B. A. Kniehl¹, <u>M. A. Nefedov²</u>, V. A. Saleev², A. V. Shipilova²

Helmholtz International Summer School "Quantum Field Theory at the Limits: from Strong Fields to Heavy Quarks" JINR, Dubna, July 26, 2016

Outline.

Introduction

- Motivation
- NRQCD and NRQCD-factorization
- State of the art
- Short intorduction to the Parton Reggeization Approach. (See the lecture by V. A. Saleev tomorrow for better review!)

▲ロト ▲母ト ▲ヨト ▲ヨト ヨー のくぐ

• Review of the results for p_T -spectra of charmonia and bottomonia

- $\psi(2S)$ and $\Upsilon(3S)$: p_T -spectra and polarisation
 - $\psi(2S)$ production at "moderate"- p_T , fragmentation
 - $\psi(2S)$ polarization, "polarization puzzle"
 - $\Upsilon(3S)$ polarization

Why to study heavy quarkonium production?

Oportunities:

• Unique window to hadronization process. Additional small parameter – heavy quark velocity $v^2 \sim 0.3$ for charmonia, $v^2 \sim 0.1$ for bottomonia.

うつん 川川 イエット エット ショー

- Interesting multiscale problem for pQCD. Resummations are required $(\log^2 p_T/M, \log p_T/M, \log 1/x, ...).$
- Probe for physics of Heavy Ion Collisions
- Signature for Multiple Parton Interactions

But for the last two, the SPS production in $pp(\bar{p})$ should be well understood!

Collinear factorization.

We are interested in the inclusive hard (hard scale $Q^2 \gg \Lambda_{QCD}^2$) processes in the inelastic proton-proton collisions at high energies:

$$p(P_1) + p(P_2) \to Y + X_2$$

where $P_{1,2}^2 = 0$, $2P_1P_2 = S$. Factorization formula of the Collinear Parton Model (CPM):

$$d\sigma = \sum_{i,j} \int_{0}^{1} dx_1 f_i(x_1, \mu_F^2) \int_{0}^{1} dx_2 f_j(x_2, \mu_F^2) d\hat{\sigma}_{ij}(x_1, x_2, \mu_F^2, \mu_R^2).$$

where $d\sigma$ - inclusive hadronic cross-section, $d\hat{\sigma}$ - hard scattering coefficient or "partonic cross-section", because at LO it is the cross-section of the process:

$$i(q_1) + j(q_2) \to Y$$

where $i, j = q, \bar{q}, g$, $q_{1,2}^{\mu} = x_{1,2}P_{1,2}^{\mu} \Rightarrow q_{1,2}^2 = 0$. Large logarithmic corrections $\sim \log \mu_F^2/Q^2$ are absorbed into the scale-dependence of ("Integrated") **Parton Distribution Functions** (PDFs) $f_i(x, \mu^2) \Rightarrow$ **DGLAP evolution equations**.

Nonrelativistic QCD

Estimate of heavy quark velocity:

$$\frac{m_Q v^2}{2} \sim \frac{\alpha_s(1/r)}{r},$$

mean radius and velocity are related $r \sim 1/(m_Q v) \Rightarrow$

 $v \sim \alpha_s(m_Q v),$

Then for $m_Q = 1.5 \text{ GeV} \Rightarrow v^2 \simeq 0.3$; $m_Q = 4.7 \text{ GeV} \Rightarrow v^2 \simeq 0.1$. NRQCD Lagrangian: [G. T. Bodwin, E. Braaten, G. P. Lepage, Phys. Rev. D51 (1995) 1125]

$$L_{NRQCD} = L_{Heavy} + L_{Light} + \delta L$$
$$L_{Heavy} = \psi^{\dagger} \left(iD_t + \frac{\mathbf{D}^2}{2m_Q} \right) \psi + \chi^{\dagger} \left(iD_t + \frac{\mathbf{D}^2}{2m_Q} \right) \chi$$
$$L_{Light} = -\frac{1}{2} Tr \left[F_{\mu\nu} F^{\mu\nu} \right] + \sum_f \bar{q}_f \ i\hat{D} \ q_f$$

うつん 川川 イエット エット ショー

Where $\hat{D} = \gamma^{\mu} D_{\mu}, D_{\mu} = \partial_{\mu} + i g_s A_{\mu}$

Nonrelativistic QCD. Velocity scaling.

 L_{Heavy} is $O(M^4v^5)$, δL contains higher order corrections in v:

$$\delta L = \frac{c_1(\Lambda)}{8m_Q^3} \left[\psi^{\dagger} \left(\mathbf{D} \right)^2 \psi - \chi^{\dagger} \left(\mathbf{D} \right)^2 \chi \right] + \dots$$

Velocity scaling rules:

Operator	Scaling
ψ,χ	$(m_Q v)^{3/2}$
D	$m_Q v$
$D_t, g_s A^0$	$m_Q v^2$
$g_s \mathbf{A}, g_s \mathbf{E}/m_Q$	$m_Q v^3$
$g_s {f B}/m_Q$	$m_Q v^4$

 $\langle H|\int d^3{\bf x}\psi^\dagger(x)\psi(x)|H\rangle\sim 1,\,V\sim r^3\sim \frac{1}{(m_Qv)^3}\;\Rightarrow\;\psi^\dagger\psi\sim (m_Qv)^3$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

NRQCD factorization.

NRQCD-factorization [Bodwin, Braaten, Lepage (1995)]:

$$d\hat{\sigma} = \sum_{n} d\hat{\sigma} \left[g + g \to n \right] \cdot \left\langle 0 | \mathcal{O}^{\mathcal{H}} \left[n \right] | 0 \right\rangle$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ● ● ●

where
$$n = Q\bar{Q} \begin{bmatrix} 2S+1L_J^{(1,8)} \end{bmatrix}$$
, $Q\bar{Q}g$, ...

Matrix elements of NRQCD-Operators $\mathcal{O}^{\mathcal{H}}[n] = \mathcal{O}_n^{\dagger}\left(a_{\mathcal{H}}^{\dagger}a_{\mathcal{H}}\right)\mathcal{O}_n$, have definite *v*-scaling. LO for the state $\mathcal{H}\left[{}^{2S+1}L_J\right] \Rightarrow Q\bar{Q}\left[{}^{2S+1}L_J^{(1)}\right]$. NLO:

$$Q\bar{Q}\left[{}^{2S+1}L_J^{(8)}
ight], \ Q\bar{Q}\left[{}^{2S+1}(L\pm1)_J^{(8)}
ight], Q\bar{Q}\left[{}^{2(S\pm1)+1}L_J^{(8)}
ight].$$

Further support from pQCD-side [Kniehl, Butenshön (2011)]:

$$d\hat{\sigma}_{NLO}\left[{}^{3}P_{J}^{(1)}\right] \supset \frac{1}{\epsilon} \cdot d\hat{\sigma}_{LO}\left[{}^{3}S_{1}^{(8)}\right],$$

so we need $\left< \mathcal{O}^{\mathcal{H}}[{}^3S_1^{(8)}] \right>$ to absorb this singularity.

Long-distance matrix elements (LDMEs, NMEs, ...).

Color-singlet NMEs:

$$\left\langle \mathcal{O}^{\mathcal{H}_J} \left[{}^3S_1^{(1)} \right] \right\rangle = 2N_c (2J+1) \frac{1}{4\pi} |R(0)|^2,$$

$$\left\langle \mathcal{O}^{\mathcal{H}_J} \left[{}^3P_J^{(1)} \right] \right\rangle = 2N_c (2J+1) \frac{3}{4\pi} |R'(0)|^2.$$

Radial wavefunction R(0) or it's derivative in the origin R'(0) is known from the potential models [Eichten, Quigg (1995)]. Multiplicative relations, proven in LO in v^2 :

$$\left\langle \mathcal{O}^{\mathcal{H}}[{}^{3}P_{J}^{(1,8)}] \right\rangle = (2J+1) \left\langle \mathcal{O}^{\mathcal{H}}[{}^{3}P_{0}^{(1,8)}] \right\rangle,$$
$$\left\langle \mathcal{O}^{\mathcal{H}}[{}^{3}S_{1}^{(8)}] \right\rangle = (2J+1) \left\langle \mathcal{O}^{\mathcal{H}}[{}^{3}S_{1}^{(8)}] \right\rangle,$$

Color-octet NMEs may be obtained using nonperturbative techniques or by a fit.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

State of the art. Fixed order.

Prompt J/ψ . Plot from [ALICE Collaboration, hep-ph/1205.5880]

Prompt $\psi(2S)$. Plot from [ATLAS]

- Full NLO corrections in CPM are availible [B. A. Kniehl, M. Butenschoen, 2009-2011]. A few complete NLO fits of NMEs exist [B. A. Kniehl, M. Butenschoen; Y. Q. Ma et al.].
- NLO corrections (2 additional partons+1-loop) to the p_T-spectrum are large (K > 2), incomplete NNLO calculations (3 additional partons+ IR cutoff) [J. Landsberg et al., 2009] suggests that NNLO corrections to Color-Singlet channel are significant.

Multiscale process.

- Large NLO corrections to the p_T -spectrum in the Collinear Parton Model.
- $p_T < M$: Large- $(\alpha_s \log^2 p_T/M)^n$ corrections at *n*-th order. "Sudakov double-logs" [Dokshitzer, Diakonov, Troyan, 1978] regularize the power-divergence of p_T -spectrum at small p_T .

$$\frac{d\sigma}{dp_T^2} \sim \frac{1}{p_T^2} \exp\left[-N_c \frac{\alpha_s}{2\pi} \log^2\left(\frac{p_T^2}{M^2}\right)\right] = \frac{1}{p_T^2} \left(\frac{p_T^2}{M^2}\right)^{-N_c \frac{\alpha_s}{2\pi} \log(p_T^2/M^2)}$$

- $p_T \gg M$: Large- $(\alpha_s \log p_T/M)^n$ corrections al *n*-th order. "Fragmentation logs". Can be resummed by DGLAP evolution of parton \rightarrow hadron FF.
- $x \ll 1$ small-x physics effects may be important (log 1/x): BFKL-evolution, saturation of parton densities, Color-glass condensate e.t.c. (see e. g. [Y.-Q. Ma, R. Venugopalan, 2014])
- \Rightarrow Fixed-order pQCD should work at some "moderate" p_T .

Multi-Regge Kinematics.

At high energies, t-channel excange diagrams with Multi-Regge (MRK) or Quasi-Multi Regge (QMRK) Kinematics of the final-state dominate in the $2 \rightarrow 2 + n$ amplitude.

Sudakov (light-cone) decomposition:

$$k^{\mu} = \frac{1}{2}(k^{+}n_{-}^{\mu} + k^{-}n_{+}^{\mu}) + k_{T}^{\mu},$$

where $n_{\pm}^2 = 0$, $n_+n_- = 2$, $n_{\pm}k_T = 0$, $k_pm = n_{\pm}k$. Rapidity $y = \log(k^+/k^-)/2$. Double Regge limit (MRK):

$$s_1 \gg -q_1^2, \ s_2 \gg -q_2^2,$$

momentum fractions $z_1 = q_1^+/P_1^+$, $z_2 = q_2^-/P_2^-$. Properties of MRK:

- $y(P'_1) \to +\infty, \ y(P'_2) \to -\infty, \ y(k)$ finite,
- $z_1 \sim z_2 \sim z \ll 1$, $|\mathbf{k}_T| \ll \sqrt{s}$ ("Small-z physics"),
- $q_1^+ \sim |\mathbf{q}_{T1}| \sim O(z) \gg q_1^- \sim O(z^2),$ $q_2^- \sim |\mathbf{q}_{T2}| \sim O(z) \gg q_2^+ \sim O(z^2).$

・ロト ・ 御 ト ・ 臣 ト ・ 臣 ト ・ 臣 ・ のへで

Reggeization of amplitudes in QCD.

At high energies, t-channel excange diagrams with Multi-Regge(MRK) or Quasi-Multi Regge(QMRK) Kinematics of the final-state dominate in the $2 \rightarrow 2 + n$ amplitude.

In MRK asymptotics, $2 \rightarrow 3$ -amplitude factorizes:

・ロト ・ 日 ・ ・ ヨ ・ ・ 日 ・ ・ つ へ つ

$$\begin{aligned} \mathcal{A}_{AB}^{A'B'C} &= \gamma_{A'A}^{R_1} \cdot \left(\frac{s_1}{s_0}\right)^{\omega(t_1)} \frac{-i}{2t_1} \times \\ \Gamma_{R_1R_2}^C(q_1, q_2) \cdot \frac{-i}{2t_2} \left(\frac{s_2}{s_0}\right)^{\omega(t_2)} \cdot \gamma_{B'B}^{R_2} \end{aligned}$$

$$\begin{split} &\Gamma^C_{R_1R_2}(q_1,q_2)-RRP \text{ production vertex,} \\ &\gamma^R_{A'A}-PPR\text{-scattering vertex,} \end{split}$$

 $\omega(t)$ - Regge trajectory.

Two ways to obtain this asymptotics:

- BFKL-approach (Unitarity, renormalizability and gauge invariance), see. [Ioffe, Fadin, Lipatov, 2010].
- Effective action approach [Lipatov, 1995].

PRA. Factorization, Feynman rules.

Factorization formula [Gribov et. al. 1983; Collins et. al. 1991; Catani et. al. 1991]:

$$d\sigma = \int \frac{d^2 \mathbf{q}_{T1}}{\pi} \int \frac{dx_1}{x_1} \Phi(x_1, t_1, \mu_F) \int \frac{d^2 \mathbf{q}_{T2}}{\pi} \int \frac{dx_2}{x_2} \Phi(x_2, t_2, \mu_F) d\hat{\sigma}_{PRA}(q_1, q_2)$$

where $q_{1,2}^{\mu} = x_{1,2} P_{1,2}^{\mu} + q_{T1,2}^2 \Rightarrow q_{1,2}^2 = -\mathbf{q}_{T1,2}^2 = -t_{1,2},$
and $\Phi(x, t, \mu^2)$ - unintegrated (TMD) PDFs.

Feynman rules:

Factorization:

 $\begin{array}{c} P_2 \\ \vdots \\ x_2; t_2 \\ \vdots \\ x_1; t_1 \\ \vdots \\ P_1 \end{array}$

$$a - \frac{1}{n^{-}} \underbrace{\operatorname{scoso}}_{\rightarrow q} b; \mu \qquad \Gamma_{ab}^{\pm \mu}(q) = i\delta^{ab}q^{2}n_{\pm}^{\mu}$$

$$b; \mu \underbrace{\operatorname{scoso}}_{q \leftarrow -\overline{n_{\pm}}} a \qquad b; \nu$$

$$c - \frac{1}{q n_{-}} \underbrace{\operatorname{scoso}}_{q \leftarrow \mu} a; \mu \qquad c \qquad d; \mu$$

$$c - \frac{1}{q n_{-}} \underbrace{\operatorname{scoso}}_{q \leftarrow \mu} a; \mu$$

$$b; \nu \underbrace{\operatorname{scoso}}_{k_{2}} \frac{1}{q n_{+}} c \qquad d; \mu \qquad d;$$

The Kimber-Martin-Ryskin unPDF.

The LO unPDF [Kimber, Martin, Ryskin, Watt, 2000]:

$$\Phi_i(x,t,\mu^2) = \frac{1}{t} \int_0^{1-\Delta} dz \ T_i(t,\mu^2) \frac{\alpha_s(t)}{2\pi} P_{ij}(z) \frac{x}{z} f_j\left(\frac{x}{z},t\right),$$

where $f_i(x, \mu^2)$ – collinear PDF and the Sudakov formfactor:

$$T_{i}(t,\mu^{2}) = \exp\left[-\sum_{j} \int_{t}^{\mu^{2}} \frac{dk_{T}^{2}}{k_{T}^{2}} \frac{\alpha_{s}(k_{T}^{2})}{2\pi} \int_{0}^{1-\Delta} dz' \ z' \cdot P_{ij}(z')\right],$$

resums the Sudakov double-logs in LLA. The IR divergence is regularized by the KMR cutoff $\Delta = \frac{\sqrt{t}}{\mu + \sqrt{t}}$, which follows from the **rapidity ordering** between the last emission and the hard subprocess. The KMR unPDF has the normalization property:

$$\int_{0}^{\mu^{2}} dt \Phi_{i}(x, t, \mu^{2}) = x f_{i}(x, \mu^{2}).$$

 $R + R \rightarrow Q\bar{Q} \left[{}^{3}S_{1}^{(1)} \right] + g$ Amplitude.

Normalization factor ($\mathbf{q}_{1T}^2 = t_1, \, \mathbf{q}_{2T}^2 = t_2$):

$$\mathcal{N} = \frac{(x_1 x_2 S)^2}{16t_1 t_2}$$

Collinear limit:

$$\lim_{t_{1,2}\to 0} \int_{0}^{2\pi} \frac{d\phi_1 d\phi_2}{(2\pi)^2} \left|\mathcal{A}_{PRA}\right|^2 = \overline{\left|\mathcal{A}_{CPM}\right|^2}$$

・ロト・日本・日本・日本・日本・日本・日本

$2 \rightarrow 1$ Amplitudes.

Processes
$$R + R \to Q\bar{Q} \left[{}^{3}S_{1}^{(8)}, {}^{1}S_{0}^{(8)}, {}^{3}P_{J}^{(1,8)} \right]$$
 [Kniehl, Saleev, Vasin (2006)].

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト ○ 臣 ○ の Q ()

Charmonium production. From Tevatron to LHC.

[V. A. Saleev, M. A. Nefedov, A. V. Shipilova, Phys. Rev. D85 (2012) 074013] NMEs for J/ψ , ψ' , and χ_{cJ} mesons from fits of the CDF data in the NLO collinear parton model [B. A. Kniehl, M. Butenshoen] and in the parton Reggeization approach using the Blümlein, and KMR unintegrated gluon distribution functions.

NME	PM NLO	Fit B	Fit KMR
$\langle \mathcal{O}^{J/\psi}[{}^3S_1^{(1)}]\rangle/\text{GeV}^3$	1.3	1.3	1.3
$\langle \mathcal{O}^{J/\psi}[{}^3S_1^{(8)}]\rangle/\text{GeV}^3$	$(1.68 \pm 0.46) \times 10^{-3}$	$(1.89 \pm 0.27) \times 10^{-3}$	$(2.23 \pm 0.27) \times 10^{-3}$
$\langle O^{J/\psi} [{}^{1}S_{0}^{(8)}] \rangle / \text{GeV}^{3}$	$(3.04 \pm 0.35) \times 10^{-2}$	$(1.80 \pm 0.25) \times 10^{-2}$	$(1.84 \pm 0.19) \times 10^{-2}$
$\langle \mathcal{O}^{J/\psi}[{}^{3}P_{0}^{(8)}]\rangle/\text{GeV}^{5}$	$(-9.08 \pm 1.61) \times 10^{-3}$	0	0
$\chi^2/d.o.f$	_	1.0	1.0
$\langle \mathcal{O}^{\psi'}[{}^3S_1^{(1)}]\rangle/\text{GeV}^3$	6.5×10^{-1}	6.5×10^{-1}	6.5×10^{-1}
$\langle \mathcal{O}^{\psi'}[{}^3S_1^{(8)}]\rangle/\text{GeV}^3$	$(1.88 \pm 0.62) \times 10^{-3}$	$(6.72 \pm 1.15) \times 10^{-4}$	$(9.33 \pm 1.62) \times 10^{-4}$
$\langle O^{\psi'}[{}^{1}S_{0}^{(8)}]\rangle/\text{GeV}^{3}$	$(7.01 \pm 4.75) \times 10^{-3}$	$(3.63 \pm 1.40) \times 10^{-3}$	$(3.27 \pm 1.44) \times 10^{-3}$
$\langle \mathcal{O}^{\psi'}[{}^{3}P_{0}^{(8)}]\rangle/\text{GeV}^{5}$	$(-2.08 \pm 2.28) \times 10^{-3}$	0	0
$\chi^2/d.o.f$	_	0.033	0.051
$(\mathcal{O}^{\chi_{c0}}[{}^{3}P_{0}^{(1)}])/\text{GeV}^{5}$	8.9×10^{-2}	8.9×10^{-2}	8.9×10^{-2}
$\langle \mathcal{O}^{\chi_{c0}}[{}^3S_1^{(8)}]\rangle/\text{GeV}^3$	-	$(2.14 \pm 0.67) \times 10^{-4}$	$(1.69 \pm 0.9) \times 10^{-4}$
$\chi^2/d.o.f$	_	0.89	0.41

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

$\psi(2S)$ and χ_{cJ} production at the Tevatron.

 $J/\psi \mbox{ transverse-momentum spectrum} from \psi' \mbox{ decays from CDF Collaboration,} \\ \sqrt{S} = 1.8 \mbox{ TeV}, \ |\eta| < 0.6, \ (1) - {}^3S_1^{(8)} \\ \mbox{ contribution, } (2) - {}^3S_1^{(1)}, \ (3) - {}^1S_0^{(8)}, \\ (4) \mbox{ sum of all contributions.}$

 $\begin{array}{l} J/\psi \mbox{ transverse-momentum spectrum} \\ {\rm from } \chi_{cJ} \mbox{ decays from CDF} \\ {\rm Collaboration}, \sqrt{S} = 1.8 \mbox{ TeV}, \ |\eta| < 0.6, \\ (1) - {}^3P_0^{(1)}, \ (2) - {}^3P_1^{(1)}, \ (3) - {}^3P_2^{(1)}, \ (4) \\ - {}^3S_1^{(8)}, \ (5) \mbox{ sum of all contributions}. \end{array}$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Prompt J/ψ production at the Tevatron.

Prompt J/ψ transverse-momentum spectrum from CDF Collaboration, $\sqrt{S} = 1.96$ TeV, $|\eta| < 0.6$, (1) is the direct production, (2) from χ_{cJ} decays, (3) from ψ' decays, (4) sum of all contributions (KMR unPDF), (5) sum of all contributions (Blümlein unPDF).

900

Prompt J/ψ production at the LHC (ATLAS). $\sqrt{S} = 7$ TeV

▲ロト ▲樹ト ▲ヨト ▲ヨト 三ヨー のへで

Prompt J/ψ production at the LHC (CMS). $\sqrt{S} = 7$ TeV

Prompt J/ψ production at the LHC (LHCb). $\sqrt{S} = 7$ TeV

Bottomonium production at the LHC and Tevatron.

For the details see [M. A. Nefedov, V. A. Saleev, A. V. Shipilova, Phys. Rev. D88 (2013) 014003

NME	Fit LO PRA	
$\left\langle \mathcal{O}^{\Upsilon(1S)} \left {}^{3}S_{1}^{(1)} \right \right\rangle \times \mathrm{GeV}^{-3}$	9.28	
$\left\langle \mathcal{O}^{\Upsilon(1S)} \left[{}^{3}S_{1}^{(8)} \right] \right\rangle \times 10^{2} \text{ GeV}^{-3}$	2.31 ± 0.25	
$\left< \mathcal{O}^{\Upsilon(1S)} \left {}^{1}S_{0}^{(8)} \right \right> \times 10^{2} \text{ GeV}^{-3}$	0.0 ± 0.05	
$\left< \mathcal{O}^{\Upsilon(1S)} \left {}^{3}P_{0}^{(8)} \right \right> \times 10^{2} \text{ GeV}^{-5}$	0.0 ± 0.38	
$\left\langle \mathcal{O}^{\Upsilon(2S)} \left {}^{3}S_{1}^{(1)} \right \right\rangle \times \text{GeV}^{-3}$	4.62	
$\left\langle \mathcal{O}^{\Upsilon(2S)} \left[{}^3S_1^{(8)} \right] \right\rangle \times 10^2 \text{ GeV}^{-3}$	1.51 ± 0.17	
$\left< \mathcal{O}^{\Upsilon(2S)} \left[{}^{1}S_{0}^{(8)} \right] \right> \times 10^{2} \text{ GeV}^{-3}$	0.0 ± 0.01	
$\left< \mathcal{O}^{\Upsilon(2S)} \left[{}^{3}P_{0}^{(8)} \right] \right> \times 10^{2} \text{ GeV}^{-5}$	0.0 ± 0.03	
$\left\langle \mathcal{O}^{\Upsilon(3S)} \left[{}^{3}S_{1}^{(1)} \right] \right\rangle \times \mathrm{GeV}^{-3}$	3.54	
$\left\langle \mathcal{O}^{\Upsilon(3S)} \left[{}^{3}S_{1}^{(8)} \right] \right\rangle^{1} \times 10^{2} \text{ GeV}^{-3}$	1.24 ± 0.13	
$/ 2 \Upsilon(3S) [1_{c}(8)] / 10^{2} \text{ GeV}^{-3}$		
$\langle O \rangle = \left S_0 \right \times 10^{\circ} \text{GeV}^{\circ}$	0.0 ± 0.01	
$\left\langle \mathcal{O}^{\Upsilon(3S)} \left[{}^{3}P_{0}^{(8)} \right] \right\rangle \times 10^{2} \text{ GeV}^{-5}$	0.0 ± 0.01 0.0 ± 0.02	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{r} 0.0 \pm 0.01 \\ 0.0 \pm 0.02 \\ \hline 2.03 \end{array} $	
$\frac{\left\langle \mathcal{O}^{\Upsilon(3S)} \left[{}^{3}S_{0}^{(8)} \right] \right\rangle \times 10^{2} \text{ GeV}^{-5}}{\left\langle \mathcal{O}^{\chi(1P)} \left[{}^{3}S_{0}^{(1)} \right] \right\rangle \times \text{GeV}^{-5}} \\ \left\langle \mathcal{O}^{\chi(1P)} \left[{}^{3}S_{1}^{(8)} \right] \right\rangle \times 10^{2} \text{ GeV}^{-5}} \\ \left\langle \mathcal{O}^{\chi(1P)} \left[{}^{3}S_{1}^{(8)} \right] \right\rangle \times 10^{2} \text{ GeV}^{-3}} \end{cases}$	0.0 ± 0.01 0.0 ± 0.02 2.03 0.0	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	0.0 ± 0.01 0.0 ± 0.02 2.03 0.0 2.36	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c} 0.0 \pm 0.01 \\ 0.0 \pm 0.02 \\ \hline 2.03 \\ 0.0 \\ \hline 2.36 \\ 0.0 \end{array}$	

Inclusive $\Upsilon(nS)$ production at the LHC (ATLAS). $\sqrt{S} = 7$ TeV.

Dashed line – color-singlet contribution, dash-dotted line – color-octet contribution, solid line – sum of all contributions. $\langle \Xi \rangle \rightarrow \langle \Xi \rangle$

うくで

ъ

Inclusive $\Upsilon(nS)$ production at the LHC (CMS). $\sqrt{S} = 7$ TeV.

ロト (個) (注) (注) (注) のへ(

Inclusive $\Upsilon(nS)$ production at the LHC (LHCb). $\sqrt{S} = 7$ TeV.

◆□▶ ◆舂▶ ★吾▶ ★吾▶ 善吾 …の�?

Inclusive $\Upsilon(nS)$ production at the LHC (LHCb). $\sqrt{S} = 7$ TeV.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 ● ○○○

Comparation with Tevatron data (CDF). $\sqrt{S} = 1.8$ TeV.

Motivation for the new study of $\psi(2S)$ and $\Upsilon(3S)$.

Recently, we have published the new study of p_T -spectra and polarization observables of $\psi(2S)$ and $\Upsilon(3S)$ [B. A. Kniehl, M. A. Nefedov, V. A. Saleev, hep-ph/1606.01079]

Motivation:

- **Q** To consistently describe all data on $p_T(\psi(2S))$ and $p_T(J/\psi)$ -spectra in $\psi(2S) \rightarrow J/\psi + X$ -decays it is absolutely necessary to:
 - take into account the mass difference between states

$$m_c = M(\psi(2S))/2,$$

• take into account the momentum shift in the decay

$$\langle p_T(J/\psi) \rangle = \frac{M_{J/\psi}}{M_{\psi(2S)}} p_T(\psi(2S)) + O\left(\frac{\Delta M^2}{M^2}, \frac{M}{p_T}\right).$$

うつん 川川 イエット エット ショー

Motivation for the new study of $\psi(2S)$ and $\Upsilon(3S)$.

Recently, we have published the new study of p_T -spectra and polarization observables of $\psi(2S)$ and $\Upsilon(3S)$ [B. A. Kniehl, M. A. Nefedov, V. A. Saleev, hep-ph/1606.01079] Motivation:

- To consistently describe all data on $p_T(\psi(2S))$ and $p_T(J/\psi)$ -spectra in $\psi(2S) \rightarrow J/\psi + X$ -decays.
- O To study the onset of fragmentation with new (ATLAS, CMS) data for $p_T \leq 100$ GeV.

うつん 川川 イエット エット ショー

Motivation for the new study of $\psi(2S)$ and $\Upsilon(3S)$.

Recently, we have published the new study of p_T -spectra and polarization observables of $\psi(2S)$ and $\Upsilon(3S)$ [B. A. Kniehl, M. A. Nefedov, V. A. Saleev, hep-ph/1606.01079] Motivation:

- To consistently describe all data on $p_T(\psi(2S))$ and $p_T(J/\psi)$ -spectra in $\psi(2S) \rightarrow J/\psi + X$ -decays.
- O To study the onset of fragmentation with new (ATLAS, CMS) data for $p_T \leq 100$ GeV.
- O To present the LO PRA predictions on $\psi(2S)$ and $\Upsilon(3S)$ polarization observables.

うつん 川川 イエット エット ショー

Motivation for the new study of $\psi(2S)$ and $\Upsilon(3S)$..

Recently, we have published the new study of p_T -spectra and polarization observables of $\psi(2S)$ and $\Upsilon(3S)$ [B. A. Kniehl, M. A. Nefedov, V. A. Saleev, hep-ph/1606.01079] Motivation:

- To consistently describe all data on $p_T(\psi(2S))$ and $p_T(J/\psi)$ -spectra in $\psi(2S) \rightarrow J/\psi + X$ -decays.
- O To study the onset of fragmentation with new (ATLAS, CMS) data for $p_T \leq 100$ GeV.
- O To present the LO PRA predictions on $\psi(2S)$ and $\Upsilon(3S)$ polarization observables.

The last point is the reason for the choice of the states. The $\psi(2S)$ and $\Upsilon(3S)$ have the smallest contribution of feeddown from heavier charmonia and bottomonia below $D\bar{D}$ or $B\bar{B}$ thresholds. For $\psi(2S)$ there is no higher states below threshold, for $\Upsilon(3S)$ there is only $\chi_b(3P)$ -state below threshold, but the **branchings are not known**.

CDF data, fit result.

The $p_T(\psi(2S))$ spectrum from CDF $(p\bar{p})$ at $\sqrt{S} = 1.96$ TeV and $|\eta| < 0.6$. Contributions: ${}^{3}S_{1}^{(1)}$ – thin dash-dotted curve, ${}^{3}S_{1}^{(8)}$ – thin solid curve and ${}^{3}P_{J}^{(8)}$ – thin dashed curve.

The ${}^{1}S_{0}^{(8)} - {}^{3}P_{J}^{(8)}$ separation problem.

Dimensionless ratio of the hard-scattering cross-sections:

$$R_{\mathcal{H}}(p_T) = \frac{M_{\mathcal{H}}^2}{\frac{d\sigma}{dp_T} \left({}^{1}S_0^{(8)}\right)} \sum_{J=0}^2 (2J+1) \frac{d\sigma}{dp_T} \left({}^{3}P_J^{(8)}\right),$$

approxiamtely constant (as in the NLO CPM):

$$R_{\psi(2S)} = 23.0 \pm 1.0, \ R_{\Upsilon(3S)} = 22.1 \pm 0.7.$$

 \Rightarrow Introducing the linear combination:

$$M_0^{\mathcal{H}} = \left\langle \mathcal{O}^{\mathcal{H}} \left[{}^1S_0^{(8)} \right] \right\rangle + R \frac{\left\langle \mathcal{O}^{\mathcal{H}} \left[{}^3P_0^{(8)} \right] \right\rangle}{M_{\mathcal{H}}^2}.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三日 のへの

The fit result.

NMEs	Fusion PM (CDF)	Fragmentation PM ATLAS+CMS	NLO CPM [1]	NLO CPM [2]
$\left\langle \mathcal{O}^{\psi(2S)} \left {}^{3}S_{1}^{(1)} \right \right\rangle / \text{GeV}^{3}$	0.65 ± 0.06	0.65 ± 0.06	0.76	0.65 ± 0.06
$\left\langle \mathcal{O}^{\psi(2S)} \left[{}^3S_1^{(8)} \right] \right\rangle / \text{GeV}^3 \times 10^3$	1.84 ± 0.17	2.57 ± 0.1	1.2 ± 0.3	2.80 ± 0.49
$M_0^{\psi(2S)}/{\rm GeV^3} \times 10^2$	3.1 ± 1.2	2.7 ± 1.1	2.0 ± 0.6	-3.8 ± 3.9
χ^2 /d.o.f.	0.6	1.1	0.56	-
$\left< \mathcal{O}^{\Upsilon(3S)} \left {}^{3}S_{1}^{(1)} \right \right> / \text{GeV}^{3}$	3.54	-	3.54	-
$\left\langle \mathcal{O}^{\Upsilon(3S)} \left[{}^{3}S_{1}^{(8)} \right] \right\rangle / \text{GeV}^{3} \times 10^{2}$	2.50 ± 0.14	-	2.71 ± 0.13	-
$M_0^{\Upsilon(3S)}/\text{GeV}^3 \times 10^2$	0.0 ± 0.17	-	1.083 ± 1.66	-
χ^2 /d.o.f.	7.57	-	3.16	-

The CPM results [1]: Y. Q. Ma, et. al. (2015) , [2]: B. A. Kniehl, M. Butenshön , (2012) .

Towards high- p_T : fragmentation mechanism.

In the LO+LLA, only production of ${}^{3}S_{1}^{(8)}$ -state aquire large log-corrections $\sim \log p_T/M$. For $p_T \gg M$, the factorization formula of fragmentation model is valid:

$$\frac{d\sigma}{dp_T(\mathcal{H})dy(\mathcal{H})} = \int_0^1 dz \frac{d\sigma}{dp_T(g)dy(g)} \left(p_T(g) = \frac{p_T(\mathcal{H})}{z} \right) D_{g \to \mathcal{H}\left[{}^3S_1^{(8)} \right]}(z, \mu_F^2),$$

where the FF at the starting scale $\mu_{F0}^2=M^2$ is perturbatively calculable using the NRQCD-factorization:

$$D_{g \to \mathcal{H} \begin{bmatrix} 3S_1^{(8)} \end{bmatrix}}(z, \mu_{F0}^2) = \frac{\pi \alpha_s(\mu_{F0}^2)}{6M_{\mathcal{H}}^3} \left\langle \mathcal{O}^{\mathcal{H}} \begin{bmatrix} 3S_1^{(8)} \end{bmatrix} \right\rangle \delta(1-z).$$

For higher scales, the FF is **DGLAP-evolved**, and the z-distribution is **softened**.

Prediction for CMS data ($\sqrt{S} = 7$ TeV) without fragmentation.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□ ◆ ◆○◆

Prediction for CMS data ($\sqrt{S} = 7$ TeV) with fragmentation.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□ ◆ ◆○◆

Prediction for ATLAS data ($\sqrt{S} = 7$ TeV) without fragmentation.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Prediction for ATLAS data ($\sqrt{S} = 7$ TeV) with fragmentation.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

The fit result.

NMEs	Fusion PM (CDF)	$\begin{array}{c} {\rm Fragmentation} \ {\rm PM} \\ {\rm ATLAS+CMS} \end{array}$	NLO CPM [1]	NLO CPM [2]
$\left\langle \mathcal{O}^{\psi(2S)} \left {}^{3}S_{1}^{(1)} \right \right\rangle / \text{GeV}^{3}$	0.65 ± 0.06	0.65 ± 0.06	0.76	0.65 ± 0.06
$\left\langle \mathcal{O}^{\psi(2S)} \left[{}^3S_1^{(8)} \right] \right\rangle / \text{GeV}^3 \times 10^3$	1.84 ± 0.17	2.57 ± 0.1	1.2 ± 0.3	2.80 ± 0.49
$M_0^{\psi(2S)}/{\rm GeV^3} \times 10^2$	3.1 ± 1.2	2.7 ± 1.1	2.0 ± 0.6	-3.8 ± 3.9
χ^2 /d.o.f.	0.6	1.1	0.56	-
$\left< \mathcal{O}^{\Upsilon(3S)} \left {}^{3}S_{1}^{(1)} \right \right> / \text{GeV}^{3}$	3.54	-	3.54	-
$\left\langle \mathcal{O}^{\Upsilon(3S)} \left[{}^{3}S_{1}^{(8)} \right] \right\rangle / \text{GeV}^{3} \times 10^{2}$	2.50 ± 0.14	-	2.71 ± 0.13	-
$M_0^{\Upsilon(3S)}/\text{GeV}^3 \times 10^2$	0.0 ± 0.17	-	1.083 ± 1.66	-
χ^2 /d.o.f.	7.57	-	3.16	-

The CPM results [1]: Y. Q. Ma, et. al. (2015) , [2]: B. A. Kniehl, M. Butenshön, (2012) .

Polarization observables.

Parametrization for angular distribution of lepton(μ^+) in the rest frame:

$$\frac{d\sigma}{d\Omega} \sim 1 + \lambda_{\theta} \cos^2(\theta) + \lambda_{\varphi} \sin^2(\theta) \cos(2\varphi) + \lambda_{\theta\varphi} \sin(2\theta) \cos(\varphi) ,$$

the choice of **coordinate system** in the rest frame is important. We use the **helicity-frame**. In this frame, the coefficient λ_{θ} :

$$\lambda_{\theta} = \frac{\sigma^{\mathcal{H}} - 3\sigma_{L}^{\mathcal{H}}}{\sigma^{\mathcal{H}} + \sigma_{L}^{\mathcal{H}}}.$$

Assuming the chromoelectric-dipole transitions ($\Delta L = 1$, $\Delta S = 0$) for *P*-wave states and direct polarization transfer from ³S-states we have:

$$\begin{split} \sigma_L^{\mathcal{H}} &= \sigma_L^{\mathcal{H}} \left({}^3S_1^{(1)} \right) + \sigma_L^{\mathcal{H}} \left({}^3S_1^{(8)} \right) + \frac{1}{3} \left(\sigma^{\mathcal{H}} \left({}^1S_0^{(8)} \right) + \sigma^{\mathcal{H}} \left({}^3P_0^{(8)} \right) \right) + \\ & \frac{1}{2} \left(\sigma_T^{\mathcal{H}} \left({}^3P_1^{(8)} \right) + \sigma_1^{\mathcal{H}} \left({}^3P_2^{(8)} \right) \right) + \frac{2}{3} \sigma_0^{\mathcal{H}} \left({}^3P_2^{(8)} \right) \end{split}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三日 のへの

Result for $\psi(2S)$.

 $\lambda_{\theta} = +1$ – transverse polarization, $\lambda_{\theta} = -1$ – longitudinal polarization, $\lambda_{\theta} = 0$ – unpolarized mixture.

The polarization at high- p_T is transverse, due to dominating ${}^3S_1^{(8)}$ -state.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Fit result for $\Upsilon(3S)$.

The $p_T(\Upsilon(3S))$ spectrum from ATLAS $(pp, \sqrt{S} = 7 \text{ TeV})$ CDF $(p\bar{p}, \sqrt{S} = 1.96 \text{ TeV})$. Contributions: ${}^3S_1^{(1)} - \text{thin}$ dash-dotted curve, ${}^3S_1^{(8)} - \text{thin solid}$ curve and ${}^3P_J^{(8)} - \text{thin dashed curve}$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ →□ ● ● ●

The fit result.

NMEs	Fusion PM (CDF)	Fragmentation PM ATLAS+CMS	NLO CPM [1]	NLO CPM [2]
$\left\langle \mathcal{O}^{\psi(2S)} \left {}^{3}S_{1}^{(1)} \right \right\rangle / \text{GeV}^{3}$	0.65 ± 0.06	0.65 ± 0.06	0.76	0.65 ± 0.06
$\left\langle \mathcal{O}^{\psi(2S)} \left[{}^3S_1^{(8)} \right] \right\rangle / \text{GeV}^3 \times 10^3$	1.84 ± 0.17	2.57 ± 0.1	1.2 ± 0.3	2.80 ± 0.49
$M_0^{\psi(2S)}/{\rm GeV^3} \times 10^2$	3.1 ± 1.2	2.7 ± 1.1	2.0 ± 0.6	-3.8 ± 3.9
χ^2 /d.o.f.	0.6	1.1	0.56	-
$\left< \mathcal{O}^{\Upsilon(3S)} \left {}^{3}S_{1}^{(1)} \right \right> / \text{GeV}^{3}$	3.54	-	3.54	-
$\left\langle \mathcal{O}^{\Upsilon(3S)} \left[{}^{3}S_{1}^{(8)} \right] \right\rangle / \text{GeV}^{3} \times 10^{2}$	2.50 ± 0.14	-	2.71 ± 0.13	-
$\frac{\Upsilon(3S)}{M_0^{\Upsilon(3S)}/\text{GeV}^3 \times 10^2}$	0.0 ± 0.17	-	1.083 ± 1.66	-
χ^2 /d.o.f.	7.57	-	3.16	-

The CPM results [1]: Y. Q. Ma, et. al. (2015) , [2]: B. A. Kniehl, M. Butenshön , (2012) .

Prediction for λ_{θ} .

▲ロト ▲樹ト ▲ヨト ▲ヨト 三ヨー のへで

Conclusions.

- It is possible to describe all hadroproduction data on p_T -spectra in LO PRA with the same set of NMEs. But fragmentation corrections and correct decay kinematics should be included.
- The fit results for NMEs are rather close to the NLO CPM results.
- The polarization puzzle is still there. What is the depolarization mechanism for $\psi(2S)$?
- For $\Upsilon(3S)$ both p_T -spectra and polarization looks good, due to the smaller fraction of Color-Octet.

▲ロト ▲母ト ▲ヨト ▲ヨト ヨー のく⊙

Thank you for your attention!

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のへぐ

Backup slides.

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のへぐ

The description of LHCb data on $\psi(2S)$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ●□ のへで

The description of LHCb data on $\Upsilon(3S)$.

▲ロト ▲樹ト ▲ヨト ▲ヨト 三ヨー のへで

The description of $p_T(J/\psi)$ - spectra.

The p_T -rescaling is used. The $p_T(\psi(2S))$ and J/ψ spectra differ by factor 2.

▲ロト ▲樹ト ▲ヨト ▲ヨト 三ヨー のへで