Strategic Plan of the long-term development of JINR Particle Physics and Astrophysics

Dmitry V. Naumov (DLNP JINR) On behalf of the committee

The Committee

V.Bednyakov

L. Cifarelli

P. Naumov

E. Rabinovici

H. Stoecker

The Plan for next 20 years in 15 minutes

- Major results
- Major Particle Physics Challenges
- Mid-term plan
- Long-term strategy
- Sector Expertise to be developed
- Attractiveness of work here

Major results

4

GeoNeutrinos

BOREXINO experiment with the leading role of JINR

Higgs boson discovery

- Hadron calorimeter (1/2) (PLNP JINR)
- Muon system (1/4) (PLNP JINR)
- Electromagnetic calorimeter: design, electronics, radiation tests (LHEP JINR)
- Transition Radiation Tubes tracking system: design, assembling (LHEP JINR)
- Magnetic system: design (PLNP JINR)
- Assembling & Commissioning
- Calibrations, Analyses, Maintenance
 - JINR played the leading role

Neutrino Oscillation and Discovery of non-zero θ_{13} With Daya Bay

- Production of wavelength shifter PPO for the LS
- Data analysis (2016 result based on Dubna analysis)

7

JINR played a leading role

Breakthrough Prize in Fundamental Physics 2016

M. Gonchar

Yu. Gornushkin

D. Naumov

/ I. N

I. Nemchenok A. Olchevski

V. Matveev

B.Popov

₈ E. Yakushev

Major Particle Physics Challenges

9

Physics beyond the SM

- Search for properties of the Higgs beyond the SM
- Search for flavor violation
- Matter-antimatter asymmetry of the Universe
- Dark matter of the Universe
- Dark energy of the Universe
- The Universe evolution

 Physics beyond the SM
 Search for properties of the Higgs beyond the SM Search for flavor violation 0 Matter-antimatter asymmetry of the Universe 0 Dark matter of the Universe 0 Dark energy of the Universe 0 The Universe evolution Sources of ultra-high energy neutrino and gamma 0 Multi-Messenger astronomy 0 Relic neutrino observation 0 **Diffusive neutrino observation** 0 Gravitational waves 0 11

Mid-term plan till 2030

ATLAS

Phase I 0.1 MCHF 32 quadruplets for New Small Wheel 0 LAr CMOS electronics, tests 0 Tile calorimeter: commissioning, tests 0 Phase II **3.6 MCHF** TDAQ 0 LAr: Preamp-Shaper, Optical Link, FEB2, Front-end 0 Power Distribution System, LAr signal Processor Tile calorimeter: LV services 0 MUON: RPC chambers, FE electronics, Gas System, 0 Power System HGTD

JUNO

JINR is THE Major Collaborator in JUNO Powering JUNO. 2 M\$

High Voltage Units for 20k LPMTs and 18k sPMTs: design, production, tests, calib, installation

 Muon Veto. 1.25 M\$ design, production, tests, calibrations, installation

PMT tests.
 O.1 M\$
 design, production, tests, methods, calibrations, installation

TAO (near det).
 1 M\$
 SiPM purchase, design, tests, methods, calibrations

With JUNO before 2030

- Mass Ordering determination (3-4 σ)
- Lepton mixing better than in the quark sector
- Largest dataset of geo-neutrinos
- Solar neutrino
- If lucky:
 - SuperNOVA with 10000 events
 - Proton decay
 - Diffused SN neutrino
 - And much more

BAIKAL GVD

3D Array of photo-sensors Now: 0.25 km3 Phase I: 0.4 km3 (by 2021) 0 Phase II: 1.5 km3 (by 2027) 6 Flagship Experiment of JINR Hardware Software Everything

JINR is the leading institute
Aim to identify sources

DarkSide 0 Edelweiss

0

Dark matter

x

x

- NOVA: MO, CP-violation 0
- Kalinin PP: magnetic moment, coherent, sterile 0
- TAIGA: 100 TeV gamma 0
- GERDA, SuperNEMO: $0\nu\beta\beta$ 0

Long-term plan after 2030

Long-term plan after 2030

NOvA

DUNE : Scintillation light R0 in LAr TPC
(now)OrHyperK : Yet to be determined

21

- BAIKAL GVD
- JUNO
- ATLAS High Luminosity

Bonus: Gravitational waves interferometers: LIGO/ VIRGO or interferometer @DUBNA

Expertise to develop

- Application Specific Integrated Circuit (ASIC)
- FPGA Electronics
- Robotics
- Quantum computing
- General Relativity and gravitational interferometry
- Project management
- Follow modern technologies

Attractiveness of JINR

- World class Neutrino Physics and expertise
- Top level in detection technologies
- New technologies (laser inclinometer, HPGe, ...)
- Mechanical workshop with modern machines (50 numerical machines available)
- Excellent engineers and modern equipped labs
- World class ultra cold technologies
- Unique world class home experiments:
 BAIKAL GVD, Kalinin PP, TAIGA, ...
- Young, dynamic and open-minded team

Gravitational interforometer Invona