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If you are only a poet,
You are not even that.

(Piet Hein)

In this talk, we consider a general method of hamiltonization of the
dynamical systems. In the case of the discrete dynamical systems, we define
a family of time-invertible dynamical systems and their linear extensions -
quanputers, which contains contemporary models of quantum computers.
Then we describe GRID as discrete dynamical system and suggest some
contemporary and future modifications of GRID according quanputer
technologies.
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New Physics

We say that we find New Physics when either we find a phenomenon which
is forbidden by SM in principal - this is the qualitative level of New physics
- or we find significant deviation between precision calculations in SM of an
observable quantity and corresponding experimental value.
In 1900, the British physicist Lord Kelvin is said to have pronounced:
”There is nothing new to be discovered in physics now. All that remains is
more and more precise measurement.” Within three decades, quantum
mechanics and Einstein’s theory of relativity had revolutionized the field.
Today, no physicist would dare assert that our physical knowledge of the
universe is near completion. To the contrary, each new discovery seems to
unlock a Pandora’s box of even bigger, even deeper physics questions.
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Hamiltonization of the general dynamical systems

Let us consider a general dynamical system described by the following
system of the ordinary differential equations [Arnold, 1978]

ẋn = vn(x), 1 ≤ n ≤ N, (1)

ẋn stands for the total derivative with respect to the parameter t.
When the number of the degrees of freedom is even, and

vn(x) = εnm
∂H0

∂xm
, 1 ≤ n,m ≤ 2M, (2)

the system (1) is Hamiltonian one and can be put in the form

ẋn = {xn,H0}0, (3)

where the Poisson bracket is defined as

{A,B}0 = εnm
∂A

∂xn

∂B

∂xm
= A

←
∂

∂xn
εnm

→
∂

∂xm
B, (4)

and summation rule under repeated indices has been used.
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Hamiltonization of the general dynamical systems

Let us consider the following Lagrangian

L = (ẋn − vn(x))ψn (5)

and the corresponding equations of motion

ẋn = vn(x), ψ̇n = −∂vm
∂xn

ψm. (6)

The system (6) extends the general system (1) by linear equation for the
variables ψ. The extended system can be put in the Hamiltonian form
[Makhaldiani, Voskresenskaya, 1997]

ẋn = {xn,H1}1, ψ̇n = {ψn,H1}1, (7)

where first level (order) Hamiltonian is

H1 = vn(x)ψn (8)

and (first level) bracket is defined as

{A,B}1 = A(

←
∂

∂xn

→
∂

∂ψn
−

←
∂

∂ψn

→
∂

∂xn
)B. (9)
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Hamiltonization of the general dynamical systems

Note that when the Grassmann grading [Berezin, 1987] of the conjugated
variables xn and ψn are different, the bracket (9) is known as Buttin
bracket[Buttin, 1996].
In the Faddeev-Jackiw formalism [Faddeev, Jackiw, 1988] for the
Hamiltonian treatment of systems defined by first-order Lagrangians, i.e. by
a Lagrangian of the form

L = fn(x)ẋn −H(x), (10)

motion equations

fmnẋn =
∂H

∂xm
, (11)

for the regular structure function fmn, can be put in the explicit
hamiltonian (Poisson; Dirac) form

ẋn = f−1nm
∂H

∂xm
= {xn, xm}

∂H

∂xm
= {xn,H}, (12)

where the fundamental Poisson (Dirac) bracket is

{xn, xm} = f−1nm, fmn = ∂mfn − ∂nfm. (13)
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Hamiltonization of the general dynamical systems

The system (6) is an important example of the first order regular
hamiltonian systems. Indeed, in the new variables,

y1n = xn, y
2
n = ψn, (14)

lagrangian (5) takes the following first order form

L = (ẋn − vn(x))ψn ⇒ 1

2
(ẋnψn − ψ̇nxn)− vn(x)ψn

=
1

2
yanε

abẏbn −H(y)

= fan(y)ẏ
a
n −H(y), fan =

1

2
ybnε

ba,H = vn(y
1)y2n,

fabnm =
∂f bm
∂yan

− ∂fan
∂ybm

= εabδnm; (15)

corresponding motion equations and the fundamental Poisson bracket are

ẏan = εabδnm
∂H

∂ybm
= {yan,H}, {yan, ybm} = εabδnm. (16)
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Canonical Quantization of the general dynamical systems

To the canonical quantization of this system corresponds

[ŷan, ŷ
b
m] = i~εabδnm, ŷ

1
n = y1n, ŷ

2
n = −i~ ∂

∂y1n
(17)

In this quantum theory, classical part, motion equations for y1n, remain
classical.
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Nambu dynamics

Nabu – Babylonian God
of Wisdom and Writing.

The Hamiltonian mechanics (HM) is in the fundamentals of mathematical
description of the physical theories [Faddeev, Takhtajan, 1990]. But HM is
in a sense blind; e.g., it does not make a difference between two opposites:
the ergodic Hamiltonian systems (with just one integral of motion)
[Sinai, 1993] and (super)integrable Hamiltonian systems (with maximal
number of the integrals of motion).
Nabu mechanics (NM) [Nambu, 1973, Whittaker, 1927] is a proper
generalization of the HM, which makes the difference between dynamical
systems with different numbers of integrals of motion explicit (see,
e.g.[Makhaldiani, 2007] ).
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Nambu dynamics

In the canonical formulation, the equations of motion of a physical system
are defined via a Poisson bracket and a Hamiltonian, [Arnold, 1978]. In
Nambu’s formulation, the Poisson bracket is replaced by the Nambu
bracket with n+ 1, n ≥ 1, slots. For n = 1, we have the canonical
formalism with one Hamiltonian. For n ≥ 2, we have Nambu-Poisson
formalism, with n Hamiltonians, [Nambu, 1973], [Whittaker, 1927].
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Nambu dynamics, system of three vortexes

The system of N vortexes can be described by the following system of
differential equations, [Aref, 1983, Meleshko,Konstantinov, 1993]

żn = i

N
∑

m6=n

γm
z∗n − z∗m

, 1 ≤ n ≤ N, (18)

where zn = xn + iyn are complex coordinate of the centre of n-th vortex,
for N = 3, and the quantities

u1 = ln|z2 − z3|2,
u2 = ln|z3 − z1|2,
u3 = ln|z1 − z2|2 (19)

reduce to the following system

u̇1 = γ1(e
u2 − eu3),

u̇2 = γ2(e
u3 − eu1),

u̇3 = γ3(e
u1 − eu2), (20)
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Nambu dynamics, system of three vortexes

The system (20) has two integrals of motion

H1 =

3
∑

i=1

eui

γi
,H2 =

3
∑

i=1

ui
γi

and can be presented in the Nambu–Poisson form, [Makhaldiani, 1997,2]

u̇i = ωijk
∂H1

∂uj

∂H2

∂uk
= {xi,H1,H2} = ωijk

euj

γj

1

γk
,

where

ωijk = ǫijkρ, ρ = γ1γ2γ3

and the Nambu–Poisson bracket of the functions A,B,C on the
three-dimensional phase space is

{A,B,C} = ωijk
∂A

∂ui

∂B

∂uj

∂C

∂uk
. (21)

This system is superintegrable: for N = 3 degrees of freedom, we have
maximal number of the integrals of motion N − 1 = 2.
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Toward the Finite Unified Field Theory

The reduction of the dimensionless couplings in GUTs is achieved by
searching for RD integrals of motion-renormdynamic invariant (RDI)
relations among them holding beyond the unification scale. Finiteness
results from the fact that there exist RDI relations among dimensional
couplings that guarantee the vanishing of all beta-functions in certain GUTs
even to all orders. In this case the number of the independent motion
integrals N is equal to the number of the coupling constants. Note that in
superintegrable dynamical systems the number of the integrals is ≤ N − 1,
so the RD of the finite field theories is trivial, coupling constants do not
run, the have fixed values, the renormdynamics is more than
superintegrable, it is hyperintegrable. Developments in the soft
supersymmetry breaking sector of GUTs and FUTs lead to exact RDI
relations, i.e. reduction of couplings, in this dimensionful sector of the
theory, too. Based on the above theoretical framework phenomenologically
consistent FUTs have been constructed. The main goal expected from a
unified description of interactions by the particle physics community is to
understand the present day large number of free parameters of the SM in
terms of a few fundamental ones. In other words, to achieve reduction of
couplings at a more fundamental level.
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Nambu dynamics, extended quantum mechanics

As an example of the infinite dimensional Nambu-Poisson dynamics, let me
conside the following extension of Schrödinger quantum mechanics
[Makhaldiani, 2000]

iVt = ∆V − V 2

2
, (22)

iψt = −∆ψ + V ψ. (23)

An interesting solution to the equation for the potential (22) is

V =
4(4 − d)

r2
, (24)

where d is the dimension of the spase. In the case of d = 1, we have the
potential of conformal quantum mechanics.
The variational formulation of the extended quantum theory, is given by the
following Lagrangian

L = (iVt −∆V +
1

2
V 2)ψ. (25)
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Nambu dynamics, extended quantum mechanics

The momentum variables are

Pv =
∂L

∂Vt
= iψ, Pψ = 0. (26)

As Hamiltonians of the Nambu-theoretic formulation, we take the following
integrals of motion

H1 =

∫

ddx(∆V − 1

2
V 2)ψ,

H2 =

∫

ddx(Pv − iψ),

H3 =

∫

ddxPψ. (27)

We invent unifying vector notation, φ = (φ1, φ2, φ3, φ4) = (ψ,Pψ , V, Pv).
Then it may be verified that the equations of the extended quantum theory
can be put in the following Nambu-theoretic form

φt(x) = {φ(x),H1,H2,H3}, (28)
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Nambu dynamics, extended quantum mechanics

where the bracket is defined as

{A1, A2, A3, A4} = iεijkl

∫

δA1

δφi(y)

δA2

δφj(y)

δA3

δφk(y)

δA4

δφl(y)
dy

= i

∫

δ(A1, A2, A3, A4)

δ(φ1(y), φ2(y), φ3(y), φ4(y))
dy = idet(

δAk
δφl

). (29)
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Nambu dynamics, M theory

The basic building blocks of M theory are membranes and M5−branes.
Membranes are fundamental objects carrying electric charges with respect
to the 3-form C-field, and M5-branes are magnetic solitons. The
Nambu-Poisson 3-algebras appear as gauge symmetries of superconformal
Chern-Simons nonabelian theories in 2 + 1 dimensions with the maximum
allowed number of N = 8 linear supersymmetries.
The Bagger and Lambert [Bagger, Lambert, 2007] and, Gustavsson
[Gustavsson, 2007] (BLG) model is based on a 3-algebra,

[T a, T b, T c] = fabcd T d (30)

where T a, are generators and fabcd is a fully anti-symmetric tensor.
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Nambu dynamics, M theory

Given this algebra, a maximally supersymmetric Chern-Simons lagrangian is:

L = LCS + Lmatter ,

LCS =
1

2
εµνλ(fabcdA

ab
µ ∂νA

cd
λ +

2

3
fcdagf

g
efbA

ab
µ A

cd
ν A

ef
λ ), (31)

Lmatter =
1

2
BIa
µ B

µI
a −BIa

µ D
µXI

a

+
i

2
ψ̄aΓµDµψa +

i

4
ψ̄bΓIJx

I
cx
J
dψaf

abcd

− 1

12
tr([XI ,XJ ,XK ][XI ,XJ ,XK ]), I = 1, 2, ..., 8, (32)

where Aabµ is gauge boson, ψa and XI = XI
aT

a matter fields. If
a = 1, 2, 3, 4, then we can obtain an SO(4) gauge symmetry by choosing
fabcd = fεabcd, f being a constant. It turns out to be the only case that
gives a gauge theory with manifest unitarity and N = 8 supersymmetry.
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Nambu dynamics, M theory

The action has the first order form so we can use the formalism of the first
section. The motion equations for the gauge fields

fnmabcdȦ
cd
m(t, x) =

δH

δAabn (t, x)
, fnmabcd = εnmfabcd (33)

take canonical form

Ȧabn = fabcdnm

δH

δAcdm
= {Aabn , Acdm} δH

δAcdm
= {Aabn ,H},

{Aabn (t, x), Acdm(t, y)} = εnmf
abcdδ(2)(x− y) (34)
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Nambu-Poisson dynamics of an extended particle with spin in an
accelerator

The quasi-classical description of the motion of a relativistic (nonradiating)
point particle with spin in accelerators and storage rings includes the
equations of orbit motion

ẋn = fn(x), fn(x) = εnm∂mH, n,m = 1, 2, ..., 6;
xn = qn, xn+3 = pn, εn,n+3 = 1, n = 1, 2, 3;

H = eΦ+ c
√

℘2 +m2c2, ℘n = pn −
e

c
An (35)

and Thomas-BMT equations
[Tomas, 1927, Bargmann, Michel,Telegdi, 1959 ] of classical spin motion

ṡn = εnmkΩmsk = {H1,H2, sn}, H1 = Ω · s, H2 = s2,
{A,B,C} = εnmk∂nA∂mB∂kC, (36)
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Nambu-Poisson dynamics of an extended particle with spin in an
accelerator

Ωn =
−e
mγc

((1 + kγ)Bn − k
(B · ℘)℘n
m2c2(1 + γ)

+
1 + k(1 + γ)

mc(1 + γ)
εnmkEm℘k) (37)

where, parameters e and m are the charge and the rest mass of the particle,
c is the velocity of light, k = (g − 2)/2 quantifies the anomalous spin g
factor, γ is the Lorentz factor, pn are components of the kinetic momentum
vector, En and Bn are the electric and magnetic fields, and An and Φ are
the vector and scalar potentials;

Bn = εnmk∂mAk, En = −∂nΦ− 1

c
Ȧn,

γ =
H − eΦ

mc2
=

√

1 +
℘2

m2c2
(38)
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Nambu-Poisson dynamics of an extended particle with spin in an
accelerator

The spin motion equations we put in the Nambu-Poisson form.
Hamiltonization of this dynamical system according to the general approach
of the previous sections we will put in the ground of the optimal control
theory of the accelerator.
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Hamiltonian extension of the spinning particle dynamics

The general method of Hamiltonization of the dynamical systems we can
use also in the spinning particle case. Let us invent unified configuration
space q = (x, p, s), xn = qn, pn = qn+3, sn = qn+6, n = 1, 2, 3; extended
phase space, (qn, ψn) and hamiltonian

H = H(q, ψ) = vnψn, n = 1, 2, ...9; (39)

motion equations

q̇n = vn(q),

ψ̇n = −∂vm
∂qn

ψm (40)

where the velocities vn depends on external fields as in previous section as
control parameters which can be determined according to the optimal
control criterium.
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Electric Dipole Moments (EDM) of Protons and Deuterons

EDM are one of the keys to understand the origin of our Universe
[Sakharov, 1967]. Andrei Sakharov formulated three conditions for
baryogenesis:
1. Early in the evolution of the universe, the baryon number conservation
must be violated sufficiently strongly,
2. The C and CP invariances, and T invariance thereof, must be violated,
and
3. At the moment when the baryon number is generated, the evolution of
the universe must be out of thermal equilibrium.
CP violation in kaon decays is known since 1964, it has been observed in
B-decays and charmed meson decays. The Standard Model (SM)
accommodates CP violation via the phase in the
Cabibbo-Kobayashi-Maskawa matrix.
CP and P violation entail nonvanishing P and T violating electric dipole

moments (EDM) of elementary particles ~d = d~s.
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Electric Dipole Moments (EDM) of Protons and Deuterons

Although extremely successful in many aspects, the SM has at least two
weaknesses: neutrino oscillations do require extensions of the SM and, most
importantly, the SM mechanisms fail miserably in the expected baryogenesis
rate.
Simultaneously, the SM predicts an exceedingly small electric dipole
moment of nucleons 10−33 < dn < 10−31e · cm, way below the current
upper bound for the neutron EDM, dn < 2.9× 10−26e · cm. In the quest for
physics beyond the SM one could follow either the high energy trail or look
into new methods which offer very high precision and sensitivity.
Supersymmetry is one of the most attractive extensions of the SM and
S. Weinberg emphasized [Weinberg, 1993]: ”Endemic in supersymmetric
(SUSY) theories are CP violations that go beyond the SM. For this reason
it may be that the next exciting thing to come along will be the discovery
of a neutron electric dipole moment.”
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Electric Dipole Moments (EDM) of Protons and Deuterons

The SUSY predictions span typically 10−29 < dn < 10−24e · cm and
precisely this range is targeted in the new generation of EDM searches
[Roberts, Marciano, 2010]. There is consensus among theorists that
measuring the EDM of the proton, deuteron and helion is as important as
that of the neutron. Furthermore, it has been argued that T-violating
nuclear forces could substantially enhance nuclear EDM
[Flambaum, Khriplovich, Sushkov, 1986]. At the moment, there are no
significant direct upper bounds available on dp or dd. Non-vanishing EDMs
give rise to the precession of the spin of a particle in an electric field. In the
rest frame of a particle

ṡn = εnmk(Ωmsk + dmEk), Ωm = −µBm, (41)

where in terms of the lab frame fields

Bn = γ(Bl
n − εnmkβmE

l
k),

En = γ(Eln + εnmkβmB
l
k) (42)

Now we can apply the Hamiltonization and optimal control theory methods
to this dynamical system.
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Reduction of the higher order dynamical system

Note that the procedure of reduction of the higher order dynamical system,
e.g. second order Euler-Lagrange motion equations, to the first order
dynamical systems, in the case to the Hamiltonian motion equations, can
be continued using fractal calculus. E.g. first order system can be reduced
to the half order one,

D1/2q = ψ,

D1/2ψ = p⇔ q̇ = p. (43)
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Discrete dynamical systems and Quanputers

Computers are physical devices and their behavior is determined by physical laws. The Quantum
Computations [Benenti, Casati, Strini, 2004 , Nielsen, Chuang, 2000 ], Quantum Computing,
Quanputing [Makhaldiani, 2007.2], is a new interdisciplinary field of research, which benefits from
the contributions of physicists, computer scientists, mathematicians, chemists and engineers.
Contemporary digital computer and its logical elements can be considered as a spatial type of
discrete dynamical systems [Makhaldiani, 2001]

Sn(k + 1) = Φn(S(k)), (44)

where

Sn(k), 1 ≤ n ≤ N(k), (45)

is the state vector of the system at the discrete time step k. Vector S may describe the state and
Φ transition rule of some Cellular Automata [Toffoli, Margolus, 1987].The systems of the type
(44) appears in applied mathematics as an explicit finite difference scheme approximation of the
equations of the physics [Samarskii, Gulin, 1989 ].
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Discrete dynamical systems and Quanputers

Definition: We assume that the system (44) is time-reversible if we can define the reverse
dynamical system

Sn(k) = Φ−1
n (S(k + 1)). (46)

In this case the following matrix

Mnm =
∂Φn(S(k))

∂Sm(k)
, (47)

is regular, i.e. has an inverse. If the matrix is not regular, this is the case, for example, when
N(k + 1) 6= N(k), we have an irreversible dynamical system (usual digital computers and/or
corresponding irreversible gates).
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Discrete dynamical systems and Quanputers

Let us consider an extension of the dynamical system (44) given by the following action function

A =
∑

kn

ln(k)(Sn(k + 1)− Φn(S(k))) (48)

and corresponding motion equations

Sn(k + 1) = Φn(S(k)) =
∂H

∂ln(k)
,

ln(k − 1) = lm(k)
∂Φm(S(k))

∂Sn(k)
= lm(k)Mmn(S(k)) =

∂H

∂Sn(k)
, (49)

where

H =
∑

kn

ln(k)Φn(S(k)), (50)

is discrete Hamiltonian. In the regular case, we put the system (49) in an explicit form

Sn(k + 1) = Φn(S(k)),
ln(k + 1) = lm(k)M−1

mn(S(k + 1)). (51)

Makhaldiani N.V. ( JINR Dubna, mnv@jinr.ru ) 5 Jule 2016 29 / 152



Discrete dynamical systems and Quanputers

From this system it is obvious that, when the initial value ln(k0) is given, the evolution of the
vector l(k) is defined by evolution of the state vector S(k). The equation of motion for ln(k) -
Elenka is linear and has an important property that a linear superpositions of the solutions are
also solutions.
Statement: Any time-reversible dynamical system (e.g. a time-reversible computer) can be
extended by corresponding linear dynamical system (quantum - like processor) which is controlled
by the dynamical system and has a huge computational power,
[Makhaldiani, 2001, Makhaldiani, 2002, Makhaldiani, 2007.2, Makhaldiani, 2011.2].
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(de)Coherence criterion

For motion equations (49) in the continual approximation, we have

Sn(k + 1) = xn(tk + τ) = xn(tk) + ẋn(tk)τ + O(τ2),
ẋn(tk) = vn(x(tk)) +O(τ), tk = kτ,
vn(x(tk)) = (Φn(x(tk))− xn(tk))/τ ;

Mmn(x(tk)) = δmn + τ
∂vm(x(tk))

∂xn(tk)
. (52)

(de)Coherence criterion: the system is reversible, the linear (quantum, coherent, soul) subsystem
exists, when the matrix M is regular,

detM = 1 + τ
∑

n

∂vn

∂xn
+ O(τ2) 6= 0. (53)

For the Nambu - Poisson dynamical systems (see e.g. [Makhaldiani, 2007])

vn(x) = εnm1m2...mp

∂H1

∂xm1

∂H2

∂xm2

...
∂Hp

∂xmp

, p = 1, 2, 3, ...,N − 1,

∑

n

∂vn

∂xn
≡ divv = 0. (54)
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Construction of the reversible discrete dynamical systems

Let me motivate an idea of construction of the reversible dynamical systems by simple example
from field theory. There are renormalizable models of scalar field theory of the form (see, e.g.
[Makhaldiani, 1980])

L =
1

2
(∂µϕ∂

µϕ−m2ϕ2)− gϕn, (55)

with the constraint

n =
2d

d− 2
, (56)

where d is dimension of the space-time and n is degree of nonlinearity. It is interesting that if we
define d as a function of n, we find

d =
2n

n− 2
(57)

the same function !
Thing is that, the constraint can be put in the symmetric implicit form [Makhaldiani, 1980]

1

n
+

1

d
=

1

2
(58)
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Generalization of the idea

Now it is natural to consider the following symmetric function

f(y) + f(x) = c (59)

and define its solution

y = f−1(c− f(x)). (60)

This is the general method, that we will use in the following construction of the reversible
dynamical systems. In the simplest case,

f(x) = x, (61)

we take

y = S(k + 1), x = S(k − 1), c = Φ̃(S(k)) (62)

and define our reversible dynamical system from the following symmetric, implicit form (see also
[Toffoli, Margolus, 1987])

S(k + 1) + S(k − 1) = Φ̃(S(k)), (63)

explicit form of which is

S(k + 1) = Φ(S(k), S(k − 1))
= Φ̃(S(k)) − S(k − 1). (64)
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Generalization of the idea

This dynamical system defines given state vector by previous two state vectors. We have
reversible dynamical system on the time lattice with time steps of two units,

S(k + 2, 2) = Φ(S(k, 2)),
S(k + 2, 2) ≡ (S(k + 2), S(k + 1)),
S(k, 2) ≡ (S(k), S(k − 1))). (65)
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Internal, spin, degrees of freedom

Starting from a general discrete dynamical system, we obtained reversible dynamical system with
internal(spin,bit) degrees of freedom

Sns(k + 2) ≡

(

Sn(k + 2)
Sn(k + 1)

)

=

(

Φn(Φ(S(k)) − S(k − 1)) − S(k))
Φn(S(k))− Sn(k − 1)

)

≡ Φns(S(k)), s = 1, 2 (66)

where

S(k) ≡ (Sns(k)), Sn1(k) ≡ Sn(k), Sn2(k) ≡ Sn(k − 1) (67)

For the extended system we have the following action

A =
∑

kns

lns(k)(Sns(k + 2) −Φns(S(k))) (68)
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Internal, spin, degrees of freedom

and corresponding motion equations

Sns(k + 2) = Φns(S(k)) =
∂H

∂lns(k)
,

lns(k − 2) = lmt(k)
∂Φmt(S(k))

∂Sns(k)

= lmt(k)Mmtns(S(k)) =
∂H

∂Sns(k)
, (69)

By construction, we have the following reversible dynamical system

Sns(k + 2) = Φns(S(k)),
lns(k + 2) = lmt(k)M

−1
mtns(S(k + 2)), (70)

with classical Sns and quantum lns(in the external, background S) string bit dynamics.

Makhaldiani N.V. ( JINR Dubna, mnv@jinr.ru ) 5 Jule 2016 36 / 152



p-point cluster and higher spin states reversible dynamics, or pit string
dynamics

We can also consider p-point generalization of the previous structure,

fp(S(k + p)) + fp−1(S(k + p− 1)) + ...+ f1(S(k + 1))

+f1(S(k − 1)) + ...+ fp(S(k − p)) = Φ̃(S(k)),
S(k + p) = Φ(S(k), S(k + p − 1), ..., S(k − p))
≡ f−1

p (Φ̃(S(k)) − fp−1(S(k + p − 1)) − ...− fp(S(k − p))) (71)

and corresponding reversible p-oint cluster dynamical system

S(k + p, p) ≡ Φ(S(k, p)),
S(k + p, p) ≡ (S(k + p), S(k + p− 1), ..., S(k + 1)),
S(k, p) ≡ (S(k), S(k − 1), ..., S(k − p + 1)), S(k, 1) = S(k). (72)

So we have general method of construction of the reversible dynamical systems on the time
(tame) scale p. The method of linear extension of the reversible dynamical systems (see
[Makhaldiani, 2001] and previous section) defines corresponding Quanputers,

Sns(k + p) = Φns(S(k)),
lns(k + p) = lmt(k)M

−1
mtns(S(k + p)), (73)
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p-point cluster and higher spin states reversible dynamics, or pit string
dynamics

This case the quantum state function lns, s = 1, 2, ...p will describes the state with spin
(p− 1)/2.
Note that, in this formalism for reversible dynamics minimal value of the spin is 1/2. There is not
a place for a scalar dynamics, or the scalar dynamics is not reversible. In the Standard model
(SM) of particle physics, [Beringer et al, 2012], all of the fundamental particles, leptons, quarks
and gauge bosons have spin. Only scalar particles of the SM are the Higgs bosons. Perhaps the
scalar particles are composed systems or quasiparticles like phonon, or Higgs dynamics is not
reversible (a mechanism for ’time arrow’).
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Social profit of big collaborations

Nowadays there are several big collaborations in science, e.g. LHC. Scientific value of LHC
depends on three components, the highest quality of accelerator, highest quality of detectors and
distributed data processing. The first two components need good mathematical and physical
modeling. Third component and the collaboration as a social structure are not under (anther) the
control by scientific methods and corresponding modeling. By definition, scientific collaborations
(SC) have a main scientific aim: to obtain answer on the important scientific question(s) and
maybe gain extra scientific bonus: new important questions and discoveries. SC is more open
information system than e.g. finance or military systems. So, it is possible to describe and
optimize SC by scientific methods. Profit from scientific modeling of SC maybe also for other
information systems and social structures.
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GRID and Quanputing

As an example of GRID we take LHC Computing Grid. The LHC Computing Grid (LCG), is an
international collaborative project that consists of a grid-based computer network infrastructure
incorporating over 170 computing centers in 36 countries. It was designed by CERN to handle the
prodigious volume of data produced by Large Hadron Collider (LHC) experiments. The Large
Hadron Collider at CERN was designed to prove or disprove the existence of the Higgs boson, an
important but elusive piece of knowledge that had been sought by particle physicists for over 40
years. A very powerful particle accelerator was needed, because Higgs bosons might not be seen
in lower energy experiments, and because vast numbers of collisions would need to be studied.
Such a collider would also produce unprecedented quantities of collision data requiring analysis.
Therefore, advanced computing facilities were needed to process the data. A design report was
published in 2005. It was announced to be ready for data on 3 October 2008. It incorporates
both private fiber optic cable links and existing high-speed portions of the public Internet. At the
end of 2010, the Grid consisted of some 200,000 processing cores and 150 petabytes of disk
space, distributed across 34 countries.

Makhaldiani N.V. ( JINR Dubna, mnv@jinr.ru ) 5 Jule 2016 40 / 152



GRID and Quanputing

The data stream from the detectors provides approximately 300 GByte/s of data, which after
filtering for ”interesting events”, results in a data stream of about 300 MByte/s. The CERN
computer center, considered ”Tier 0” of the LHC Computing Grid, has a dedicated 10 Gbit/s
connection to the counting room. The project was expected to generate 27 TB of raw data per
day, plus 10 TB of ”event summary data”, which represents the output of calculations done by
the CPU farm at the CERN data center. This data is sent out from CERN to eleven Tier 1
academic institutions in Europe, Asia, and North America, via dedicated 10 Gbit/s links. This is
called the LHC Optical Private Network. More than 150 Tier 2 institutions are connected to the
Tier 1 institutions by general-purpose national research and education networks. The data
produced by the LHC on all of its distributed computing grid is expected to add up to 10-15 PB
of data each year. In total, the four main detectors at the LHC produced 13 petabytes of data in
2010. The Tier 1 institutions receive specific subsets of the raw data, for which they serve as a
backup repository for CERN. They also perform reprocessing when recalibration is necessary. In
2015, CERN switched away from Scientific Linux to CentOS. Distributed computing resources for
analysis by end-user physicists are provided by the Open Science Grid, Enabling Grids for
E-sciencE, and LHC@home projects, http://wlcg.web.cern.ch/. Update of the Computing Models
of the WLCG and the LHC Experiments:
http://cds.cern.ch/record/1695401/files/LCG-TDR-002.pdf
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Digest of Quanputing

The idea of computations on quanputers is in finding of the needed (value of the) state (wave
function ψ(t, x)) from the initial, easy constructible, state (ψ(0, x),) which is superposition of
different states, including interesting one, with the same weight. During the computation the
weight of the interesting state is growing till the value when we can guess the solution of the
problem and then test it, which is much more easier then to find it.
Let us consider the following nonlinear evolution equation

iVt = ∆V −
1

2
V 2 + J, (74)

extended Lagrangian and Hamiltonian

L =

∫

dxD(iVt −∆V +
1

2
V 2 − J)ψ,

H =

∫

dxD(∆V −
1

2
V 2 + J)ψ (75)
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Digest of Quanputing

and corresponding Hamiltonian motion equations

iVt = ∆V −
1

2
V 2 + J = {V,H},

iψt = −∆ψ + V ψ = {ψ,H},
{V (t, x), ψ(t, y)} = δD(x− y) (76)

The solution of the problem is given in the form

|T ) = U(T )|0), ψ(t, x) =< x|t), U(T ) = Pexp(−i

∫ T

0
dtH(t)) (77)

Under the programming of the quanputer we understand construction of the potential V, or the
corresponding Hamiltonian. For the given potential, we calculate corresponding source J.
The discrete version of the system can be put in the form

Sm(n+ 1) = Φn(S(n)) + Jm(n),

Ψm(n− 1) = Amk(S(n))Ψk(n), Amk(S(n)) =
∂Φk(S(n))

∂Sm(n)
(78)

or, in the regular case, when the matrix A is regular,
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Digest of Quanputing

we obtain explicit form of the corresponding discrete dynamics

Sm(n+ 1) = Φn(S(n)) + Jm(n),
Ψm(n+ 1) = A−1

mk(S(n+ 1))Ψk(n), (79)

Now the state vector S(n) and wave vector Ψm(n) may correspond not only to the discrete
values of the potential V (n,m) = Sm(n), and wave function ψ(n,m) = Ψm(n) but also any
representation of the computing process from theoretical to experimental realization on a
quanputer, including algorithm of solution, higher level programm realization of the algorithm.
Today, without big efforts, we can modify (some) GRID elements in time-invertible form.
After development of the quanputer technologies, we can modify (some) GRID elements in
quanputer forms.
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A way to the Solution of the Traveling salesman problem (TSP) with
Quanputing

The NP ?
−
P problem will be solved if for some NP− complete problem, e.g. TSP, a

polynomial algorithm find; or show that there is not such an algorithm; or show that it is
impossible to find definite answer to that question.
TSP means to find minimal length path between N fixed points on a surface, which attends any
point ones. We consider a system where N points with quenched positions x1, x2, ..., xN are
independently distributed on a finite domain D with a probability density function p(x). In
general, the domain D is multidimensional and the points xn are vectors in the corresponding
Euclidean space. Inside the domain D we consider a polymer chain composed of N monomers
whose positions are denoted by y1, y2, ..., yN . Each monomer yn is attached to one of the
quenched sites xm and only one monomer can be attached to each site. The state of the polymer
is described by a permutation σ ∈ ΣN where ΣN is the group of permutations of N objecs.
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A way to the Solution of the Traveling salesman problem (TSP) with
Quanputing

The Hamiltonian for the system is given by

H =
N
∑

n=1

V (|yn − yn−1|) (80)

Here V is the interaction between neighboring monomers on the polymer chain. For convenience
the chain is taken to be closed, thus we take the periodic boundary condition x0 = xN . A
physical realization of this system is one where the xn are impurities where the monomers of a
polymer loop are pinned. In combinatorial optimization, if one takes V (x) to be the norm, or
distance, of the vector x then H(σ) is the total distance covered by a path which visits each site
xn exactly once. The problem of finding σ0 which minimizes H(σ) is known as the traveling
salesman problem (TSP) [Gutin, Pannen, 2002].
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A way to the Solution of the Traveling salesman problem (TSP) with
Quanputing

In field theory language to the TSP we correspond the calculation of the following correlator

G2N (x1, x2, ..., xN ) = Z−1
0

∫

dϕ(x)ϕ2(x1)ϕ
2(x2)...ϕ

2(xN )e−S(ϕ)

=
δ2NF (J)

δJ(x1)2...δJ(xN )2
, F (J) = lnZ(J),

Z(J) =

∫

dϕe−
1

2
ϕ·A·ϕ+J·ϕ = e

1

2
J·A−1·J , A−1(x, y;m) = e−m|x−y|,

Lmin(x1, ..., xN ) = −
d

dm
lnG2Ns + O(e−am)

< A−1 >≡
1

Γ(s)

∫ ∞

0
dmms−1A−1(x, y;m) =

1

|x− y|s

= LsA
−1(x− y; s)

k(d)∆dLsA
−1(x; s) = δd(x)⇒ A(x; s) = k(d)∆dLs,

s = d− 2;ϕ = ϕ(x,m). (81)
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A way to the Solution of the Traveling salesman problem (TSP) with
Quanputing

If we take relativistic massive scalar field, then A = ∆d +m2,

A−1(x) ∼ |x|2−de−m|x|, (82)

and for d = 2, we also have the needed behaviour. Note that G2N is symmetric with respect to
its arguments and contains any paths including minimal length one.
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Renormdynamics

Quantum field theory (QFT) and Fractal calculus (FC) provide Universal
language of fundamental physics (see e.g. [Makhaldiani, 2011]). In QFT
existence of a given theory means, that we can control its behavior at some
scales (short or large distances) by renormalization theory [Collins, 1984]. If
the theory exists, than we want to solve it, which means to determine what
happens on other (large or short) scales. This is the problem (and content)
of Renormdynamics. The result of the Renormdynamics, the solution of its
discrete or continual motion equations, is the effective QFT on a given
scale (different from the initial one).
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p-adic convergence of perturbation theory series

Perturbation theory series (PTS) have the following qualitative form

f(g) = f0 + f1g + ...+ fng
n + ..., fn = n!P (n)

f(x) =
∑

n≥0

P (n)n!xn = P (δ)Γ(1 + δ)
1

1 − x
, δ = x

d

dx
(83)

So, we reduce previous series to the standard geometric progression series.
This series is convergent for |x| < 1 or for
|x|p = p−k < 1, x = pka/b, k ≥ 1. With proper nomalization of the
expansion parametre, the coefficients of the series are rational numbers and
if experimental data indicates for some prime value for g, e.g. in QED

g =
e2

4π
=

1

137.0...
(84)

then we can take corresponding prime number and consider p-adic
convergence of the series. In the case of QED, we have

f(g) =
∑

fnp
−n, fn = n!P (n), p = 137, |f |p ≤

∑

|fn|ppn (85)
In the Yukawa theory of strong interactions (see e.g.
[Bogoliubov, Shirkov, 1959]), we take g = 13,
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p-adic convergence of perturbation theory series

f(g) =
∑

fnp
n, fn = n!P (n), p = 13,

|f |p ≤
∑

|fn|pp−n <
1

1− p−1
(86)

So, the series is convergent. If the limit is rational number, we consider it
as an observable value of the corresponding physical quantity.
In MSSM (see [Kazakov, 2004]) coupling constants unifies at
α−1u = 26.3± 1.9 ± 1. So,

23.4 < α−1u < 29.2 (87)

Question: how many primes are in this interval?

24, 25, 26, 27, 28, 29 (88)

Only one!
Proposal: take the value α−1u = 29.0... which will be two orders of
magnitude more precise prediction and find the consequences for the SM
scale observables.
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p-adic convergence of perturbation theory series

Let us make more explicit the formal representation of (83)

f(x) =
∑

n≥0

P (n)n!xn = P (δ)Γ(1 + δ)
1

1− x
,

= P (δ)

∫ ∞

0
dte−ttδ

1

1− x
= P (δ)

∫ ∞

0
dt

e−t

1 + (−x)t , δ = x
d

dx
(89)

This integral is well defined for negative values of x. The Mathematica
answer for the corresponding integral is

I(x) =

∫ ∞

0
dt

e−t

1 + xt
= e1/xΓ(0, 1/x)/x, Im(x) 6= 0, Re(x) ≥ 0,(90)

where Γ(a, z) is the incomplete gamma function

Γ(a, z) =

∫ ∞

z
dtta−1e−t (91)

For x = 0.001, I(x) = 0.999
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The Goldberger-Treiman relation and the pion-nucleon coupling constant

The Goldberger-Treiman relation (GTR) [Goldberger, Treiman, 1958] plays
an important role in theoretical hadronic and nuclear physics. GTR relates
the Meson-Nucleon coupling constants to the axial-vector coupling constant
in β-decay:

gπNfπ = gAmN (92)

where mN is the nucleon mass, gA is the axial-vector coupling constant in
nucleon β-decay at vanishing momentum transfer, fπ is the π decay
constant and gπN is the π −N coupling constant.
Since the days when the Goldberger-Treiman relation was discovered, the
value of gA has increased considerably. Also, fπ decreased a little, on
account of radiative corrections. The main source of uncertainty is gπN .
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The Goldberger-Treiman relation and the pion-nucleon coupling constant

If we take

απN =
g2πN
4π

= 13 ⇒ gπN = 12.78 (93)

the proton mass mp = 938MeV and fπ = 93MeV, from (92), we find

gA =
fπgπN
mN

=
93×

√
52π

938
= 1.2672 (94)

which is in agreement with contemporary experimental value
gA = 1.2695(29)
In an old version of the unified theory [Heisenberg 1966], for the απN the
following value were found

απN = 4π(1− m2
π

3m2
p

) = 12.5 (95)
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The Goldberger-Treiman relation and the pion-nucleon coupling constant

Determination of gπN from NN,NN̄ and πN data by the Nijmegen group
[Rentmeester et al, 1999] gave the following value

gπN = 13.05 ± .08, ∆ = 1− gAmN

gπNfπ
= .014 ± .009,

13.39 < απN < 13.72 (96)

This value is consistent with assumption gπN = 13 ⇒ απN = 13.45
Due to the smallness of the u and d quark masses, ∆ is necessarily very
small, and its determination requires a very precise knowledge of the gπN
coupling (gA and fπ are already known to enough precision, leaving most of
the uncertainty in the determination of ∆ to the uncertainty in gπN ).
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Renormdynamics of QCD

QCD is the theory of the strong interactions with, as only inputs, one mass
parameter for each quark species and the value of the QCD coupling
constant at some energy or momentum scale in some renormalization
scheme. This last free parameter of the theory can be fixed by ΛQCD, the
energy scale used as the typical boundary condition for the integration of
the Renormdynamic (RD) equation for the strong coupling constant. This
is the parameter which expresses the scale of strong interactions, the only
parameter in the limit of massless quarks. While the evolution of the
coupling with the momentum scale is determined by the quantum
corrections induced by the renormalization of the bare coupling and can be
computed in perturbation theory, the strength itself of the interaction, given
at any scale by the value of the renormalized coupling at this scale, or
equivalently by ΛQCD, is one of the above mentioned parameters of the
theory and has to be taken from experiment.
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Renormdynamics of QCD

The RD equations play an important role in our understanding of Quantum
Chromodynamics and the strong interactions. The beta function and the
quarks mass anomalous dimension are among the most prominent objects
for QCD RD equations. The calculation of the one-loop β-function in QCD
has lead to the discovery of asymptotic freedom in this model and to the
establishment of QCD as the theory of strong interactions
[’t Hooft, 1972, Gross, Wilczek, 1973, Politzer, 1973].
The MS-scheme [’t Hooft, 1973] belongs to the class of massless schemes
where the β-function does not depend on masses of the theory and the first
two coefficients of the β-function are scheme-independent.

Makhaldiani N.V. ( JINR Dubna, mnv@jinr.ru ) 5 Jule 2016 57 / 152



Renormdynamics of QCD

The Lagrangian of QCD with massive quarks in the covariant gauge is

L = −1

4
F aµνF

aµν + q̄n(iγD −mn)qn

− 1

2ξ
(∂A)2 + ∂µc̄a(∂µc

a + gfabcAbµc
c)

F aµν = ∂µA
a
ν − ∂νA

a
µ + gfabcAbµA

c
ν , (Dµ)kl = δkl∂µ − igtaklA

a
µ,(97)

Aaµ, a = 1, ..., N2
c − 1 are gluon; qn, n = 1, ..., nf are quark; ca are ghost

fields; ξ is gauge parameter; ta are generators of fundamental
representation and fabc are structure constants of the Lie algebra
[ta, tb] = ifabctc, we consider an arbitrary compact semi-simple Lie group G.
For QCD, G = SU(Nc), Nc = 3.
The RD equation for the coupling constant is

ȧ = β(a) = β2a
2 + β3a

3 + β4a
4 + β5a

5 +O(a6),

a =
αs
4π

= (
g

4π
)2,

∫ a

a0

da

β(a)
= t− t0 = ln

µ2

µ20
, (98)

µ is the ’t Hooft unit of mass, the renormalization point in the MS-scheme.
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Renormdynamics of QCD

To calculate the β-function we need to calculate the renormalization
constant Z of the coupling constant, ab = Za, where ab is the bare
(unrenormalized) charge. The expression of the β-function can be obtained
in the following way

0 = d(abµ
2ε)/dt = µ2ε(εZa+

∂(Za)

∂a

da

dt
)

⇒ da

dt
= β(a, ε) =

−εZa
∂(Za)
∂a

= −εa+ β(a), β(a) = a
d

da
(aZ1) (99)

where

β(a, ε) =
D − 4

2
a+ β(a) (100)

is D−dimensional β−function and Z1 is the residue of the first pole in ε
expansion

Z(a, ε) = 1 + Z1ε
−1 + ...+ Znε

−n + ... (101)

Since Z does not depend explicitly on µ, the β-function is the same in all
MS-like schemes, i.e. within the class of renormalization schemes which
differ by the shift of the parameter µ.
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Renormdynamics of QCD

Note that, presentation of Z in the form of expansion (101) is formal. If we
take ε = 1/p we can give the expansion p-adic sense. So, we will have
renormalization factors Z as analytic functions of p-adic argument. Another
possibility is to consider Z as an object of nonstandard analysis.
Then, for D = 4 + 2ε, ε > 0, we have UV fixed point

aUV =
ε

b2
(102)

with almost UV asymptotic freedom for small a0, small ε > 0, D & 4, and
true infrared asymptotic freedom, aIR = 0, for a0 < aUV . For a0 > aUV we
have ”usual” confinement.
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Renormdynamics of QCD

For quark anomalous dimension, RD equation is

ḃ = γ(a) = γ1a+ γ2a
2 + γ3a

3 + γ4a
4 +O(a5),

b(t) = b0 +

∫ t

t0

dtγ(a(t)) = b0 +

∫ a

a0

daγ(a)/β(a). (103)

To calculate the quark mass anomalous dimension γ(g) we need to
calculate the renormalization constant Zm of the quark mass
mb = Zmm, mb is the bare (unrenormalized) quark mass. Than we find
the function γ(g) in the following way

0 = ṁb = Żmm+ Zmṁ = Zmm((lnZm)
· + (lnm)·)

⇒ γ(a) = −d lnZm
dt

= ḃ = −d lnZm
da

da

dt
= −d lnZm

da
(−εa+ β(a))

= a
dZm1

da
, b = − lnZm = ln

m

mb
, (104)
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Renormdynamics of QCD

where RD equation in D−dimension is

ȧ = −εa+ β(a) = β1a+ β2a
2 + ... (105)

and Zm1 is the coefficient of the first pole in the ε−expantion of the Zm in
MS-scheme

Zm(ε, g) = 1 + Zm1(g)ε
−1 + Zm2(g)ε

−2 + ... (106)

Since Zm does not depend explicitly on µ and m, the γm-function is the
same in all MS-like schemes.
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Renormdynamics of QED

Note that, in the case of QED, we have the IR fixed point

aIR =
ε

b2
, (107)

for D = 4− 2ε, and small a0. For a0 < aIR we have UV asymptotic
freedom. This IR fixed point indicates deviation from the usual Coulomb’s
law and may have important consequences for astrophysical plasma
dynamics.
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Light millicharged particles (LMP)

Light millicharged particles with the mass from a few keV to several MeV,
with charge q = ǫe, ǫ ∼ 10−5 − 10−4 where considered in [Dolgov, 2014]:
An existence of the millicharged particles with mass in keV - MeV range
allows to: Explain the origin of galactic and intergalactic magnetic fields;
Introduce DM with time dependent interaction with normal matter; To
solve or smooth down the problems of galactic satellites, angular
momentum, and cusps in galactic centres inherent to ΛCDM-cosmology;
The model can be tested in direct experiment.
To these values of millicharge correspond the following deviation from
4-dimensionality

D = 4− 2ε, ε =
b2α

4π
ǫ2 ∼ 10−11 (108)

LMP may contribute (dominates) in the mechanism of acceleration of the
universe (if one sign of charges dominates).
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Reparametrization and general method of solution of the RD equation

RD equation,

ȧ = β1a+ β2a
2 + ... (109)

can be reparametrized,

a(t) = f(A(t)) = A+ f2A
2 + ...+ fnA

n + ... =
∑

n≥1

fnA
n, (110)

Ȧ = b1A+ b2A
2 + ... =

∑

n≥1

bnA
n,

ȧ = Ȧf ′(A) = (b1A+ b2A
2 + ...)(1 + 2f2A+ ...+ nfnA

n−1 + ...)
= β1(A+ f2A

2 + ...+ fnA
n + ...) + β2(A

2 + 2f2A
3 + ...) + ...

+βn(A
n + nf2A

n+1 + ...) + ...
= β1A+ (β2 + β1f2)A

2 + (β3 + 2β2f2 + β1f3)A
3+

...+ (βn + (n− 1)βn−1f2 + ...+ β1fn)A
n + ...

=
∑

n,n1,n2≥1

Anbn1n2fn2δn,n1+n2−1 (111)
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Reparametrization and general method of solution of the RD equation

=
∑

n,m≥1;m1,...,mk≥0

Anβmf
m1
1 ...fmk

k f(n,m,m1, ...,mk),

f(n,m,m1, ...,mk) =
m!

m1!...mk!
δn,m1+2m2+...+kmk

δm,m1+m2+...+mk
,

b1 = β1, b2 = β2 + f2β1 − 2f2b1 = β2 − f2β1,
b3 = β3 + 2f2β2 + f3β1 − 2f2b2 − 3f3b1 = β3 + 2(f22 − f3)β1,
b4 = β4 + 3f2β3 + f22β2 + 2f3β2 − 3f4b1 − 3f3b2 − 2f2b3, ...
bn = βn + ...+ β1fn − 2f2bn−1 − ...− nfnb1, ... (112)

so, by reparametrization, beyond the critical dimension (β1 6= 0) we can
change any coefficient but β1.
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Reparametrization of the RD equation

We can fix any higher coefficient with zero value, if we take

f2 =
β2
β1
, f3 =

β3
2β1

+ f22 , ... , fn =
βn + ...

(n− 1)β1
, ... (113)

In the critical dimension of space-time, β1 = 0, and we can change by
reparametrization any coefficient but β2 and β3.
From the relations (112), in the critical dimenshion (β1 = 0), we find that,
we can define the minimal form of the RD equation

Ȧ = β2A
2 + β3A

3, (114)

We can solve (114) as implicit function,

uβ3/β2e−u = ceβ2t, u =
1

A
+
β3
β2

(115)

then, as in the noncritical case, explicit solution will be given by
reparametrization representation (110) [Makhaldiani, 2013].
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Reparametrization of the RD equation

If we know somehow the coefficients βn, e.g. for first several exact and for
others asymptotic values (see e.g. [Kazakov, Shirkov, 1980]) than we can
construct reparametrization function (110) and find the dynamics of the
running coupling constant. This is similar to the action-angular canonical
transformation of the analytic mechanics (see e.g.
[Faddeev, Takhtajan, 1990]).
Statement: The reparametrization series for a is p-adically convergent,
when βn and A are rational numbers.
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Reparametrization of the anomalous dimensions

Let us take the the anomalous dimension of some quantity

γ(a) = γ1a+ γ2a
2 + γ3a

3 + ... (116)

and make reparametrization

a = f(A) = A+ f2A
2 + f3A

3 + ... (117)

γ(a) = γ1(A+ f2A
2 + f3A

3 + ...) + γ2(A
2 + 2f2A

3 + ...) + γ3(A
3 + ...)

= Γ1A+ Γ2A
2 + Γ3A

3 + ...
Γ1 = γ1, Γ2 = γ2 + γ1f2, Γ3 = γ3 + 2γ2f2 + γ1f3, ... (118)

When γ1 6= 0, we can take Γn = 0, n ≥ 2, if we define fn as

f2 = −γ2
γ1
, f3 = −γ3 + 2γ2f2

γ1
= −γ3 − 2γ22/γ1

γ1
, ... (119)

So, we get the exact value for the anomalous dimension

γ(A) = γ1A = γ1f
−1(a) = γ1(a+ γ2/γ1a

2 + γ3/γ1a
3 + ... :) (120)
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QCD, parton model, valence quarks and αs = 2

While it has been well established in the perturbative regime at high
energies, QCD still lacks a comprehensive solution at low and intermediate
energies, even 40 years after its invention. In order to deal with the wealth
of non-perturbative phenomena, various approaches are followed with
limited validity and applicability. This is especially also true for lattice
QCD, various functional methods, or chiral perturbation theory, to name
only a few. In neither one of these approaches the full dynamical content of
QCD can yet be included. Basically, the difficulties are associated with a
relativistically covariant treatment of confinement and the spontaneous
breaking of chiral symmetry, the latter being a well-established property of
QCD at low and intermediate energies. As a result, most hadron reactions,
like resonance excitations, strong and electroweak decays etc., are nowadays
only amenable to models of QCD. Most famous is the constituent-quark
model (CQM, 1964), which essentially relies on a limited number of
effective degrees of freedom with the aim of encoding the essential features
of low- and intermediate-energy QCD.
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QCD, parton model, valence quarks and αs = 2

The CQM has a long history, and it has made important contributions to
the understanding of many hadron properties, think only of the fact that
the systematization of hadrons in the standard particle-data base follows
the valence-quark picture. Namely the Q dependence of the nucleon form
factor corresponds to three-constituent picture of the nucleon and is well
described by the simple equation [Brodsky, Farrar,1973],
[Matveev, Muradyan,Tavkhelidze,1973]

F (Q2) ∼ (Q2)−2 (121)

It was noted [Voloshin, Ter-Martyrosian, 1984] that parton densities given
by the following solution

M2(Q
2) =

3

25
+

2

3
ω32/81 +

16

75
ω50/81,

M̄2(Q
2) =M s

2 (Q
2) =

3

25
− 1

3
ω32/81 +

16

75
ω50/81,

MG
2 (Q2) =

16

25
(1− ω50/81),

ω =
αs(Q

2)

αs(m2)
, Q2 ∈ (5, 20)GeV 2, b = 9, αs(Q

2) ≃ 0.2 (122)
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QCD, parton model, valence quarks and αs = 2

of the Altarelli-Parisi equation

Ṁ = AM, MT = (M2, M̄2,M
s
2 ,M

G
2 ),

M2 =

∫ 1

0
dxx(u(x) + d(x)), M̄2 =

∫ 1

0
dxx(ū(x) + d̄(x)),

M s
2 =

∫ 1

0
dxx(s(x) + s̄(x)), MG

2 =

∫ 1

0
dxxG(x), Ṁ = Q2 dM

dQ2

A = −a(Q2)







32/9 0 0 −2/3
0 32/9 0 −2/3
0 0 32/9 −2/3

−32/9 −32/9 −32/9 2






, a = (

g

4π
)2(123)

with the following ”valence quark” initial condition at a scale m

M2(m
2) = 1, M̄2 =M s

2 =MG
2 (m2) = 0, αs(m

2) = 2 (124)

gives the experimental values

M2 = 0.44, M̄2 =M s
2 = 0.04, MG

2 = 0.48 (125)
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Solution of the APE

The APE has the following form

ẋ1 = a(kx1 − bx4),
ẋ2 = a(kx2 − bx4),
ẋ3 = a(kx3 − bx4),
ẋ4 = −ak(x1 + x2 + x3) + acx4,
k = 32/9, b = 2/3, c = 2 (126)

One of the integral of motion of this system is

H = x1 + x2 + x3 + x4 = 1 (127)

Indeed,

Ḣ = a(c− 3b) = 0. (128)

The physical meaning of the integral is the statement that the momentum
of the nucleon is equal to the sum of the constituent quark and gluon
momenta.
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Solution of the APE

Now, the equation for x4 = x, using the integral o motion, we reduce to

ẋ = a((k + c)x− k)⇒

∫

dx

(k + c)x− k
= adt = −

da

β1a

⇒ x4(Q
2) =

k

k + c
+ (x40 −

k

k + c
)ω(k+c)/β1 , t = ln

Q2

M2
, ω =

αs(Q2)

αs(M2)

x1 + x2 + x3 = 3x̄ =
c

k + c
+ (3x̄0 −

c

a+ c
)ω(k+c)/β1 ,

3x̄0 + x40 = 1 (129)

Then,

x1 − x2 = (x10 − x20)ω
k/β1 → 0, x1 − x3 = (x10 − x30)ω

k/β1 → 0,

x1, x2, x3 → x̄ =
c

3(k + c)
=

3

25
, x4 →

k

k + c
=

16

25
, Q2 ≫M2 (130)

The solution of the system is

xn = x̄+ cnω
k/β1 + dnω

(k+c)/β1 , n = 1, 2, 3,

x4(Q
2) =

k

k + c
+ (x40 −

k

k + c
)ω(k+c)/β1 ,

d1 = d2 = d3 = d, c1 + c2 + c3 = 0 (131)
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Solution of the APE

For the VQM,

x10 = 1⇒ x̄+ c1 + d = 1,
x20 = x30 = 0⇒ c2 = c3 = c⇒ x2 = x3,
c = −c1/2, d = 1− x̄− c1, x̄+ c+ d = 0,

c1 =
2

3
, x̄ =

3

25
, d = 1−

3

25
−

2

3
=

16

75
,

k

β1
=

32

81
,
k + c

β1
=

50

81
, β1 = 9, x40 = 0 (132)
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QCD, parton model, valence quarks and αs = 2

So, for valence quark model (VQCD), αs(m
2) = 2. We have seen, that for

πρN model απρN = 3, and for πN model απN = 13. It is nice that
α2
s + α2

πρN = απN . This relation can be seen, e.g., by considering pion
propagator in the low energy πN model and in superposition of higher
energy VQCD and πρN models.
Note that to αs = 2 corresponds

g =
√
4παs = 5.013 = 5+ (133)
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Quarkonia, Potential and Space Dimension Renormdynamics

Phenomenological approach to the nonrelativistic potential-model study of
Υ and ψ spectra leads to a static Coulombic Power-law potential of the
form

V (r) = a(r)r2−d(r) ∼ 1/r, r ∼ 0.1fm
r, r ∼ 1.fm

(134)

E.g. in the case of the Υ and small r

V (r) =
4

3

αs
r
, αs =

2π

b ln rΛ
, b = 9. (135)

This behavior corresponds not only to the running fine structure constant
but also to the running space dimension. Confinement-the point-like
hadrons on the scales higher than hadronic, corresponds to the zero
dimensional space for hadron constituents.
RD equations of QCD beyond the critical dimention has explicit
dependence on the space dimension. When the dimension becomes running
we should consider two dimensional renormdinamics

ȧ1 = β1(a1, a2), a1 = a,
ȧ2 = β2(a1, a2), a2 = d (136)
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Nonperturbative Renormdynamics, AdS/CFT duality

The AdS/CFT duality provides a gravity description in a (d +
1)-dimensional AdS space-time in terms of a flat d-dimensional
conformally-invariant quantum field theory defined at the AdS asymptotic
boundary
[Maldacena, 1999],[Gubser,Klebanov,Polyakov, 1998],[Witten, 1998]. Thus,
in principle, one can compute physical observables in a strongly coupled
gauge theory in terms of a classical gravity theory. The β-function for the
nonperturbative effective coupling obtained from the LF holographic
mapping in a positive dilaton modified AdS background is
[Brodsky, de Tèramond, Deur, 2010]

β(αAdS) = − Q2

4k2
αAdS(Q

2) = αAdS(Q
2) ln

αAdS(Q
2)

α(0)
≤ 0 (137)

where the physical QCD running coupling in its nonperturbative domain is

αAdS(Q
2) = α(0)e−Q

2/4k2 (138)

This renormdynamics interpolates between UV fixed point α(∞) = 0 and
IR fixed point α(0) = 2.
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Nonperturbative renormdynamics with massive gluons

For the QCD running coupling [Diakonov, 2003]

α(q2) =
4π

9 ln(
q2+m2

g

Λ2 )
(139)

where mg = 0.88GeV, Λ = 0.28GeV, the β−function of renormdynamics is

β(q2) = −α
2

k
(1− c exp(− k

α
)),

k =
4π

9
= 1.40, c =

m2
g

Λ2
= (3.143)2 = 9.88 (140)

for nontrivial (IR) fixed point we have

αIR =
k

ln c
= 0.61 (141)

For α(0) = 2, we predict the gluon mass as

mg = Λe
k

2α(0) = 1.42Λ = mN/3, Λ = 220MeV. (142)
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Nonperturbative renormdynamics with massive gluons

The ghost-gluon interaction in Landau gauge has been determined either
from DSEs [Zwanziger, 2002],[Lerche,von Smekal, 2002], or the Exact
Renormalization Group Equations (ERGEs)
[Pawlowski et al, 2004],[Fischer,Gies, 2004] and yield an IR fixed point

α(0) =
2π

3Nc

Γ(3− 2k)Γ(3 + k)Γ(1 + k)

Γ(2− k)2Γ(2k)
=

8.9115

Nc
= 2.970,

Nc = 3, k = (93 −
√
1201)/98 = 0.5954 (143)

Note that, from this formula for k = 0.6036 we have α(0) = 3 and for
k = 0.36 we have α(0) = 2.
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Scale and conformal symmetries and zeros of the renormdynamic β-
functions

The main motion equation of the renormdynamics

ȧ = βa (144)

has fixed points ac in the zeros of the βa = β(ac) = 0. At these points
corresponding field theory is scale and conformal symmetric. By
reparametrization a = f(A), we can change the form of the motion
equation and particulary we can take the minimal form of the β- functions
depending only on the reparametrization invariant coefficients, e.g. for
QCD in critical d = 4 dimensions

ȧ = β2a
2 + β3a

2, (145)

This case, we have the trivial zero ac = 0, corresponding to the scale and
conformal symmetry of QCD at small scales (Higher energies). There are
an opinion that at low energy we have another, the nontrivial fixed point.
Personally my believe is that the fixed point is αs(M) = 2 at the valence
quark scale M ∼ 300MeV. But it is obvious that the minimal form of the
QCD renormdynamics (145) has not the finite nontrivial fixed point!
How I can talk about the fixed point?
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Scale and conformal symmetries and zeros of the renormdynamic β-
functions

Thing is that, the original (complete, physical, if you like) β- function and
the minimal one are connected as

βa = f ′(A)βA, (146)

so, when the minimal β- function has not the nontrivial fixed point-zero,
that fixed point is given by critical point of the reparametrization function,
f(A), f ′(Ac) = 0. Then, when the minimal β- function has not the
nontrivial zero, but we know somehow the fixed point, we can consider by
corresponding reparametrization a next to the minimal forms of the β-
function which will have the nontrivial fixed point.
If we do not know the value of the nontrivial fixed point, we can find its
approximation value from the zeros of the reparametrization function f(A),
which reduce known approximation value of the β- function to the minimal
one. For monotonic function a = f(A), f ′(A) 6= 0 and we can define
another time-parameter

dτ = dt/|f ′(A(t))| (147)
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Complex Polynomial Equation

We consider the following polynomial equation

Pn(z)− tzn+1 = 0, z ∈ C, t ∈ (0,∞) (148)

For small times t all zeros but one of this polynomial are near the zeros of
the polynomial Pn(z). For large times all n+ 1 zeros are near the zeros of
the equation

a0 − tzn+1 = 0, zk = n+1
√

a0/t exp(2πi
k

n + 1
), k = 0, 1, ..., n (149)

It is interesting to know how far from others zero approach with time to the
other zeros and then all of them organized as sites of symmetric polygon on
the circle with decreasing radius.
For given solutions (zeros) zn, 1 ≤ n ≤ N, the polynomial (coefficients)
can be found from the following linear system

a1zn + ...+ aNz
N
n = bn = tzN+1

n − a0, 1 ≤ n ≤ N (150)

by Crammer’s forms

ak =
detAk
detA

, 1 ≤ n ≤ N, (151)

in general (regular) position, when all zeros are different, are simple.
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Complex Polynomial Equation

The matrix Ak is the matrix formed by replacing the k-th column of A by
the column vector b. In special (singular) case, when some of the zeros are
identical, the Crammer’s forms dos not work, for t = 0, but in the case of
nontrivial deformations, t 6= 0, the singular case become regular and we can
make difference between regular and singular cases by different behavior
with respect to the deformation parameter t. The extra root zN+1 is far
from other roots, for small t,

zN+1 =
aN
t

+ ... (152)

In regular case main roots are linear functions of t, for small t. Note that
an, 1 ≤ n ≤ N do not depend on t, are invariants-integrals of motion.
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Dynamical Approach to the Qualitative to Quantitative Algebraic Problems

Having N integrals of motion ak = Hk, 1 ≤ k ≤ N we construct
Nambu-Poisson dynamics for the roots

ẋn = {xn,H1,H2, ...,HN}, 1 ≤ n ≤ N
{t,H1,H2, ...,HN} = 1,
H1 = aN+1(x1 + x2 + ...+ xN+1), ...,
HN+1 = aN+1x1x2...xN+1 (153)

If we take the quantum Heisenberg equation as

i~Ȧ = [A,H1, ...,HN ], (154)

correspondence between classical and quantum brackets will be

[A1, ...., AN+1]=̇i~{A1, ...., AN+1} (155)
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Dynamical Approach to the Qualitative to Quantitative Algebraic Problems

As an example, we conceder the simplest case

a0 + a1x− tx2 = a2(x− x1)(x− x2) = 0,

x1,2 =
a1 ±

√

a21 + 4ta0
2t

,

a2 = −t, a1 = −a2(x1 + x2) = H1, a0 = a2x1x2 = −H2

ẋ1 = {x1,H1,H2} = f120tx1x2 + f102t(x1 + x2)x1,
= −f012tx21
ẋ2 = {x2,H1,H2} = f210tx1x2 + f201t(x1 + x2)x2,
= f012tx

2
2 (156)

Motion equations are

ẋ1 = − x21
t(x1 − x2)

, ẋ2 =
x22

t(x1 − x2)
,

f012 =
1

t2(x1 − x2)
(157)
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Identification of the Simple and Multiple Roots in Dynamical Approach

At a root x0 of multiplicity k we have

P
(k)
N (x0)

k!
(x− x0)

k + ... = txN+1
0 ,

xn(t) = x0 + cn,kt
1/k, 1 ≤ k ≤ N

cn,k = (
xN+1
0 k!

P
(k)
N (x0)

)
1
k exp(2πi

n

k
), 0 ≤ n ≤ k − 1 (158)

So we can define the multiplicity of the root k from the time dependent of
the roots.
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Solvable Models of QCD Renormdynamics

The renormdynamic properties of Quantum Chromodynamics were the
reason of acceptance of this theory as the theory of strong interactions.
The central role played by the QCD β-function, calculated at the
one-[’t Hooft, 1972],[Gross, Wilczek, 1973],[Politzer, 1973],
two-[Caswell, 1974],[Jones,1974], [Egorian,Tarasov, 1979],
three-[Tarasov,Vladimirov,Zharkov,1980],[Larin,Vermaseren,1993] and
finally at the four-loop [van Ritbergen,Vermaseren,Larin,1997] level, cannot
be overestimated in this respect.
The minimal form of the QCD renormdynamics (RD) is

ẋ = −b2x2 − b3x
3,

b2 = 11− 2

3
n, b3 = 2(51 − 19

3
n), x =

αs
4π

= (
g

4π
)2, (159)

where n is the number of the light quarks,e.g. n = 3 for energy scales less
then the mass of the c−quark, mc ≃ 1GeV but higher than the mass of s−
quark, ms ≃ 100MeV.
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Bjorken Sum Rule

The Bjorken sum rule [Bjorken,1966] has been of central importance for
studying the spin structure of the nucleon. Accounting for finite Q2

corrections to the sum rule, it reads:
∫ 1

0
(gp1 − gn1)dx =

gA
6
(1− αs

π
− 3.58(

αs
π
)2 − 20.21(

αs
π
)3 + ...)

+
∑

k≥1

µk
Q2k

(160)

where the µk are higher twist terms. We take the following valence quark
parametrization of the αs

∫ 1

0
(gp1 − gn1)dx =

gA
6
(1− αV

2
), αV =

2αs
π

+ ... (161)
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Bjorken Sum Rule

The Bjorken sum rule is related to a more general sum rule, the generalized
Gerasimov-Drell-Hearn (GDH) sum rule
[Gerasimov, 1965],[Drell, Hearn, 1966],
[Anselmino,Ioffe,Leader,1989],[Ji,Osborne,2001]:

∫ 1

0
(gp1 − gn1)dx =

Q2

(4π)2α
(GDHp(Q

2)−GDHn(Q
2)) (162)

Since the generalized GDH sum is, in principle, calculable at any Q2, it can
be used to study the transition from the partonic to hadronic degrees of
freedom of the strong force. The Bjorken sum is the flavor non-singlet part
of the GDH sum. This leads to simplifications that may help in linking the
(χPT) validity domain to the pQCD validity domain [Burkert,2001]. Hence
the Bjorken sum appears as a key quantity to study the hadron-parton
transition.
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Two TeV Scale Unification of the Standard Model Coupling Constants

According to the LEP and Tevatron data, the standard model coupling
constants at the Z-boson mass scale take the values (see, e.g.
[Kazakov, 2004])

α1(mZ) = 0.017, α1(mZ)
−1 = 58.8

α2(mZ) = 0.034, α2(mZ)
−1 = 29.4

α3(mZ) = 0.118, α3(mZ)
−1 = 8.47 (163)

mZ = mZ = 91.1875GeV

α1(mZ)
−1 = 58.8

α2(mZ)
−1 = 29.587

α3(mZ) = 0.1184 (164)

Our aim is to consider RD equation in critical dimension for weak
interaction part of the SM (ε2 = 0); RD equations for the electromagnetic
and strong interaction parts beyond critical dimension (ε1, ε3 6= 0); reach
unification (equality) of the three couplings at the TeV scale in the point
α−1u = 31.0
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Two TeV Scale Unification of the Standard Model Coupling Constants

The solution of the one loop RD equation beyond critical dimension

ȧ = −εa+ ka2,

a =
α

4π
= (

g

4π
)2, t = ln

Q2

m2
Z

, (165)

is

an(t)
−1 =

kn
ε

+ cne
εnt, n = 1, 3

cn = an(mZ)
−1 − kn

εn
,

kn = (
41

10
,−7). (166)

The solution of the RD equation in critical dimension

ȧ2 = k2a
2
2, k2 = −19

6
(167)

is

a−12 (t) = a−12 (mZ) + k2t (168)
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Two TeV Scale Unification of the Standard Model Coupling Constants

From the last expression, having unification value, α−12 (tu) = α−1u = 31.0
we define the unification scale

tu = (a−12 (tu)− a−12 (mZ))/k2

= 4π × 1.6× 6

19
= 6.35,

Qu = 23.9mZ = 2182GeV,
mZ = 91.2GeV (169)

Solution of the RD equation beyond the critical dimension for
electrodynamic constant,

ȧ = −εa+ ba2, b =
41

10
, (170)

is

a−1(t) =
b

ε
+ (a−1(mZ)−

b

ε
)eεt (171)
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Two TeV Scale Unification of the Standard Model Coupling Constants

The condition of the unification

(bε−1 − a−1(tu)) = (bε−1 − a−1(mZ))e
εtu (172)

defines the value ε1 = −0.093 Unification takes place in dimension
d = 4− 2ε1 = 4.186
For the strong coupling constant beyond the critical dimension,

ȧ = −εa− ba2, b = 7, (173)

the solution is

a−1(t) = − b
ε
+ (

b

ε
+ a−1(mZ))e

tε, (174)

the unification condition

(bε−1 + a−1(tu)) = (bε−1 + a−1(mZ))e
εtu (175)

defines ε = 0.168
Unification takes place in the dimension d = 4− 2ε = 3.66

Makhaldiani N.V. ( JINR Dubna, mnv@jinr.ru ) 5 Jule 2016 94 / 152



Two TeV Scale Unification of the Standard Model Coupling Constants

Let us consider unification at the point α−1(tu) = 29.0, the low energy
unification,

tul = (α−12 (tul)− a−12 (mZ))/k2

= −4π × 0.4 × 6

19
= −1.59,

Qul = 0.45mZ = 41.2GeV (176)

For electrodynamic case unification condition

41

10
− 4π29ε = (

41

10
− 4π58.8ε)e−1.59ε, (177)

gives the values ε1 = 0.453, del = 3.09 = 2.09 + 1 dimensional space-time.
For strong coupling constant unification condition

7 + 4πε× 29 = (7 + 4πε× 8.47)e−1.59ε (178)

gives ε3 = −0.8121, dsl = 5.624
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At what scale α−1 = 137?

The low energy value of the QED α−1 = 137.036...
Let us find the scale at which α−1 = 137 if

α−1(mZ) =
5

3 cos2 θW
α−11 (mZ) = 128.978 ± 0.027 ≃ 129,

sin2 θW = 0.23146 ± 0.00017 ≃ 0.2315,
α−11 (mZ) = 58.8,

α−1(mZ) =
5

3× 0.7685
× 58.8 = 127.52 ≃ 128 (179)

Now take one loop RD evolution to the 137,

tl = (a−11 (tl)− a−11 (mZ))/k1

= −4π × 8.× 10

41
= −24.5,

Ql ≃ 5× 10−6mZ ≃ 5× 10−4mp ≃ me (180)
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Dyons and Two TeV Unification

In nonrelativistic approximation the force between two dyons with electric
and magnetic charges gn = (en, gn), n = 1, 2 is

F =
g1g2r+ g1 × g2v× r

4πr3
(181)

where

g1g2 = e1e2 + g1g2, g1 × g2 = e1g2 − e2g1, r = r2 − r1, v = v2 − v1, c = 1.(182)

Note that, this force depends on the invariant dual combinations of charges:
the combination

(e1 − ig1)(e2 + ig2) = e1e2 + g1g2 + i(e1g2 − e2g1) (183)

is invariant with respect to the continual global dual transformations

eiα(e+ ig) = e′ + ig′ (184)
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Dyons and Two TeV Unification

From Dirac’s quantization of charge

eg = 2π~cn, n = ±1,±2, ..., (185)

we have

g =
e

2α
~cn (186)

In the natural system of units, c = ~ = 1, and n = 1, elementary magnetic
charge has the value

g = 68.5e,

αg =
g2

4π
= (

1

2α
)2α =

1

4α
=

137

4
= 34.25 (187)

The mass of the monopole we can estimate if we suppose that the classical
radius of the monopole is not more than electron’s one

me =
α

ere
, mg =

αg
erg

,

rg ≤ re ⇒ mg ≥
αg
αe
me =

me

4α2
= 4692.25me

≃ 2398MeV ≃ 2.4TeV (188)

So, the Two-TeV unification takes place at the monopole scale.
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Low Energy Unification of the Two Abelian Couplings

At the critical point we may have low energy unification of the two abelian
couplings, weak-electromagnetic and strong-monopole couplings. According
to the Dirac quantization rule, for the electron-e and monopole-g charges
we have

eg = 2πn, n = ±1,±2, ... (189)

so, at the selfdual, critical, point, we have prediction:

αe = αg =
n

2
, n = 1, 2, ... (190)

The minimal-fundamental value of the unified coupling constant is α = 1/2.
Schwinger constructed a quantum field theory of magnetic and electric
charges which is relativistically invariant in consequence of the charge
quantization condition eg/~c = 4πn, n integer, [Schwinger, 1966]. This is
more restrictive than Dirac’s condition, which would also allow half-integral
values.
Now the minimal value at the unification point is 1. The next value is 2.
These two values of coupling constant are connected as UV and IR fixed
points of one monotone RD interval.
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String-Field Duality

In the relativistic string-gauge field duality [Maldacena, 1999] (see review
[Aharony et al, 2000]), the string coupling constant gs and the gauge field
fine structure constant αs are related: gs = αs. The statement that the
later is (prime) integer means (prime) integer quantization of the string
coupling constant.
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Instantons

Instanton configuration has the following value of classical action

S[A] =

∫

d4x
1

4
(Gaµν) =

8π2

g2
=

2π

α
= 2πp, α = p−1 (191)

So, in Minkowski space we have not destructive interference between
instanton contributions

eiS = 1, (192)

when α = p−1. When α = p, we need at least p instantons in a
cluster-molecule, we have cumulative action of p instantons. So, on the
valence quark scale, gluon fields are presented implicitly as instanton
clusters. When p = 2, we have instanton dipoles.
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Instantons of G2 Gauge Theory

Yang-Mills theory and QCD are well-defined theories for an arbitrary
(semi-)simple Lie group as gauge group. One remarkable choice for the
group is the exceptional Lie group G2 instead of the physical group SU(3).
Since its center is trivial the Wilson confinement criterion is not fulfilled,
even in the pure Yang-Mills case. The reason is that any static fundamental
charge can be screened by three adjoint charges, i. e. gluons. The most
remarkable difference compared to the SU(3) or SU(2) case is the
topological charge of the G2 instanton
[Ernst-Michael Ilgenfritz, Axel Maas, 2012]

Q =
1

64π2

∫

d4xF aµνǫµνρσF
a
ρσ = 2 (193)

which is twice as large as the one of the (embedded) SU(2) instanton.
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Topological Field Theories

In the case of the N = 4 super Yang-Mills the moduli space is the upper
half plane parametrized by

τ =
θ

2π
+ i

4π

g2
=

1

2π
(θ + i

2π

α
) =

θ

2π
+
i

α
(194)
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Nekrasov Instanton Partition Function

The instanton part of the partition function is given by

Z =
∑

k≥0

zkq
k (195)

where instanton parameter q is given by

q = e2πτi = e
− 8π2

g2
+iθ
, τ =

θ

2π
+ i

4π

g2
(196)
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Gluodynamics with the θ−term

The Lagrangian is

L = −1

4
F aµνF

a
µν + θ

g2

8π2
F aµν F̃

a
µν =

1

2
(E2 − B2) + θ

g2

8π2
E ·B,

F̃ aµν =
1

2
ǫµνρσF

a
ρσ (197)

The θ-term is a total derivative and does not contribute to the classical
equation of motion. It does, however, change the canonical momentum
from P an = F a0n to

P an = F a0n + θ
g2

8π2
Ba
n, n = 1, 2, 3 (198)

and after canonical quantization in Weyl gauge one finds the Hamiltonian
Hθ

Hθ =

∫

d3x(
1

2
(P an − θ

g2

8π2
Ba
n)

2 +
1

2
(Ba

n)
2) (199)
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The U(1)A Anomaly and QCD Phenomenology

An important historical role in establishing QCD as the theory of the strong
interactions was played by U(1)A anomaly.The description of radiative
decays of the pseudoscalar mesons in the framework of a gauge theory
requires the existence of the electromagnetic axial anomaly and determines
the number of colours to be Nc = 3. The compatibility of the symmetries
of QCD with the absence of a ninth light pseudoscalar meson, the so called
U(1)A problem, in turn depends on the contribution of the colour gauge
fields to the anomaly. The anomaly-mediated link between quark dynamics
and gluon topology (the non-perturbative dynamics of topologically
nontrivial gluon configurations) is the key to understanding a range of
phenomena in polarised QCD phenomenology, most notably the ’proton
spin’ sum rule for the first moment of the structure function g1p. A wide
variety of phenomena in QCD, ranging from the low-energy dynamics of the
pseudoscalar mesons to sum rules in polarised deep-inelastic scattering
reveal subtle aspects of quantum field theory, in particular topological gluon
dynamics, which go beyond simple current algebra or parton model
interpretations.

Makhaldiani N.V. ( JINR Dubna, mnv@jinr.ru ) 5 Jule 2016 106 / 152



Low Energy Supersymmetry of Nucleons in the Pion Condensate Medium

The pseudoscalar pion-nucleon interaction model at low energy and external
pion condensate field reduce to the model given by Hamiltonian

H =
p2

2M
+
g2π2

2M
+

g

2M
(σ∇)(τπ), (200)

If condensate is electro-neutral, πa = δa3π, then the Hamiltonian have the
following supersymmetric form

H =
1

2M
{Q+, Q−}, Q± = (σp± igπ(x))τ± (201)
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Graphene and 1+2 Dimentional QED

Graphene is a one-atom-thick allotrope of carbon, with unusual
two-dimensional Dirac-like electronic excitations. The Dirac electrons can
be controlled by application of external electric and magnetic fields, or by
altering sample geometry and/or topology. The Dirac electrons behave in
unusual ways in tunneling, confinement, and the integer quantum Hall
effect. The electronic properties of graphene stacks are discussed and vary
with stacking order and number of layers. Edge (surface) states in graphene
depend on the edge termination (zigzag or armchair) and affect the physical
properties of nanoribbons. Different types of disorder modify the Dirac
equation leading to unusual spectroscopic and transport properties. There
are different effects of electron-electron and electron-phonon interactions in
single layer and multilayer graphene [Castro Neto et al, 2009].
Carbon is the materia prima for life and the basis of all organic chemistry.
Because of the flexibility of its bonding, carbon-based systems show an
unlimited number of different structures with an equally large variety of
physical properties.
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Graphene and 1+2 Dimentional QED

The effective field model of graphene (EFG) monolayer without the
Coulomb interactions is a good approximation to the original tight - binding
model. The EFG model operates with the continuum Dirac field living in
the graphene sheet.
The principle feature of graphene is that the quasi-particle excitations
satisfy the Dirac equation, where the speed of light c is replaced by the
so-called Fermi velocity vF ≃ c/300. Therefore, the quantum field theory
methods are very useful in the physics of graphene. By applying these
methods, one can explain anomalous Hall Effect in graphene, the universal
optical absorption rate, the Faraday effect, and predict the Casimir
interaction of graphene, and do much more (see, e.g.
[Fialkovsky, Vassilevich, 2011]).
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Graphene and 1+2 Dimentional QED

The Dirac model for quasi-particles in graphene was elaborated in full
around 1984 - twenty years before actual discovery of graphene. However,
its basic properties, like the linearity of the spectrum, etc., were well known
and widely used much earlier due to the 1947 paper by Wallace. The
purpose of most of the works of the time was to describe graphite rather
than graphene (see review [Castro Neto et al, 2009]).
Note that, effective fine structure constant in graphene is αg ≃ 300α = 2.19
We will take αg = 2 and consider p-adic perturbation theory for graphene.
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Multiparticle Production and QCD Renormdynamics

It is sixty years since Yang and Mills (1954) performed their pioneering work
on gauge theories, and we have in our hands a good candidate for a theory
of the strong interactions based, precisely, on a non-Abelian gauge theory,
QCD.
We considered the main properties of the renormdynamics, corresponding
motion equations and their solutions on the examples of QCD and other
field theory models.
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Multiparticle Production and QCD Renormdynamics

With the advent of any new hadron accelerator the quantities first studied
are charged particle multiplicities. The multiparticle production can be
described by the probability distribution Pn which is a superposition of
some unknown distribution of sources F , and the Poisson distribution
describing particle emission from one source. This is a typical situation in
many microscopic models of multiparticle production.
Independently radiating valence quarks and corresponding negative binomial
distribution presents phenomenologically preferable mechanism of
hadronization in multiparticle production processes.
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Multiparticle Production

Let us consider l−particle semi-inclusive distribution

Fl(n, q) =
dlσn

d̄q1...d̄ql
=

1

n!

∫ n
∏

i=1

d̄q′iδ(p1 + p2 − Σli=1qi −Σni=1q
′
i)

·|Mn+l+2(p1, p2, q1, ..., ql, q
′
1, ..., q

′
n; g(µ),m(µ)), µ)|2 ,

d̄p ≡ d3p

E(p)
, E(p) =

√

p2 +m2. (202)

From the renormdynamic equation

DMn+l+2 =
γ

2
(n+ l + 2)Mn+l+2, (203)
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Multiparticle Production

we obtain

DFl(n, q) = γ(n+ l + 2)Fl(n, q),
DFl(q) = γ(< n > +l + 2)Fl(q),

D < nk(q) >= γ(< nk+1(q) > − < nk(q) >< n(q) >),
DCk = γ < n(q) > (Ck+1 − Ck(1 + k(C2 − 1)))

Fl(q) ≡
dlσ

d̄q1...d̄ql
=

∑

n

dlσn
d̄q1...d̄ql

, < nk(q) >=

∑

n n
kdlσn/d̄q

l

∑

n d
lσn/d̄ql

Ck =
< nk(q) >

< n(q) >k
(204)
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Multiparticle Production

From dimensional considerations, the following combination of cross
sections [Koba et al, 1972] must be universal function

< n >
σn
σ

= Ψ(
n

< n >
). (205)

Corresponding relation for the inclusive cross sections is
[Matveev et al, 1976].

< n(p) >
dσn
d̄p

/
dσ

d̄p
= Ψ(

n

< n(p) >
). (206)

Indeed, let us define n−dimension of observables [Makhaldiani, 1980]

[n] = 1, [σn] = −1, σ = Σnσn, [σ] = 0, [< n >] = 1. (207)

The following expression does not depend on any dimensional quantities
and must have a corresponding universal form

Pn =< n >
σn
σ

= Ψ(
n

< n >
). (208)

For any discrete variable n, if the change of summation on the integration
is good approximation, we can invent corresponding dimension and use
dimensional counting.
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Multiparticle Production

Let us find an explicit form of the universal functions using renormdynamic
equations. From the definition of the moments we have

Ck =

∫ ∞

0
dxxkΨ(x), (209)

so they are universal parameters,

DCk = 0 ⇒ Ck+1 = (1 + k(C2 − 1))Ck ⇒
Ck = (1 + (k − 1)(C2 − 1))...(1 + 2(C2 − 1))C2. (210)

Now we can invert momentum transform and find (see [Makhaldiani, 1980])
universal functions [Ernst, Schmit, 1976], [Darbaidze et al, 1978].

Ψ(z) =
1

2πi

∫ +i∞

−i∞
dnz−n−1Cn =

cc

Γ(c)
zc−1e−cz,

C2 = 1 +
1

c
(211)
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Multiparticle Production
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Figure: KNO distribution, Ψ(z), with c = 2.8
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Multiparticle Production

The value of the parameter c can be measured from the dispersion low,

D =
√

< n2 > − < n >2 =
√

C2 − 1 < n >= A < n >,

A =
1√
c
≃ 0.6, c = 2.8;

(c = 3, A = 0.58) (212)

which is in accordance with n−dimension counting.

Makhaldiani N.V. ( JINR Dubna, mnv@jinr.ru ) 5 Jule 2016 118 / 152



Multiparticle Production

We can calculate also 1/ < n > correction to the scaling function

< n >
σn
σ

= Ψ = Ψ0(
n

< n >
) +

1

< n >
Ψ1(

n

< n >
),

Ck = C0
k +

1

< n >
C1
k ,

C0
k =

∫ ∞

0
dxxkΨ0(x), C

1
k =

∫ ∞

0
dxxkΨ1(x),

Ψ1(z) =
1

2πi

∫ +i∞

−i∞
dnz−n−1C1

n =
C1
2c

2

2
(z − 2 +

c− 1

cz
)Ψ0 (213)
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Characteristic Function for KNO

The characteristic function we define as

Φ(t) =

∫ ∞

0
dxetxΨ(x) = (1− t/c)−c, Re(t) < c (214)

For the moments of the distribution, we have

Φ(k)(0) = Ck = (−c)(−c − 1)...(−c − k + 1)(−1/c)k =
Γ(c+ k)

Γ(c)ck
(215)

Note that it is an infinitely divisible characteristic function, i.e.

Φ(t) = (Φn(t))
n, Φn(t) = (1− t/c)−c/n (216)

If we calculate observable(mean) value of x, we find

< x >= Φ′(0) = nΦ(0)n
′ = n < x >n,

< x >n=
< x >

n
(217)

Makhaldiani N.V. ( JINR Dubna, mnv@jinr.ru ) 5 Jule 2016 120 / 152



Characteristic Function for KNO

For the second moment and dispersion, we have

< x2 >= Φ(2)(0) = n < x2 >n +n(n− 1) < x >2
n,

D2 =< x2 > − < x >2= n(< x2 >n − < x >2
n) = nD2

n

D2
n =

D2

n
=

D2

< x >
< x >n (218)

In a sense, any Hamiltonian quantum (and classical) system can be
described by infinitely divisible distributions, because in the functional
integral formulation, we use the following step

U(t) = e−itH = (e−i
t
N
H)N (219)
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Characteristic Function for KNO

In the case of scalar field theory

L(ϕ) =
1

2
∂µϕ∂

µϕ− m2

2
ϕ2 − g

n
ϕn

= g
2

2−n (
1

2
∂µφ∂

µφ− m2

2
φ2 − 1

n
φn) (220)

so, to the constituent field φN corresponds higher value of the coupling
constant,

gN = gN
n−2
2 (221)

For weak nonlinearity, n = 2 + 2ε, d = 2/ε+ 2, gN = g(1 + ε lnN +O(ε2))
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Negative Binomial Distribution

Negative binomial distribution (NBD) is defined as

P (n) =
Γ(n+ r)

n!Γ(r)
pn(1− p)r,

∑

n≥0

P (n) = 1, (222)
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Figure: P (n), r = 2.8, p = 0.3, < n >= 6
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Negative Binomial Distribution

NBD provides a very good parametrization for multiplicity distributions in
e+e− annihilation; in deep inelastic lepton scattering; in proton-proton
collisions; in proton-nucleus scattering.

Hadronic collisions at high energies (LHC) lead to charged multiplicity
distributions whose shapes are well fitted by a single NBD in fixed intervals
of central (pseudo)rapidity η [ALICE, 2010].

It is interesting to understand how NBD fits such a different reactions?
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NBD and KNO scaling

Let us consider NBD for normed topological cross sections

σn
σ

= P (n) =
Γ(n+ k)

Γ(n+ 1)Γ(k)
(

k

< n >
)k(1 +

k

< n >
)−(n+k)

=
Γ(n+ k)

Γ(n+ 1)Γ(k)
(1 +

k

< n >
)−n(1 +

< n >

k
)−k

=
Γ(n+ k)

Γ(n+ 1)Γ(k)
(

< n >

< n > +k
)n(

k

k+ < n >
)k,

=
Γ(k + n)

Γ(k)n!

( k
<n>)

k

(1 + k
<n>)

k+n
,

r = k > 0, p =
< n >

< n > +k
. (223)

The generating function for NBD is

F (h) = (1 +
< n >

k
(1− h))−k = (1 +

< n >

k
)−k(1− ah))−k,

a = p =
< n >

< n > +k
. (224)

Indeed,
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NBD and KNO scaling

(1− ah))−k =
1

Γ(k)

∫ ∞

0
dttk−1e−t(1−ah)

=
1

Γ(k)

∫ ∞

0
dttk−1e−t

∞
∑

0

(tah)n

n!

=

∞
∑

0

Γ(n+ k)an

Γ(k)n!
hn,

P (n) = (1 +
< n >

k
)−k

Γ(n+ k)

Γ(k)n!
(
< n >

< n > +k
)n

=
kkΓ(n+ k)

Γ(k)Γ(n+ 1)
(< n > +k)−(n+k) < n >n

=
Γ(n+ k)

Γ(n+ 1)Γ(k)
(

k

< n >
)k(1 +

k

< n >
)−(n+k) (225)

The Bose-Einstein distribution is a special case of NBD with k = 1.
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NBD and KNO scaling

If k is negative, the NBD becomes a positive binomial distribution, narrower
than Poisson (corresponding to negative correlations).
For negative (integer) values of k = −N, we have Binomial GF

Fbd = (1 +
< n >

N
(h− 1))N = (a+ bh)N , a = 1− < n >

N
, b =

< n >

N
,

Pbd(n) = CnN (
< n >

N
)n(1− < n >

N
)N−n (226)

(In a sense) we have a (quantum) spectrum for the parameter k, which
contains any (positive) real values and (with finite number of states) the
negative integer values, (0 ≤ n ≤ N)
From the generating function we have

< n2 >= (
hd

dh
)2F (h)|h=1 =

k + 1

k
< n >2 + < n >, (227)

for dispersion we obtain

D =
√

< n2 > − < n >2 =
1√
k
< n > (1 +

k

< n >
)1/2

=
1√
k
< n > +

√
k

2
+O(1/ < n >), (228)
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NBD and KNO scaling

So, the dispersion low for KNO and NBD distributions are the same, with
c = k, for high values of the mean multiplicity.
The factorial moments of NBD,

Fm = (
d

dh
)mF (h)|h=1 =

< n(n− 1)...(n −m+ 1) >

< n >m
=

Γ(m+ k)

Γ(m)km
, (229)

and usual normalized moments of KNO (215) coincides.
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Fractal Fractorial and Cumulant Moments

Using fractal calculus (see e.g. [Makhaldiani, 2003]),

D−α0,xf =
|x|α
Γ(α)

1
∫

0

|1− t|α−1f(xt)dt, = |x|α
Γ(α)

B(α, ∂x)f(x)

= |x|α Γ(∂x)

Γ(α+ ∂x)
f(x), f(xt) = tx

d
dx f(x). (230)

we can define factorial and cumulant moments for any complex indexes,

F−q =< n >q D−q0,xGNBD(x)|x=0 =
kqΓ(k − q)

Γ(k)
,

K−q =< n >q D−q0,x lnGNBD(x)|x=0 = kq+1Γ(−q),

H−q =
Γ(k + 1)Γ(−q)

Γ(k − q)
(231)
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The KNO as Asymptotic NBD

Let us show that NBD is a discrete distribution corresponding to the KNO
scaling,

lim
<n>→∞

< n > Pn| n
<n>

=z = Ψ(z) (232)

Indeed, using the following asymptotic formula

Γ(x+ 1) = xxe−x
√
2πx(1 +

1

12x
+O(x−2)), (233)

we find

< n > Pn =< n >
(n + k − 1)n+k−1e−(n+k−1)

Γ(k)nne−n
kk

nk
< n > zke−k

n+k
<n>

=
kk

Γ(k)
zk−1e−kz +O(1/ < n >) (234)

We can calculate also 1/ < n > correction term to the KNO from the
NBD. The answer is

Ψ =
kk

Γ(k)
zk−1e−kz(1 +

k2

2
(z − 2 +

k − 1

kz
)

1

< n >
) (235)

Makhaldiani N.V. ( JINR Dubna, mnv@jinr.ru ) 5 Jule 2016 130 / 152



The KNO as Asymptotic NBD

This form coincides with the corrected KNO (213) for c = k and C1
2 = 1.

We have seen that KNO characteristic function (214) and NBD GF (224)
have almost same form. This relation become in coincidence if

c = k, t = (h− 1)
< n >

k
(236)

Now the definition of the characteristic function (214) can be read as
∫ ∞

0
e−<n>z(1−h)Ψ(z)dz = (1 +

< n >

k
(1− h))−k (237)

which means that Poisson GF weighted by KNO distribution gives NBD GF.
Because of this, the NBD is the gamma-Poisson (mixture) distribution.
This is the exact and universal picture of hadronization in multiparticle
production processes.
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NBD, Poisson and Gauss Distributions

Fore high values of x2 = k the NBD distribution reduces to the Poisson
distribution

F (x1, x2, h) = (1 +
x1
x2

(1− h))−x2 ⇒ e−x1(1−h) = e−<n>eh<n>

=
∑

P (n)hn,

P (n) = e−<n>
< n >n

n!
(238)

For the Poisson distribution

d2F (h)

dh2
|h=1 =< n(n− 1) >=< n >2,

D2 =< n2 > − < n >2=< n > . (239)

In the case of NBD, we had the following dispersion low

D2 =
1

k
< n >2 + < n >, (240)

which coincides with the previous expression for high values of k.
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NBD, Poisson and Gauss Distributions

Poisson GF belongs to the class of the infinitely divisible distributions,

F (h,< n >) = (F (h,< n > /k))k (241)

For high values of < n >, the Poisson distribution reduces to the Gauss
distribution

P (n) = e−<n>
< n >n

n!
⇒ 1√

2π < n >
exp(−(n− < n >)2

2 < n >
) (242)

For high values of k in the integral relation (237), in the KNO function
dominates the value zc = 1 and both sides of the relation reduce to the
Poisson GF.
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Multiplicative Properties of KNO and NBD

A Bose-Einstein, or geometrical, distribution is a thermal distribution for
single state systems. An useful property of the negative binomial
distribution with parameters

< n >, k

is that it is (also) the distribution of a sum of k independent random
variables drawn from a Bose-Einstein distribution with mean < n > /k,

Pn =
1

< n > +1
(
< n >

< n > +1
)n

= (eβ~ω/2 − e−β~ω/2)e−β~ω(n+1/2), T =
~ω

ln <n>+1
<n>

∑

n≥0

Pn = 1,
∑

nPn =< n >=
1

eβ~ω−1
, T ≃ ~ω < n >, < n >≫ 1,

P (x) =
∑

n

xnPn = (1+ < n > (1− x))−1. (243)

This is easily seen from the generating function in (224), remembering that
the generating function of a sum of independent random variables is the
product of their generating functions.
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Multiplicative Properties of KNO and NBD

Indeed, for

n = n1 + n2 + ...+ nk, (244)

with ni independent of each other, the probability distribution of n is

Pn =
∑

n1,...,nk

δ(n −
∑

ni)pn1 ...pnk
,

P (x) =
∑

n

xnPn = p(x)k (245)

This has a consequence that an incoherent superposition of N emitters that
have a negative binomial distribution with parameters k,< n > produces a
negative binomial distribution with parameters Nk,N < n >.
So, for the GF of NBD we have (N=2)

F (k,< n >)F (k,< n >) = F (2k, 2 < n >) (246)

And more general formula (N=m) is

F (k,< n >)m = F (mk,m < n >) (247)
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Multiplicative Properties of KNO and NBD

We can put this equation in the closed nonlocal form

QqF = F q, (248)

where

Qq = qD, D =
kd

dk
+
< n > d

d < n >
=
x1d

dx1
+
x2d

dx2
(249)

Note that temperature defined in (243) gives an estimation of the Glukvar
temperature when it radiates hadrons. If we take ~ω = 100MeV, to
T ≃ Tc ≃ 200MeV corresponds < n >≃ 1.5 If we take ~ω = 10MeV, to
T ≃ Tc ≃ 200MeV corresponds < n >≃ 20. A singular behavior of < n >
may indicate corresponding phase transition and temperature. At that point
we estimate characteristic quantum ~ω.
We see that universality of NBD in hadron-production is similar to the
universality of black body radiation.
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Multiparticle Production Stochastic Dynamics

Let us imagine space-time development of the the multiparticle process and
try to describe it by some (phenomenological) dynamical equation. We
start to find the equation for the Poisson distribution and than naturally
extend them for the NBD case.
Let us define an integer valued variable n(t) as a number of events
(produced particles) at the time t, n(0) = 0. The probability of event
n(t), P (t, n), is defined from the following motion equation

Pt ≡
∂P (t, n)

∂t
= r(P (t, n− 1)− P (t, n)), n ≥ 1

Pt(t, 0)) = −rP (t, 0),
P (t, n) = 0, n < 0, (250)

so

P (t, 0) ≡ P0(t) = e−rt,
P (t, n) = Q(t, n)P0(t),
Qt(t, n) = rQ(t, n− 1), Q(t, 0) = 1. (251)

To solve the equation for Q, we invent its generating function

F (t, h) =
∑

n≥0

hnQ(t, n), (252)

Makhaldiani N.V. ( JINR Dubna, mnv@jinr.ru ) 5 Jule 2016 137 / 152



Multiparticle Production Stochastic Dynamics

and solve corresponding equation

Ft = rhF, F (t, h) = erth =
∑

hn
(rt)n

n!
, Q(t, n) =

(rt)n

n!
, (253)

so

P (t, n) = e−rt
(rt)n

n!
(254)

is the Poisson distribution.
If we compare this distribution with (242), we identify < n >= rt, as if we
have a free particle motion with velocity r and the distance is the mean
multiplicity. This way we have a connection between n-dimension of the
multiplicity and the usual dimension of trajectory.
As the equation gives right solution, its generalization may give more
general distribution, so we will generalize the equation (250). For this, we
put the equation in the closed form

Pt(t, n) = r(e−∂n − 1)P (t, n)

=
∑

k≥1

Dk∂
kP (t, n), Dk = (−1)k

r

k!
, (255)

where the Dk, k ≥ 1, are generalized diffusion coefficients.
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Fractal Dimension of the Multiparticle Production Trajectories

For other values of the coefficients, we will have other distributions. For
mean square deviation of the trajectory we have

< (x− x̄)2 >=< x2 > − < x >2≡ D(x)2 ∼ t2/df , (256)

where df is fractal dimension. For smooth classical trajectory of particles
we have df = 1; for free stochastic, Brownian, trajectory, all diffusion
coefficients are zero but D2, we have df = 2. In the case of Poisson process
we have,

D(n)2 =< n2 > − < n >2∼ t, df = 2. (257)

In the case of the NBD and KNO distributions

D(n)2 ∼ t2, df = 1. (258)

As we have seen, rasing k, KNO reduce to the Poisson, so we have a
dimensional (phase) transition from the phase with dimension 1 to the
phase with dimension 2. It is interesting, if somehow this phase transition is
connected to the other phase transitions in strong interaction processes.
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Fractal Dimension of the Multiparticle Production Trajectories

For the Poisson distribution GF is solution of the following equation,

Ḟ = −r(1− h)F, (259)

For the NBD corresponding equation is

Ḟ =
−r(1− h)

1 + rt
k (1− h)

F = −R(t)F, R(t) = r(1− h)

1 + rt
k (1− h)

. (260)

If we change the time variable as t = T df , we reduce the dispersion low
from general fractal to the NBD like case. Corresponding transformation for
the evolution equation is

FT = −dfT df−1R(T dF )F, (261)

we ask that this equation coincides with NBD motion equation, and define
rate function R(T )

dfT
df−1R(T dF ) =

r(1− h)

1 + rT
k (1− h)

(262)
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Fractal Dimension of the Multiparticle Production Trajectories

The following equation defines a production processes with fractal
dimension dF

Ft = −R(t)F, R(t) = r(1− h)

dF t
dF−1

dF (1 + rt1/dF
k (1− h))

(263)
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Dynamical Formulation of z - Scaling

Motion equations of physics (applied mathematics in general) connect
different observable quantities and reduce the number of independently
measurable quantities. More fundamental equation contains less number of
independent quantities. When (before) we solve the equations, we invent
dimensionless invariant variables, than one solution can describe all of the
class of phenomena.
In the z - Scaling (zS) approach to the inclusive multiparticle distributions
(MPD) (see, e.g. [Tokarev, Zborovsky, 2007]), different inclusive
distributions depending on the variables x1, ...xn, are described by universal
function Ψ(z) of fractal variable z,

z = x−α1
1 ...x−αn

n . (264)

It is interesting to find a dynamical system which generates this
distributions and describes corresponding MPD.
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Dynamical Formulation of z - Scaling

We can find a good function if we know its derivative. Let us consider the
following RD like equation

z
d

dz
Ψ = V (Ψ),

∫ Ψ(z)

Ψ(z0)

dx

V (x)
= ln

z

z0
(265)
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Formal motivation (foundation) of the RD motion equation for Ψ

As a dimensionless physical quantity Ψ(z) may depend only on the running
coupling constant g(τ), τ = ln z/z0

z
d

dz
Ψ = Ψ̇ =

dΨ

dg
β(g) = U(g) = U(f−1(Ψ)) = V (Ψ),

Ψ(τ) = f(g(τ)), g = f−1(Ψ(τ)) (266)
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Realistic solution for Ψ

According to the paper [Tokarev, Zborovsky, 2007], for high values of
z, Ψ(z) ∼ z−β ; for small z, Ψ(z) ∼ const.
So, for high z,

z
d

dz
Ψ = V (Ψ(z)) = −βΨ(z); (267)

for smaller values of z, Ψ(z) rise and we expect nonlinear terms in V (Ψ),

V (Ψ) = −βΨ+ γΨ2. (268)

With this function, we can solve the equation for Ψ and find

Ψ(z) =
1

γ
β + czβ

. (269)
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More general solution for Ψ

Let us consider more general potential V

z
d

dz
Ψ = V (Ψ) = −βΨ(z) + γΨ(z)1+n (270)

Corresponding solution for Ψ is

Ψ(z) =
1

(γβ + cznβ)
1
n

(271)

More general solution contains three parameters and may better describe
the data of inclusive distributions.

Makhaldiani N.V. ( JINR Dubna, mnv@jinr.ru ) 5 Jule 2016 146 / 152



More general solution for Ψ
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Figure: z-scaling distribution Ψ(z, 9, 9, 1, 1)
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More general solution for Ψ

In the case of n = 1 we reproduce the previous solution.
Another ”natural” case is n = 1/β,

Ψ(z) =
1

(γβ + cz)β
(272)

In this case, we can absorb (interpret) the combined parameter by shift and
scaling

z → 1

c
(z − γ

β
) (273)

Another interesting point of view is to predict the value of β

β =
1

n
= 0.5; 0.33; 0.25; 0.2; ..., n = 2, 3, 4, 5, ... (274)

For experimentally suggested value β ≃ 9, n = 0.11
The three parameter function is restricted by the normalization condition

∫ ∞

0
Ψ(z)dz = 1,

B(
β − 1

βn
,
1

βn
) = (

β

γ
)
β−1
βn

βn

cβn
, (275)

so remains only two free parameter.
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More general solution for Ψ

When βn = 1, we have

c = (β − 1)(
β

γ
)β−1 (276)

If βn = 1 and β = γ, than c = β − 1.
In general

cβn = (
β

γ
)
β−1
βn

βn

B(β−1βn ,
1
βn)

(277)
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Space-time Dimension Inside Hadrons and Nuclei

The dimension of the space(-time) is the model dependent concept. E.g.
for the fundamental bosonic string model (in flat space-time) the dimension
is 26; for superstring model the dimension is 10 [Kaku, 2000].
Let us imagine that we have some action-functional formulation with the
fundamental motion equation

z
d

dz
Ψ = V (Ψ(z)) = V (Ψ) = −βΨ+ γΨ1+n. (278)

Than, the corresponding Lagrangian contains the following mass and
interaction parts

−β
2
Ψ2 +

γ

2 + n
Ψ2+n (279)

The action gives renormalizable (effective quantum field theory) model
when

d+ 2 =
2N

N − 2
=

2(2 + n)

n
= 2 +

4

n
= 2 + 4β, (280)

so, measuring the parameter β inside hadronic and nuclear matters, we find
corresponding (fractal) dimension.
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Another Action Formulation of the Fundamental Equation

From fundamental equation we obtain

(z
d

dz
)2Ψ ≡ Ψ̈ = V ′(Ψ)V (Ψ) =

1

2
(V 2)′

= β2Ψ− βγ(n+ 2)Ψn+1 + γ2(n + 1)Ψ2n+1 (281)

Corresponding action Lagrangian is

L =
1

2
Ψ̇2 + U(Ψ), U =

1

2
V 2 =

1

2
Ψ2(β − γΨn)2

=
β2

2
Ψ2 − βγΨ2+n +

γ2

2
Ψ2+2n (282)

This potential, −U, has two maximums, when V = 0, and minimum, when
V ′ = 0, at Ψ = 0 and Ψ = (β/γ)1/n, and Ψ = (β/(n + 1)γ)1/n,
correspondingly.
We define time-space-scale field Ψ(t, x, η), where η = ln z− is scale
coordinate variable, with corresponding action functional

A =

∫

dtddxdη(
1

2
gab∂aΨ∂bΨ+ U(Ψ)) (283)
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Another Action Formulation of the Fundamental Equation

The renormalization constraint for this action is

N = 2 + 2n =
2(2 + d)

2 + d− 2
= 2 +

4

d
, dn = 2, d = 2/n = 2β. (284)

So we have two models for spase-time dimension, (280) and (284),

d1 = 4β; d2 = 2β (285)

The coordinate η characterise (multiparticle production) physical process at
the (external) space-time point (x,t). The dimension of the space-time
inside hadrons and nuclei, where multiparticle production takes place is

d+ 1 = 1 + 2β (286)

Note that this formula reminds the dimension of the spin s state,
ds = 2s+ 1. If we take β(= s) = 0; 1/2; 1; 3/2; 2; ... We will have
d+ 1 = 1; 2; 3; 4; 5; ...
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