ as the pentaquark state having a mass 4450 MeV. This yields 160 MeV and 220 MeV for $B_{\mathcal{P}}$ in type-I and -II models, respectively.

Fifty states having masses estimated to lie in range 4100-5100 MeV.

Quark contents	c̄[cq][qq]	c̄[cq][sq]	c̄[cs][qq]	c̄[cs][sq]	c̄[cq][ss]
Label	<i>c</i> ₁	<i>c</i> ₂	<i>c</i> 3	<i>c</i> ₄	C5

Label	$ S_{\mathcal{Q}}, S_{\mathcal{Q}'}; L_{\mathcal{P}}, J^{\mathcal{P}}\rangle_i$	Mass	Label	$ S_{\mathcal{Q}}, S_{\mathcal{Q}'}; L_{\mathcal{P}}, J^{\mathcal{P}}\rangle_i$	Mass
\mathcal{P}_{X_1}	$ 0_{\mathcal{Q}}, 1_{\mathcal{Q}'}, 0; \frac{3}{2}^{-}\rangle_{1}$	$M_0 + \Delta M_1$	\mathcal{P}_{Y_1}	$ 0_{Q}, 1_{Q'}, 1; \frac{5}{2}^{+}\rangle_{1}$	$M_{\mathcal{P}_{X_1}} + 3A_{\mathcal{P}} + B_{\mathcal{P}}$
\mathcal{P}_{X_2}	$ 1_{\mathcal{Q}},0_{\mathcal{Q}'},0;\frac{3}{2}^{-}\rangle_{2}$	$M_0 + \Delta M_2$	\mathcal{P}_{Y_2}	$ 1_{\mathcal{Q}},0_{\mathcal{Q}'},1;\frac{5}{2}^+\rangle_2$	$M_{\mathcal{P}_{X_2}} + 3A_{\mathcal{P}} + B_{\mathcal{P}}$
\mathcal{P}_{X_3}	$ 1_{\mathcal{Q}}, 1_{\mathcal{Q}'}, 0; \frac{3}{2}^{-}\rangle_{3}$	$M_0 + \Delta M_3$	\mathcal{P}_{Y_3}	$ 1_{Q}, 1_{Q'}, 1; \frac{5}{2}^{+}\rangle_{3}$	$M_{\mathcal{P}_{X_3}} + 3A_{\mathcal{P}} + B_{\mathcal{P}}$
\mathcal{P}_{X_4}	$ 1_{\mathcal{Q}}, 1_{\mathcal{Q}'}, 0; \frac{3}{2}^{-}\rangle_{4}$	$M_0 + \Delta M_4$	\mathcal{P}_{Y_4}	$ 1_{Q}, 1_{Q'}, 1; \frac{5}{2}^{+}\rangle_{4}$	$M_{\mathcal{P}_{X_4}} + 3A_{\mathcal{P}} + B_{\mathcal{P}}$
$\mathcal{P}_{X_{5}}$	$ 1_{Q}, 1_{Q'}, 0; \frac{5}{2}^{-}\rangle_{5}$	$M_0 + \Delta M_5$	\mathcal{P}_{Y_5}	$ 1_{Q}, 1_{Q'}, \frac{1}{2z}, 1; \frac{5}{2}^{+}\rangle_{5}$	$M_{\mathcal{P}_{X_5}} - 2A_{\mathcal{P}} + B_{\mathcal{P}}$

\mathcal{P}_{X_i}	\mathcal{P}_{X_1}	\mathcal{P}_{X_2}	\mathcal{P}_{X_3}	\mathcal{P}_{X_4}	\mathcal{P}_{X_5}
C1	4133 \pm 55 (4072 \pm 40)	$\rm 4133 \pm 55 (4133 \pm 55)$	4197 \pm 55 (4300 \pm 40)	$\rm 4385 \pm 55 (4342 \pm 40)$	4534 \pm 55 (4409 \pm 40)
C2	4115 \pm 58 (4031 \pm 43)	4138 \pm 47 (4172 \pm 47)	4191 \pm 53 (4262 \pm 43)	4324 \pm 47 (4303 \pm 43)	4478 \pm 47 (4370 \pm 43)
<i>c</i> ₃	4365 \pm 55 (4304 \pm 55)	4390 \pm 42 (4365 \pm 40)	4443 \pm 49 (4532 \pm 40)	4578 \pm 43 (4574 \pm 40)	4727 \pm 42 (4641 \pm 40)
C4	4313 \pm 47 (4263 \pm 43)	4382 \pm 45 (4404 \pm 47)	4434 \pm 51 (4494 \pm 43)	4568 \pm 46 (4535 \pm 43)	4721 \pm 45 (4602 \pm 43)
<i>c</i> 5	4596 \pm 47 (4577 \pm 43)	4664 \pm 46 (4596 \pm 47)	4721 \pm 51 (4810 \pm 43)	$4853 \pm 46 (4851 \pm 43)$	5006 \pm 45 (4918 \pm 47)
\mathcal{P}_{Y_i}	\mathcal{P}_{γ_1}	\mathcal{P}_{Y_2}	\mathcal{P}_{Y_3}	\mathcal{P}_{Y_4}	\mathcal{P}_{Y_5}
P _{Yi} c ₁	${\cal P}_{\gamma_1}$ 4450 ± 57 (4450 ± 44)	${\cal P}_{ m Y_2}$ 4450 \pm 57(4510 \pm 57)	${\cal P}_{Y_3}$ 4515 ± 57 (4678 ± 44)	${\cal P}_{Y_4}$ 4702 ± 58 (4720 ± 44)	${\cal P}_{Y_5}$ 4589 ± 56 (4524 ± 41)
P _{Yi} C ₁ C ₂	$\begin{array}{c} \mathcal{P}_{Y_{1}} \\ \\ 4450 \pm 57 (4450 \pm 44) \\ \\ 4432 \pm 61 (4409 \pm 47) \end{array}$	$\begin{array}{c} \mathcal{P}_{Y_2} \\ \\ \textbf{4450} \pm \textbf{57} (\textbf{4510} \pm \textbf{57}) \\ \\ \textbf{4456} \pm \textbf{50} \ (\textbf{4549} \pm \textbf{51}) \end{array}$	$\begin{array}{c} {\cal P}_{Y_5} \\ \\ 4515 \pm 57 (4678 \pm 44) \\ \\ 4508 \pm 56 (4639 \pm 47) \end{array}$	$\begin{array}{c} \mathcal{P}_{Y_4} \\ \\ 4702 \pm 58 (4720 \pm 44) \\ \\ 4642 \pm 50 (4681 \pm 47) \end{array}$	$\begin{array}{c} \mathcal{P}_{Y_{5}} \\ \\ 4589 \pm 56 \; (4524 \pm 41) \\ \\ 4532 \pm 48 \; (4486 \pm 45) \end{array}$
P _Y , C ₁ C ₂ C ₃	$\begin{array}{c} \mathcal{P}_{\gamma_1} \\ \\ 4450 \pm 57 (4450 \pm 44) \\ \\ 4432 \pm 61 (4409 \pm 47) \\ \\ 4682 \pm 57 (4682 \pm 44) \end{array}$	$\begin{array}{c} \mathcal{P}_{Y_2} \\ \\ \hline 4450 \pm 57(4510 \pm 57) \\ \\ 4456 \pm 50 \ (4549 \pm 51) \\ \\ 4708 \pm 46 \ (4742 \pm 57) \end{array}$	$\begin{array}{c} \mathcal{P}_{Y_{5}} \\ \\ 4515 \pm 57 (4678 \pm 44) \\ \\ 4508 \pm 56 (4639 \pm 47) \\ \\ 4760 \pm 52 (4910 \pm 44) \end{array}$	$\begin{array}{c} \mathcal{P}_{Y_4} \\ \\ 4702 \pm 58 \left(4720 \pm 44 \right) \\ \\ 4642 \pm 50 \left(4681 \pm 47 \right) \\ \\ 4895 \pm 47 \left(4952 \pm 44 \right) \end{array}$	$\begin{array}{c} \mathcal{P}_{Y_5} \\ \\ 4589 \pm 56 \ (4524 \pm 41) \\ \\ 4532 \pm 48 \ (4486 \pm 45) \\ \\ 4782 \pm 44 \ (4756 \pm 41) \end{array}$
P _{Yi} C ₁ C ₂ C ₃ C ₄	$\begin{array}{c} \mathcal{P}_{Y_1} \\ \\ 4450 \pm 57 (4450 \pm 44) \\ \\ 4432 \pm 61 (4409 \pm 47) \\ \\ 4682 \pm 57 (4682 \pm 44) \\ \\ 4603 \pm 51 (4641 \pm 47) \end{array}$	$\begin{split} \mathcal{P}_{V_{2}} \\ & \frac{4450 \pm 57(4510 \pm 57)}{4456 \pm 50~(4549 \pm 51)} \\ & \frac{4456 \pm 50~(4549 \pm 51)}{4708 \pm 46~(4742 \pm 57)} \\ & \frac{4699 \pm 49~(4781 \pm 51)}{4699 \pm 49~(4781 \pm 51)} \end{split}$	$\begin{split} \mathcal{P}_{Y_5} \\ & 4515 \pm 57 (4678 \pm 44) \\ & 4508 \pm 56 (4639 \pm 47) \\ & 4760 \pm 52 (4910 \pm 44) \\ & 4752 \pm 54 (4871 \pm 47) \end{split}$	$\begin{array}{c} \mathcal{P}_{Y_{4}} \\ \\ 4702\pm 58~(4720\pm 44) \\ 4642\pm 50~(4681\pm 47) \\ \\ 4895\pm 47~(4952\pm 44) \\ \\ 4885\pm 49~(4913\pm 47) \end{array}$	$\begin{split} \mathcal{P}_{Y_5} \\ & 4589 \pm 56~(4524 \pm 41) \\ & 4532 \pm 48~(4486 \pm 45) \\ & 4782 \pm 44~(4756 \pm 41) \\ & 4776 \pm 47~(4718 \pm 45) \end{split}$

Maiani *et al.* assignments of $P_c^+(4380)$ and $P_c^+(4450)$ correspond to \mathcal{P}_{χ_4} and \mathcal{P}_{γ_2} , resp. $\Lambda_b^0 \to \mathcal{P}_{\chi_4} K^-$ suppressed due to HQS and $\frac{3}{2}^-$ state favored by HQS is \mathcal{P}_{χ_2} .

Weak decays of the *b*-baryons into pentaquark states

$$\boldsymbol{\mathcal{A}} = \langle \boldsymbol{\mathcal{P}} \boldsymbol{\mathcal{M}} \mid \boldsymbol{\mathcal{H}}_{\text{eff}}^{\boldsymbol{W}} \mid \boldsymbol{\mathcal{B}} \rangle, \text{ with } \boldsymbol{\mathcal{H}}_{\text{eff}}^{\boldsymbol{W}} = \frac{4G_F}{\sqrt{2}} \left[V_{cb} V_{cq}^* (c_1 O_1^{(q)} + c_2 O_2^{(q)}) \right]$$

 H_{eff}^{W} inducing the Cabibbo-allowed $\Delta I = 0$, $\Delta S = -1$ transition $b \rightarrow c\bar{c}s$, and the Cabibbo-suppressed $\Delta S = 0$ transition $b \rightarrow c\bar{c}d$.

 $O_1^{(q)} = (\bar{q}_{\alpha}c_{\beta})_{V-A}(\bar{c}_{\alpha}b_{\beta})_{V-A} \text{ and } O_2^{(q)} = (\bar{q}_{\alpha}c_{\alpha})_{V-A}(\bar{c}_{\beta}b_{\beta})_{V-A}$

 $\boldsymbol{\mathcal{B}_{ij}}\left(\boldsymbol{\bar{3}}\right) = \Lambda_b^0(\textit{udb}), \ \boldsymbol{\Xi}_b^0(\textit{usb}), \ \boldsymbol{\Xi}_b^-(\textit{dsb}), \quad \boldsymbol{\mathcal{C}_{ij}}\left(\boldsymbol{6}\right) = \boldsymbol{\Sigma}_b^-(\textit{ddb}), \ \boldsymbol{\Sigma}_b^0(\textit{udb}), \ \boldsymbol{\Sigma}_b^+(\textit{uub})), \ \boldsymbol{\Xi}_b^\prime(\textit{dsb}), \ \boldsymbol{\Xi}_b^{\prime 0}(\textit{usb}), \ \boldsymbol{\Omega}_b^-(\textit{ssb}) = \boldsymbol{\mathcal{B}_b^{\prime 0}}\left(\boldsymbol{\mathcal{B}_b^{\prime 0}}\right) = \boldsymbol$

$$\mathbf{\mathcal{M}}_{\mathbf{I}}^{\mathbf{I}} = \begin{pmatrix} \frac{\pi^{0}}{\sqrt{2}} + \frac{\eta_{8}}{\sqrt{6}} & \pi^{+} & K^{+} \\ \pi^{-} & -\frac{\pi^{0}}{\sqrt{2}} + \frac{\eta_{8}}{\sqrt{6}} & K^{0} \\ K^{-} & \bar{K}^{0} & -\frac{2\eta_{8}}{\sqrt{6}} \end{pmatrix}, \qquad \mathbf{\mathcal{P}}_{\mathbf{I}}^{\mathbf{I}} \left(\mathbf{J}^{\mathbf{P}} \right) = \begin{pmatrix} \frac{P_{10}}{\sqrt{2}} + \frac{P_{1}}{\sqrt{6}} & P_{\Sigma^{+}} & P_{\rho} \\ P_{\Sigma^{-}} & -\frac{P_{10}}{\sqrt{2}} + \frac{P_{1}}{\sqrt{6}} & P_{n} \\ P_{\Xi^{-}} & P_{\Xi^{0}} & -\frac{P_{10}}{\sqrt{6}} \end{pmatrix}.$$

 $\textbf{A decuplet } \mathcal{P}_{\textit{jjk}} : \mathcal{P}_{111} = \textit{P}_{\Delta_{10}^{++}} \; , \mathcal{P}_{112} = \textit{P}_{\Delta_{10}^{+}} / \sqrt{3} \; , \mathcal{P}_{122} = \textit{P}_{\Delta_{10}^{0}} / \sqrt{3} \; , \mathcal{P}_{222} = \textit{P}_{\Delta_{10}^{-}} \; , \mathcal{P}_{113} = \textit{P}_{\Delta_{10}^{++}} \; , \mathcal{P}_{112} = \textit{P}_{\Delta_$

 $P_{\Sigma_{10}^+}/\sqrt{3} \ , \mathcal{P}_{123} = P_{\Sigma_{10}^0}/\sqrt{6} \ , \mathcal{P}_{223} = P_{\Sigma_{10}^-}/\sqrt{3} \ , \mathcal{P}_{133} = P_{\Xi_{10}^-}/\sqrt{3} \ , \mathcal{P}_{233} = P_{\Xi_{10}^-}/\sqrt{3} \ \text{and} \ \mathcal{P}_{333} = P_{\Omega_{10}^-}.$

Calculating the decay amplitudes is a formidable challenge.

◊ SU(3)_F symmetry relations provided useful guide for pentaquark searches, Li et al. [arXiv:1507.08252]

Only those states obeying the flavor constraints following from the weak
 Hamiltonian and having the internal spin quantum numbers compatible with the HQS
 will actually be produced in *b*-baryon decays.

(ロ) (同) (三) (三) (三) (○) (○)

Cheng et al. [arXiv:1509.03708], Li et al. [arXiv:1507.08252]

$$\begin{split} \mathcal{A}^{J}_{\mathrm{f8}}\left(q\right) &= \mathbf{T}^{J}_{\mathbf{1}}\left\langle \mathcal{P}^{k}_{l}\mathcal{M}^{l}_{k}\left|H\left(\bar{3}\right)^{i}\right|\mathcal{B}_{l^{\prime}l^{\prime\prime}}\right\rangle \varepsilon^{ii^{\prime}i^{\prime\prime}} + \mathbf{T}^{J}_{\mathbf{2}}\left\langle \mathcal{P}^{k}_{j}\mathcal{M}^{i}_{k}\left|H\left(\bar{3}\right)^{j}\right|\mathcal{B}_{l^{\prime}l^{\prime\prime}}\right\rangle \varepsilon^{ii^{\prime}l^{\prime\prime}} \\ &+ \mathbf{T}^{J}_{\mathbf{3}}\left\langle \mathcal{P}^{i}_{k}\mathcal{M}^{k}_{j}\left|H\left(\bar{3}\right)^{j}\right|\mathcal{B}_{l^{\prime}l^{\prime\prime}}\right\rangle \varepsilon^{ii^{\prime}l^{\prime\prime}} + \mathbf{T}^{J}_{\mathbf{4}}\left\langle \mathcal{P}^{j^{\prime}}_{j^{\prime}}\mathcal{M}^{i}_{j}\left|H\left(\bar{3}\right)^{j}\right|\mathcal{B}_{jj^{\prime}}\right\rangle \varepsilon_{ii^{\prime}l^{\prime\prime}} \\ &+ \mathbf{T}^{J}_{\mathbf{5}}\left\langle \mathcal{P}^{j^{\prime}}_{j^{\prime}}\mathcal{M}^{j}_{j}\left|H\left(\bar{3}\right)^{j}\right|\mathcal{B}_{l^{\prime\prime}l^{\prime}}\right\rangle \varepsilon_{ii^{\prime}l^{\prime\prime\prime}} + \mathbf{T}^{J}_{\mathbf{6}}\left\langle \mathcal{P}^{j^{\prime}}_{j}\mathcal{M}^{j}_{j^{\prime}}\left|H\left(\bar{3}\right)^{j}\right|\mathcal{B}_{l^{\prime\prime}l^{\prime}}\right\rangle \varepsilon_{ii^{\prime}l^{\prime\prime}} \\ \mathcal{A}^{J}_{\mathbf{f10}}\left(q\right) &= \mathbf{T}^{s}_{\mathbf{5}}\left\langle \mathcal{P}^{kj^{\prime\prime}}_{k^{\prime\prime\prime}}\mathcal{M}^{k}_{l}\left|H\left(\bar{3}\right)^{l}\right|\mathcal{C}_{l^{\prime\prime}l^{\prime}}\right\rangle \end{split}$$

◇ HQS reduce number of penta-states can be reached in *b*-baryon decays. ◇ HQS reduce the number of unknown matrix elements by providing a better understanding of why some diagrams are disfavored.

・ロット (雪) ・ (日) ・ (日)

ъ

With $T_8^J \equiv 2T_3^J + T_5^J$,

Decay Mode	Amplitude	Decay Mode	Amplitude	Decay Mode	Amplitude	Decay Mode	Amplitude
$\Lambda_b \rightarrow P_p^{\{X_2 \ ; Y_2 \}_{e_1}} \pi^-$	T_8^J	$\equiv_b^- \rightarrow P_{\equiv^-}^{\{X_2 \ ; Y_2 \}_{c_1}} K^0$	T ₈ ^J	$\Lambda_b \rightarrow P_p^{\{X_2 : Y_2\}_{c_1}} K^-$	T_{o}^{J}	$\equiv_{h}^{-} \rightarrow P_{\Sigma^{-}}^{\{X_{2}:Y_{2}\}_{e_{2}}} \bar{K}^{0}$	T_{o}^{J}
$\Lambda_b \rightarrow P_n^{\{X_2 \ ; Y_2\}_{c_1}} \eta_8$	$\frac{1}{\sqrt{6}}T_8^J$	$\Xi_b^- \to P_{\Sigma^-}^{\{X_0 \ : Y_2 \}_{i_2}} \eta_8$	$\frac{1}{\sqrt{6}}T_8^J$	$A_{1} \rightarrow P^{\{X_{2},Y_{2}\}_{c_{1}}} R^{0}$	TJ	$= - P_{\{X_2:Y_2\}_{r_2}}$	2 TJ
$\Lambda_b \rightarrow P_n^{\{X_2 \ : Y_2 \}_{e_1}} \pi^0$	$-\frac{1}{\sqrt{2}}T_{8}^{J}$	$\Xi_b^- \rightarrow P_{\Lambda^0}^{\{X_2 : Y_2\}_{q_2}} \pi^-$	$\frac{1}{\sqrt{6}}T_8^J$		'8	-b - / =- //8	- 18
$\Xi_{h}^{0} \rightarrow P_{i_{0}}^{\{X_{0};Y_{2}\}_{i_{2}}} \eta_{8}$	$-\frac{1}{2}T_{e}^{J}$	$\Xi_{a}^{-} \rightarrow P_{ca}^{\{X_{2};Y_{2}\}_{i_{2}}} \pi^{-}$	$\frac{1}{\sqrt{2}}T_0^j$	$\Lambda_b \rightarrow P_{\Sigma^0}^{\{X_2 : Y_2\}_{r_0}} \pi^0$	0	$\Xi_b^- \rightarrow P_{\Lambda^0}^{\{X_0; Y_2\}_{\sigma_2}} K^-$	$\frac{1}{\sqrt{6}}T_8^J$
$\equiv_b^0 \rightarrow P_{\Sigma^0}^{\{X_1:Y_2\}_{s_2}} \eta_8$	$\frac{1}{\sqrt{12}}T_8^J$	$\Xi_b^- \rightarrow P_{\Sigma^-}^{\{X_2:Y_2\}_{q_2}} \pi^0$	$-\frac{1}{\sqrt{2}}T_{8}^{J}$	$\Lambda_b \to P_{\Lambda^0}^{\{X_2 \ : Y_2\}_{o_3}} \eta_8$	² / ₃ T ^J ₈	$\Xi_b^- \to P_{\Sigma^0}^{\{X_2 \ : Y_2\}_{c_2}} K^-$	$\frac{1}{\sqrt{2}}T_8^J$
$\Xi_b^0 \rightarrow P_{\Lambda^0}^{\{X_2 \ ; Y_2\}_{c_2}} \pi^0$	$\frac{1}{\sqrt{12}}T_8^J$	$\Xi_b^0 \to P_{\Sigma^0}^{\{X_2 \ : Y_2\}_{r_2}} \pi^0$	$-\frac{1}{2}T_{8}^{J}$	$\Xi_b^0 \to P_{\Sigma^+}^{\{X_2 \ ; Y_2\}_{o_2}} K^-$	$-T_{\rm B}^J$	$\Xi_b^0 \rightarrow P_{\Xi^0}^{\{X_2 \ : Y_2\}_{c_2}} \eta_8$	$\frac{2}{\sqrt{6}}T_{B}^{J}$
$\Omega_b^- \rightarrow P_{\Xi_0^-}^{\{X_0 \ ; Y_1\}_{q_1}} \pi^0$	$\frac{1}{\sqrt{6}} \left(-T_5^{aJ}\right)$	$\Omega_b^- \to P^{\{X_3 \ ; Y_3 \}_{s_5}}_{\Xi_{10}^0} \pi^-$	$\frac{1}{\sqrt{3}}T_5^{sJ}$	$\Omega_b^- \rightarrow P_{\Xi_{10}^0}^{\{X_3 : Y_3\}_{r_5}} K^-$	$\frac{1}{\sqrt{3}}T_5^{sJ}$	$\Omega_b^- \rightarrow P_{\Xi_{10}^-}^{\{X_0 \ : \ Y_0\}_{c_5}} \bar{K}^0$	$\frac{1}{\sqrt{3}}T_5^{sJ}$

Sexet-2-decuplet:

$$-\sqrt{2}\mathcal{A}_{t10}^{J}(\Omega_{b}^{-}\to P_{\Xi_{10}^{-}}^{\{X_{3};Y_{3}\}_{c_{5}}}\pi^{0}) = \mathcal{A}_{t10}^{J}(\Omega_{b}^{-}\to P_{\Xi_{10}^{0}}^{\{X_{3};Y_{3}\}_{c_{5}}}\pi^{-}), \ \Delta S = 0$$

$$\mathcal{A}_{t10}^{J}(\Omega_{b}^{-} \to \mathcal{P}_{\Xi_{10}^{0}}^{\{X_{3};Y_{3}\}_{\alpha_{5}}}K^{-}) = \mathcal{A}_{t10}^{J}(\Omega_{b}^{-} \to \mathcal{P}_{\Xi_{10}^{-}}^{\{X_{3};Y_{3}\}_{\alpha_{5}}}\bar{K}^{0}), \qquad \Delta S = 1$$

The $\Omega_b^- \to K^-(J/\psi \equiv^0), \ K^0(J/\psi \equiv^-)$ in decuplet only with $\{\bar{c} [cu]_{s=1} [ss]_{s=1}\}$.

Antitriplet-2-octet: $\Delta S = 0$

$$\begin{split} \mathcal{A}^{J}_{l8}(\Lambda_{b} \to \mathcal{P}^{\{X_{2} : Y_{2}\}_{c_{1}}}_{p}\pi^{-}) &= -\sqrt{2}\mathcal{A}^{J}_{l8}(\Lambda_{b} \to \mathcal{P}^{\{X_{2} : Y_{2}\}_{c_{1}}}_{n}\pi^{0}) = \sqrt{6}\mathcal{A}^{J}_{l8}(\Lambda_{b} \to \mathcal{P}^{\{X_{2} : Y_{2}\}_{c_{1}}}_{n}\eta_{8}) , \\ \mathcal{A}^{J}_{l8}(\Xi^{0}_{b} \to \mathcal{P}^{\{X_{2} : Y_{2}\}_{c_{2}}}_{\Lambda^{0}}\pi^{0}) &= -\mathcal{A}^{J}_{l8}(\Xi^{0}_{b} \to \mathcal{P}^{\{X_{2} : Y_{2}\}_{c_{2}}}_{\Sigma^{0}}\eta_{8}) , \\ \mathcal{A}^{J}_{l8}(\Xi^{-}_{b} \to \mathcal{P}^{\{X_{2} : Y_{2}\}_{c_{4}}}_{\Xi^{-}}\mathcal{K}^{0}) &= \sqrt{6}\mathcal{A}^{J}_{l8}(\Xi^{-}_{b} \to \mathcal{P}^{\{X_{2} : Y_{2}\}_{c_{2}}}_{\Sigma^{-}}\eta_{8}) = \sqrt{6}\mathcal{A}^{J}_{l8}(\Xi^{-}_{b} \to \mathcal{P}^{\{X_{2} : Y_{2}\}_{c_{2}}}_{\Lambda^{0}}\pi^{-}) , \\ \mathcal{A}^{J}_{l8}(\Xi^{-}_{b} \to \mathcal{P}^{\{X_{2} : Y_{2}\}_{c_{4}}}_{\Xi^{-}}\mathcal{K}^{0}) &= \sqrt{2}\mathcal{A}^{J}_{l8}(\Xi^{-}_{b} \to \mathcal{P}^{\{X_{2} : Y_{2}\}_{c_{2}}}_{\Sigma^{-}}\pi^{-}) = -\sqrt{2}\mathcal{A}^{J}_{l8}(\Xi^{-}_{b} \to \mathcal{P}^{\{X_{2} : Y_{2}\}_{c_{2}}}_{\Sigma^{-}}\pi^{0}) \end{split}$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ の < @

The P_c^+ (4450) $[P_{Y_2}]$ and proposed P_{X_2} belong to the $SU(3)_F$ octet.

Combining $SU(3)_F$ -symmetry with HQS provided simplified predictive relations.

Estimates of the ratio of decay widths for $J^P = \frac{5}{2}^+$:

Decay Process	$\Gamma/\Gamma(\Lambda_b^0 \to P_p^{5/2}K^-)$	Decay Process	$\Gamma/\Gamma(\Lambda_b^0 o P_p^{5/2}K^-)$
$\Lambda_b \to P_p^{\{Y_2\}_{c_1}} K^-$	1	$\Xi_b^- ightarrow P_{\Sigma^-}^{\{Y_2\}_{c_2}} ar{K}^0$	2.07
$\Lambda_b \to P_n^{\{(Y_2\}_{c_1}}\bar{K}^0$	1	$\Xi_b^0 o P_{\Sigma^+}^{\{Y_2\}_{c_2}} K^-$	2.07
$\Lambda_b ightarrow P^{\{Y_2\}_{o_3}}_{\Lambda^0} \eta'$	0.03	$\Lambda_b o P^{\{Y_2\}_{c_3}}_{\Lambda^0} \eta$	0.19
$\Xi_b^- \to P_{\Sigma^0}^{\{Y_2\}_{c_2}} K^-$	1.04	$\Xi_b^- o P_{\Lambda^0}^{\{Y_2\}_{c_2}} K^-$	0.34
$\Omega_b^- \to P_{\Xi_{10}^-}^{\{Y_3\}_{c_5}} \bar{K}^0$	0.14	$\Omega_b^- \to P_{\Xi_{10}^0}^{\{Y_3\}_{c_5}} K^-$	0.14

Decay Process	$\Gamma/\Gamma(\Lambda_b^0 o P_p^{5/2}K^-)$	Decay Process	$\Gamma/\Gamma(\Lambda_b^0 o P_p^{5/2}K^-)$
$\Lambda_b \to \boldsymbol{P}_p^{\{\boldsymbol{Y}_2\}_{c_1}} \pi^-$	0.08	$\Lambda_b \to P_n^{\{Y_2\}_{c_1}} \pi^0$	0.04
$\Lambda_b \to P_n^{\{Y_2\}_{c_1}} \eta$	0.01	$\Lambda_b \to P_n^{\{Y_2\}_{c_1}} \eta'$	0
$\Xi_b^- \to P_{\Xi^-}^{\{Y_2\}_{c_4}} K^0$	0.02	$\Xi_{b}^{-} \to P_{\Sigma^{0}}^{\{Y_{2}\}_{c_{2}}} \pi^{-}$	0.08
$\Xi_b^- ightarrow P_{\Sigma^-}^{\{Y_2\}_{c_2}} \eta$	0.02	$\Xi_b^- \to P_{\Sigma^-}^{\{Y_2\}_{o_2}} \eta'$	0.01
$\Xi_b^- o P_{\Sigma^-}^{\{Y_2\}_{c_2}} \pi^0$	0.08	$\Xi_b^0 o P_{\Sigma^0}^{\{Y_2\}_{o_2}} \pi^0$	0.04
$\Xi_b^0 \to P^{\{X_2 \ (Y_2)\}_{c_2}}_{\Lambda^0} \eta$	0.01	$\Xi_b^0 ightarrow P_{\Lambda^0}^{\{Y_2\}_{c_2}} \eta'$	0.01
$\Xi_{b}^{0} \to P_{\Lambda^{0}}^{\{Y_{2}\}_{c_{2}}} \pi^{0}$	0.01	$\Omega_b^- o P_{\Xi_{10}^-}^{\{Y_3\}_{c_5}} \pi^0$	0.01
$\Omega_{b}^{-} \to P_{\Xi_{10}^{0}}^{\{Y_{3}\}_{c_{5}}} \pi^{-}$	0.02		

We have used the pentaquark masses estimated in this work.

•
$$\Delta S = 0$$
 are suppressed by $|V_{cd}^*/V_{cs}^*|^2$ compared to $\Delta S = 1$.

Estimates of the ratio of decay widths for $J^P = \frac{3}{2}^-$:

Decay Process	$\Gamma/\Gamma(\Lambda_b^0 \to P_p^{\{X_2\}_{c_1}K^-})$	Decay Process	$\Gamma/\Gamma(\Lambda_b^0 \to P_p^{\{X_2\}_{c_1}}K^-)$
$\Lambda_b \to P_p^{\{X_2\}_{c_1}} K^-$	1	$\Xi_b^- \to P_{\Sigma^-}^{\{X_2\}_{c_2}} \bar{K}^0$	1.38
$\Lambda_b \to P_n^{\{X_2\}_{c_1}} \bar{K}^0$	1	$\Xi_b^0 o P_{\Sigma^+}^{\{X_2\}_{c_2}} K^-$	1.38
$\Lambda_b ightarrow P^{\{X_2\}_{c_3}}_{\Lambda^0} \eta'$	0.17	$\Lambda_b ightarrow P^{\{X_2\}_{c_3}}_{\Lambda^0} \eta$	0.22
$\Xi_b^- \to P_{\Sigma^0}^{\{X_2\}_{c_2}} K^-$	0.69	$\Xi_b^- \to P_{\Lambda^0}^{\{X_2\}_{c_2}} K^-$	0.23
$\Omega_b^- \to P_{\Xi_{10}^-}^{\{X_3\}_{c_5}} \bar{K}^0$	0.24	$\Omega_b^- \to P_{\Xi_{10}^0}^{\{X_3\}_{c_5}} K^-$	0.24

Decay Process	$\Gamma/\Gamma(\Lambda_b^0 \to P_p^{\{X_2\}_{c_1}K^-})$	Decay Process	$\Gamma/\Gamma(\Lambda_b^0 \to P_p^{\{X_2\}_{c_1}}K^-)$
$\Lambda_b \to P_p^{\{X_2\}_{c_1}} \pi^{-1}$	0.06	$\Lambda_b \to P_n^{\{X_2\}_{c_1}} \pi^0$	0.03
$\Lambda_b \to P_n^{\{X_2\}_{c_1}} \eta$	0.01	$\Lambda_b o P_n^{\{X_2\}_{c_1}} \eta'$	0.01
$\Xi_b^- o P_{\Xi^-}^{\{X_2\}_{c_4}} K^0$	0.02	$\Xi_b^- \to P_{\Sigma^0}^{\{X_2\}_{c_2}} \pi^-$	0.03
$\Xi_b^- \rightarrow P_{\Sigma^-}^{\{X_2\}_{c_2}} \eta$	0.02	$\Xi_b^- ightarrow P_{\Sigma^-}^{\{X_2\}_{c_2}} \eta'$	0.01
$\Xi_b^- o P_{\Sigma^-}^{\{X_2\}_{c_2}} \pi^0$	0.04	$\Xi_b^0 o P_{\Sigma^0}^{\{X_2\}_{c_2}} \pi^0$	0.02
$\Xi_b^0 \rightarrow P_{\Lambda^0}^{\{X_2\}_{c_2}} \eta$	0	$\Xi_b^0 ightarrow P_{\Lambda^0}^{\{X_2\}_{c_2}} \eta'$	0
$\Xi_b^0 o P_{\Lambda^0}^{\{X_2\}_{c_2}} \pi^0$	0.01	$\Omega_b^- \to P_{\Xi_{10}}^{\{X_3\}_{c_5}} \pi^0$	0.01
$\Omega_b^- \to P_{\Xi_{10}^0}^{\{X_3\}_{c_5}} \pi^-$	0.02		

• Neutron, η and η' , and possibly π^0 : only decays with K^- , or K^0 , or π^- .

¹ First evidence of tetraquark- and pentaquark-structures in the Cabibbo-suppressed channel $\Lambda_h^0 \rightarrow J/\psi \ p \ \pi^-$ is reported recently by LHCb, [arXiv:1606.06999]

Summary

- ► The \mathcal{P}_c^+ (4380) and \mathcal{P}_c^+ (4450) correspond to \mathcal{P}_{X_4} and \mathcal{P}_{Y_2} , respectively. However, $\Lambda_b^0 \to \mathcal{P}_{X_4} K^-$ suppressed due to HQS so disfavored.
- ▶ We anticipated fifty states having masses estimated to lie in the range 4100-5100 MeV in diquark-diquark-antiquark picture, $\bar{c}[cq][q'q'']$ with $q, q', q'' \in [u, d, s]$.
- ▶ $\mathcal{P}_{X_2}(4110 4130) = \{\bar{c}[cu]_{s=1}[ud]_{s=0}; L_{\mathcal{P}} = J^{\mathbb{P}} = \frac{3}{2}^{-}\}$
- Combining SU(3)_F-symmetry with HQS provided simplified predictive relations that might be helpful for future searches of pentaquarks.

A D F A 同 F A E F A E F A Q A

Backup

Theoretical interpretations:

- 1. Diquark-diquark-antiquark picture L. Maiani et al. [arXiv:1507.04980]
- 2. Rescattering-induced kinematical effects F. K. Guo et al., [arXiv:1507.04950]
- 3. Open charm-baryon and charm-meson bound states

C. W. Xiao et al., [arXiv:1508.00924]

- 4. Baryocharmonia V. Kubarovsky et al., [arXiv:1508.00888]
- 5. Diquark-triquark R. F. Lebed, [arXiv:1507.05867]

States for $L_{\mathcal{P}} = 0$:

$$\begin{split} |0_{Q}, 1_{Q'}, \frac{1}{2_{\tilde{c}}}; \frac{3}{2} \rangle_{1} &= \frac{1}{\sqrt{2}} [(\uparrow)_{c} (\downarrow)_{q} - (\downarrow)_{c} (\uparrow)_{q}] (\uparrow)_{q'} (\uparrow)_{q''} (\uparrow)_{\tilde{c}} \\ |1_{Q}, 0_{Q'}, \frac{1}{2_{\tilde{c}}}; \frac{3}{2} \rangle_{2} &= \frac{1}{\sqrt{2}} [(\uparrow)_{q'} (\downarrow)_{q''} - (\downarrow)_{q'} (\uparrow)_{q''} (\uparrow)_{q''} (\uparrow)_{\tilde{c}} \\ |1_{Q}, 1_{Q'}, \frac{1}{2_{\tilde{c}}}; \frac{3}{2} \rangle_{3} &= \frac{1}{\sqrt{6}} (\uparrow)_{c} (\uparrow)_{q} \{2(\uparrow)_{q'} (\downarrow)_{q''} (\downarrow)_{\tilde{c}} - [(\uparrow)_{q'} (\downarrow)_{q''} + (\downarrow)_{q'} (\uparrow)_{q''}](\uparrow)_{\tilde{c}} \} \\ |1_{Q}, 1_{Q'}, \frac{1}{2_{\tilde{c}}}; \frac{3}{2} \rangle_{4} &= \sqrt{\frac{3}{10}} [(\uparrow)_{c} (\downarrow)_{q} + (\downarrow)_{c} (\uparrow)_{q}] (\uparrow)_{q''} (\uparrow)_{q''} (\uparrow)_{\tilde{c}} - \sqrt{\frac{2}{15}} (\uparrow)_{c} (\uparrow)_{q} \{(\uparrow)_{q'} (\uparrow)_{q''} (\downarrow)_{\tilde{c}} \\ &+ [(\uparrow)_{q'} (\downarrow)_{q''} + (\downarrow)_{q'} (\uparrow)_{q''}](\uparrow)_{\tilde{c}} \}, \end{split}$$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Backup

$$\begin{split} M_{i} &= m_{Q} + m_{Q'} + m_{c} + \frac{B_{\mathcal{P}}}{2} L_{\mathcal{P}}(L_{\mathcal{P}} + 1) + 2A_{\mathcal{P}} \frac{J_{\mathcal{P}}(J_{\mathcal{P}} + 1) - L_{\mathcal{P}}(L_{\mathcal{P}} + 1) - S_{\mathcal{P}}(S_{\mathcal{P}} + 1)}{2} + \Delta M_{i} \\ \Delta M_{5} &= \frac{1}{2} (\mathcal{K}_{\bar{c}q} + \mathcal{K}_{\bar{c}c} + \mathcal{K}_{\bar{c}q'} + \mathcal{K}_{\bar{c}q''} + (\mathcal{K}_{cq'})_{\bar{3}} + (\mathcal{K}_{cq'})_{\bar{3}} + (\mathcal{K}_{qq'})_{\bar{3}} + (\mathcal{K}_{cq'})_{\bar{3}} + (\mathcal{K}_{cq''})_{\bar{3}} + (\mathcal{K}_{cq'''})_{\bar{3}} + (\mathcal{K}_{cq'''})_{\bar{3}} + (\mathcal{K}_{cq'''})_{\bar{3}} + (\mathcal{K}_{cq'''})_{\bar{3}} + (\mathcal{K}_{cq'''})_{\bar{3}} + (\mathcal{K}_{cq'''})_{\bar{3}} + (\mathcal{K}_{cq''''})_{\bar{3}} + (\mathcal{K}_{cq''''})_{\bar{3}} + (\mathcal{K}_{cq''''})_{\bar{3}} + (\mathcal{K}_{cq'''''})_{\bar{3}} + (\mathcal{K}_{cq''''''})_{\bar{3}} + (\mathcal{K}_{cq''''''''''''$$

 $\Delta M_{i=1,...,4}$: mass splitting terms that arise after the diagonalizing the 4 \times 4 matrix.

Two-body decay rate:

The two-body decay rate in the center-of-mass frame can be expressed as

$$\Gamma \propto |q_{cm}||\mathcal{A}|^2 \propto |q_{cm}|^{2L+1},$$

where |A| is the amplitude of the respective decay mode, *L* is the relative orbital angular momentum of the final state particles, and q_{cm} is the center-of-mass momentum, defined as

$$egin{array}{rcl} |q_{cm}| &=& q_{\mathcal{P}} = \sqrt{E_{\mathcal{P}}^2 - m_{\mathcal{P}}^2}, \ E_{\mathcal{P}} &=& rac{m_{\mathcal{B}}^2 + m_{\mathcal{P}}^2 - m_{\mathcal{M}}^2}{2m_{\mathcal{B}}}, \end{array}$$

where, m_B , m_P and m_M are the masses of the initial state *b*-baryon, final state pentaquark and pseudoscalar meson, respectively.

(日)