

CLIC physics potential

Mila Pandurović

Vinca Institute of Nuclear Sciences

on behalf of the CLICdp Collaboration

New trends in High Energy Physics, Budva, Montenegro, 02. – 10. October, 2016.

Outline

clc

- Introduction to Compact Linear Collider (CLIC)
- CLIC accelerator
- Detector requirements and design
- Physics at CLIC
 - Higgs physics
 - **D** Physics of top quark
 - BSM physics
- Conclusions and summary

Compact Linear Collider Project CLIC

Motivation for e⁺e⁻ colliders

- Precision measurement of the newly discovered Higgs boson
- Measurement of the properties of top quark with high precision
- Searches for physics beyond Standard model

Complimentarity to the LHC

- □ Initial state well known (energy, polarization)
- □ High energy e⁺e⁻ colliders provide a experimental environment for precision measurements
- **□** Equal sensitivity to electroweak and strongly interacting particles
- Clean experimental environment (almost QCD background free, triggerless readout, low radiation levels)

CLIC is one of the most mature options of the future e⁺e⁻ colliders

- Novel two-beam acceleration technique
- Rich physics program over a wide time span
- Staged construction with the ultimate energy reach of 3 TeV

M. Pandurovic CLIC physics at CLIC New Trends in High energy physics, Budva, October 2016 3

CLIC staged implementation

clc

Three center-of-mass energies: 350/380 GeV, 1.5 TeV, 3.0 TeV

- **Given Stages are defined by physics and technical considerations**
- Optimization w.r.t. cost and sensitivity of the measurements
- **Provides early start of physics: construction possible during physics run at the lower energy stage**
- Stages adaptable to the LHC input

\sqrt{S}	Accelerator length [km]	\mathcal{L}_{int} [ab ⁻¹]
380 GeV	11.4	0.5
1.5 TeV	29.0	1.5
3.0 TeV	50.1	3.0

□ High instantaneous luminosity at

New Trends in High energy physics, Budva,October 2016 4

M. Pandurovic CLIC physics at CLIC

each stage: ~ $1.5 - 6 \times 10^{-34} \text{ cm}^{-2} \text{ s}^{-1}$

Accelerator technology

- Technology challenge: high energy and high luminosity
- □ Newly developed principle of particle acceleration: "Two-beam technique"

Drive beam: high current (100 A), low energy (2.4 GeV -240 MeV), klystron acceleration

Main beam: lower current (1.2 A), high energy (9 GeV-1.5 TeV)

accelerated by the RF waves, produced by the deceleration of the drive beam in RF cavities

CLIC working environment

- □ CLIC challenge: high luminosity ⇒ small beam sizes at interaction point
- Dense bunches ⇒ high electric field inside each bunch,
 which is influencing the particles in the opposite bunch
- This induces emission of radiation beamstrahlung
- Beamstrahlung \Rightarrow important energy loses at the IP

 \Rightarrow distortion of the luminosity spectrum

~35% in 1% of peak energy of 3TeV

□ e⁺e⁻ pairs – high doses deposited in the forward calorimeters

 \Box $\gamma\gamma$ to hadrons = 3.2/bunch crossing at 3TeV – influences event reconstruction

M. Pandurovic CLIC physics at CLIC

Detector requirements

High precision measurements constrain the detector technologies and design

Calorimeters

□ Jet energy resolution:

Benchmark: W/Z/H di-jet mass separation

 $\sigma_E/E{\sim}3.5-5\%$, $E>100~{
m GeV}$

Momentum resolution: <u>Tracker</u>
 Benchmark: Higgs recoil mass measurements, g²_{Hμμ}

 $\sigma_{p_t}/p_t^2 \sim 2 \times 10^{-5} \, \mathrm{GeV^{-1}}$

- □ Impact parameter resolution: <u>Vertex detector</u> Benchmark: flavor tagging – Higgs BF measurements $\sigma_{r\varphi} = 5 \oplus 15/(p[\text{GeV}]sin^{\frac{3}{2}}\theta)\mu m$
- **Detector hermeticity -** almost 4π solid angle coverage

M. Pandurovic CLIC physics at CLIC

CLIC detector

CLIC physics at CLIC

M. Pandurovic

Optimized detector model for CLIC:

- **Given Service Service**
 - Luminosity calorimeter
 - Beam calorimeter

- **Ultra-low-mass Si-pixel (2x10⁹) vertex detector**
 - Silicon tracker r=1.5 m , I = 4.6 m
 - Fine grained calorimeters:
 - ECAL Si/W, HCAL Sc/Fe
- Superconducting solenoid B=4T
- Return iron yoke instrumented with muon chambers

*Final focusing (QD0) is outside the detector

CLIC physics program

Three construction stages are optimized for physics runs (each 5 to 7 years of running) Each stage foresees high luminosities

- Stage 1 380 GeV 0.5 ab⁻¹ :
- Standard model Higgs physics measurement
- Top physics
- tt threshold scan dedicated run at ~350 GeV 100 fb⁻¹

Stage 2 1.5 TeV 1.5 ab⁻¹

- Targeted at BSM physics
- Top-Yukawa coupling ttH , Higgs self coupling
- Rare Higgs decays
- Top quark physics

Stage 3 3 TeV 3.0 ab⁻¹

- BSM physics,
- Higgs self coupling
- Rare Higgs decays
- Top quark physics
- M. Pandurovic CLIC physics at CLIC

Higgs physics

M. Pandurovic

- Measurement of the Higgs properties: mass, couplings (including self-coupling)
- **Deviation from the predicted linearity of SM Higgs couplings could hint at new physics**
- **At lepton colliders the total Higgs decay width**, $\Gamma_{\rm H}$, is accessible

CLIC physics at CLIC

Model independent σ_{HZ} measurement

Higgsstrahlung – allows model independent measurement of the absolute g_{HZZ} coupling

Using hadronic Z-qq decay (BF~70%), the combined uncertainty (leptonic and hadronic) :

$$\frac{\Delta(\sigma_{\rm HZ})}{\sigma_{\rm HZ}} \approx 1.65\% \rightarrow \frac{\Delta(g_{\rm HZZ})}{g_{\rm HZZ}} \approx 0.8\%$$

Analysis optimized to ensure the independence on Higgs decays

M. Pandurovic CLIC physics at CLIC

Higgs physics at high energies

The high cross-section of the WW-fusion process :

- Increases the precision of Higgs couplings,
- Allows the coupling measurements of the rare decays,

 $H \rightarrow \mu^+ \mu^-, H \rightarrow Z\gamma, H \rightarrow \gamma\gamma$

And the determination of the invariant mass of Higgs boson with high precision (Δm_{H} =32 MeV)

e⁺

Higgs-self coupling : access to Higgs potential

$$V = \mu^{2}(\phi^{+}\phi) + \lambda(\phi^{+}\phi)^{2} \Longrightarrow \lambda = \frac{m_{H}^{2}}{V}$$

M. Pandurovic **CLIC** physics at CLIC

e"

cic

Summary of CLIC Higgs studies

- **25** independent analyses done in full simulation including the beam-induced background overlay
- The results show expected statistical uncertainties for unpolarized beams

			Statistical precision				Statistical	precision
Channel	Measurement	Observable	350 GeV 500 fb ⁻¹	Channel	Measurement	Observable	1.4 TeV 1.5 ab ⁻¹	3 TeV 2.0 ab ⁻¹
711	Dagail magg distribution	144	110 MoV	$Hv_e\overline{v}_e$	$H \rightarrow b\overline{b}$ mass distribution	$m_{\rm H}$	47 MeV	44 MeV
ZH ZH	$\sigma(ZH) \times BR(H \rightarrow invisible)$	$m_{ m H}$ $\Gamma_{ m inv}$	0.6%	$Hv_e \overline{v}_e$	$\sigma(\mathrm{Hv}_{\mathrm{e}}\overline{\mathrm{v}}_{\mathrm{e}}) \times BR(\mathrm{H} \to \mathrm{b}\overline{\mathrm{b}})$ $\sigma(\mathrm{Hv}_{\mathrm{e}}\overline{\mathrm{v}}_{\mathrm{e}}) \times BR(\mathrm{H} \to \mathrm{e}\overline{\mathrm{v}})$	$g_{\rm HWW}^2 g_{\rm Hbb}^2 / \Gamma_{\rm H}$	0.4%	0.3%
ZH	$\sigma(\rm ZH) \times \textit{BR}(\rm Z \rightarrow l^+l^-)$	$g^2_{\rm HZZ}$	3.8%	Hv _e v _e Hv _e ve	$\sigma(Hv_e v_e) \times BR(H \to cc)$ $\sigma(Hv_e \overline{v}_e) \times BR(H \to gg)$	g _{HWW} g _{Hcc} /1 _H	6.1% 5.0%	6.9 <i>%</i> 4.3 <i>%</i>
ZH	$\sigma(\mathbf{ZH}) \times \mathit{BR}(\mathbf{Z} \to \mathbf{q}\overline{\mathbf{q}})$	$g^2_{\rm HZZ}$	1.8%	$Hv_e\overline{v}_e$	$\sigma(\mathrm{H}\nu_{e}\overline{\nu}_{e})\times \textit{BR}(\mathrm{H}\rightarrow\tau^{+}\tau^{-})$	$g_{\mathrm{HWW}}^2 g_{\mathrm{H}\tau\tau}^2 / \Gamma_{\mathrm{H}}$	4.2%	4.4%
ZH	$\sigma(\mathrm{ZH}) \times BR(\mathrm{H} \to \mathrm{b}\overline{\mathrm{b}})$	$g_{\rm HZZ}^2 g_{\rm Hbb}^2 / \Gamma_{\rm H}$	0.84%	$Hv_e\overline{v}_e$	$\sigma(\mathrm{Hv}_{\mathrm{e}}\overline{\mathrm{v}}_{\mathrm{e}}) \times BR(\mathrm{H} \to \mu^{+}\mu^{-})$	$g_{ m HWW}^2 g_{ m H\mu\mu}^2 / \Gamma_{ m H}$	38%	25%
ZH	$\sigma(\mathbf{ZH}) \times BR(\mathbf{H} \to \mathbf{c}\overline{\mathbf{c}})$	$g_{\rm HZZ}^2 g_{\rm Hcc}^2 / \Gamma_{\rm H}$	10.3%	$Hv_e \overline{v}_e$	$\sigma(\mathrm{Hv}_{\mathrm{e}}\overline{\mathrm{v}}_{\mathrm{e}}) \times BR(\mathrm{H} \to \gamma\gamma)$		15% 42%	10%* 30%*
ZH	$\sigma(\mathrm{ZH}) \times BR(\mathrm{H} \to \mathrm{gg})$		4.5%	Hy Ve	$\sigma(Hv_e v_e) \times BR(H \to Z\gamma)$ $\sigma(Hv_{\overline{v}}) \times BR(H \to WW^*)$	o ⁴	42 %	07%*
ZH	$\sigma(\rm ZH) \times \mathit{BR}(\rm H \rightarrow \tau^+\tau^-)$	$g^2_{ m HZZ} g^2_{ m H au au}/\Gamma_{ m H}$	6.2%	$Hv_e v_e$ $Hv_e \overline{v_e}$	$\sigma(Hv_e v_e) \times BR(H \to ZZ^*)$	$g_{\mu\nu\nu\nu}^2 g_{\mu\sigma\sigma}^2 / \Gamma_{\mu}$	5.6%	3.9%*
ZH	$\sigma(ZH) \times \textit{BR}(H \to WW^*)$	$g^2_{ m HZZ} g^2_{ m HWW}/\Gamma_{ m H}$	5.1%	He ⁺ e ⁻	$\sigma(\mathrm{He^+e^-}) \times BR(\mathrm{H} \to \mathrm{b}\overline{\mathrm{b}})$	$g_{\rm HZZ}^2 g_{\rm Hbb}^2 / \Gamma_{\rm H}$	1.8%	2.3%*
$Hv_e\overline{v}_e$	$\sigma(\mathrm{Hv}_{\mathrm{e}}\overline{\mathrm{v}}_{\mathrm{e}}) \times BR(\mathrm{H} \to \mathrm{b}\overline{\mathrm{b}})$	$g^2_{ m HWW}g^2_{ m Hbb}/\Gamma_{ m H}$	1.9%	tīH	$\sigma(t\bar{t}H) \times BR(H \rightarrow b\bar{b})$	ρ ² ₁₁ , ρ ² ₁₁ , /Γμ	8.4%	
$Hv_e \overline{v}_e$	$\sigma(\mathrm{Hv}_{\mathrm{e}}\overline{\mathrm{v}}_{\mathrm{e}}) \times BR(\mathrm{H} \to \mathrm{c}\overline{\mathrm{c}})$	$g_{\rm HWW}^2 g_{\rm Hcc}^2 / \Gamma_{\rm H}$	14.3%	HHv _a v _e	$\sigma(\mathrm{HHv}, \overline{\mathrm{v}}_{\mathrm{e}})$	λ	32%	16%
$H\nu_e\overline{\nu}_e$	$\sigma(\mathrm{H} \mathrm{v}_{\mathrm{e}} \overline{\mathrm{v}}_{\mathrm{e}}) \times \mathit{BR}(\mathrm{H} \to \mathrm{gg})$		5.7 %	HHv _e v _e	with -80% e ⁻ polarisation	λ	24%	12%

Global fit

- The results of all studied Higgs production and decay channels, obtained at each energy stage, are combined in a global fit to extract absolute couplings and the total Higgs decay width
- Assumption: 80% electron polarization for 1.4 TeV and 3 TeV measurements
- □ Two types of fit applied:
 - Model independent: free parameters $\Gamma_{_{
 m H}}$ and ten Higgs couplings
 - Model dependent: $\Gamma_{\rm H}$ constrained by the SM expectations ; no invisible Higgs decays

M. Pandurovic CLIC physics at CLIC

Top physics

- Top quark couples most strongly with Higgs field \Rightarrow closest insights to the electroweak symmetry breaking
- Loop contribution to the processes that can be studied with high precision shows sensitivity to BSM signals
- Uncertainty of the top mass, along with the uncertainty on the Higgs boson mass, is one of the key inputs to the studies of the SM vacuum stability

Dedicated measurements:

Top quark mass

- Top quark threshold scan
- **Direct reconstruction**

Top -Yukawa coupling

Probe of new physics

- Top guark electroweak couplings
- Top quark production asymmetries
- **CP** violation in top sector
- M. Pandurovic **CLIC** physics at CLIC

Degrasi et al. Arxiv 1205.6497v2

Top treshold scan

Resonant behavior of the cross-section near the production threshold bound tt state

top mass [GeV]

M. Pandurovic CLIC physics at CLIC

Top electroweak couplings

Top as a probe of New physics: top electroweak couplings

- At higher energy, main targets are the determination of the top quark couplings to Z boson and photon
- **u** Vertices tt γ , ttZ sensitivity to the deviation from the SM
- **\Box** The contribution of Z or γ depend on beam polarization
- □ These vertices can be described via form factors (⇒couplings)

Determination of the couplings:

- Measurement of the cross-section
- Measure forward-backward asymmetry A_{FB}
- Measure left-right asymmetry A_{LR}

for different polarizations

Results are significantly better than HL-LHC even for the first CLIC energy stage

CP CONSERVING COUPLINGS

M. Pandurovic CLIC physics at CLIC

BSM physics at CLIC

CLIC operating at high energy provides significant discovery potential for BSM physics

Direct searches of new particles

- Possible observation of the new phenomena
- Precision measurements of new particle properties
- □ Kinematic limit at the of 1.5 TeV

Indirect searches

- Precision measurements of sensitive observables reveal a signs of new physics, comparing to the SM expectations
- Kinematic limit is higher several tens of TeV

Next slides: examples of some benchmark BSM studies

BSM physics: direct measurements

Masses of superpartners can be measured with ~1% up to a kinematic limit

M. Pandurovic CLIC physics at CLIC

BSM physics: indirect measurements

Extended gauge theories, Z':

- Hypothetical gauge boson
- Precision measurement of using polarized beams
- Compared to the SM predictions for cross-sections, A_{FB}, A_{LR}

Minimal anomaly-free (AFZ') model :

- Discovery reach up to tens of TeV
- HL-LHC reaches ~8 TeV with 3 ab⁻¹

Composite Higgs:

- Higgs as a composite bound state of fermions
- \square m_o are the masses of vector resonances
- 4πf scale of compositness
- □ ζ=(v/f)² measures the strength of Higgs interactions

In AFZ' theory, sensitivity on the mass can reach several tens of TeV

Composite scale reaches up to 70 TeV

M. Pandurovic CLIC physics at CLIC

Conclusions

- □ CLIC is an attractive option for the future e⁺e⁻ collider.
- Feasibility of the new acceleration technique based on a two-beam technology, with high gradient of 100 MV/m, is demonstrated.
- The CLIC detector is optimised to the benchmark physics processes.
- Performed physics studies show excellent potential of CLIC for precision measurements, as well as large discovery potential for physics beyond the Standard model.
- Close look to possible discoveries at LHC

The CLICdp Collaboration

- Focus on CLIC physics and detector studies:
- Physics prospects and simulation studies
- Detector optimization (Research & Development) for the future Compact Linear Collider (CLIC)
- 28 Institutes from 18 countries
- http://clicdp.web.cern.ch/

M. Pand	urovic	CLIC	physics	at	CLIC
---------	--------	------	---------	----	------

Unit

Australia	Australian Collaboration for Accelerator Science (ACAS)	
Belarus	National Scientific and Educational Centre of Particle and High Energy Physics (NC PHEP), Belarusian State University, Minsk	
Chile	Pontificia Universidad Católica de Chile, Santiago	
Czech Republic	Institute of Physics, Academy of Sciences of the Czech Republic, Prague	
Denmark	Department of Physics and Astronomy, Aarhus University	
France	Laboratoire d'Annecy-le-Vieux de Physiques des Particules (LAPP), Annecy	
Germany	Karlsruher Institut für Technologie (KIT), Institut für Prozessdatenverarbeitung und Elektronik (IPE)	
Germany	Max-Planck-Institut für Physik, Munich	
Israel	Department of Physics, Faculty of Exact Sciences, Tel Aviv University, Tel Aviv	
Norway	Department of Physics and Technology, University of Bergen, Bergen	
Poland	Faculty of Physics and Applied Computer Science, AGH University of Science and Technology, Cracow	
Poland	The Henryk Niewodniczanski Institute of Nuclear Physics, Polish Academy of Sciences, Cracow	
Poland	University of Warsaw	
Romania	Institute of Space Science	
Russia	Joint Institute for Nuclear Research (JINR), Dubna	
Serbia	Vinca Institute of Nuclear Sciences, Belgrade	
Spain	Spanish Network for Future Linear Colliders	
Switzerland	Département de Physique Nucléaire et Corpusculaire (DPNC), Geneva	
United Kingdom	School of Physics and Astronomy of the University of Birmingham, Birmingham	
United Kingdom	University of Bristol	
United Kingdom	University of Cambridge, Cambridge	
United Kingdom	University of Glasgow	
United Kingdom	Department of Physics of the University of Liverpool, Liverpool	
United Kingdom	University of Oxford, Oxford	
USA	Argonne National Laboratory, High Energy Physics Division, Argonne	
USA	Physics Department of the University of Michigan	

New CLICdp publications

- Comprehensive Higgs physics paper <u>http://arxiv.org/abs/1608.07538</u>
- New baseline for a staged CLIC <u>http://arxiv.org/abs/1608.07537</u>

M. Pandurovic CLIC physics at CLIC

New Trends in High energy physics, Budva, 02.-08. October 2016²⁴

CLIC Project timeline

2013 - 2019 Development Phase

Development of a Project Plan for a staged CLIC implementation in line with LHC results; technical developments with industry, performance studies for accelerator parts and systems, detector technology demonstrators

2020-2025 Preparation Phase

Finalisation of implementation parameters, preparation for industrial procurement, Drive Beam Facility and other system verifications, Technical Proposal of the experiment, site authorisation

2026 - 2034 Construction Phase

Construction of the first CLIC accelerator stage compatible with implementation of further stages; construction of the experiment; hardware commissioning

2019 - 2020 Decisions

Update of the European Strategy for Particle Physics; decision towards a next CERN project at the energy frontier (e.g. CLIC, FCC)

2025 Construction Start

Ready for construction; start of excavations

2035 First Beams

Getting ready for data taking by the time the LHC programme reaches completion

M. Pandurovic CLIC physics at CLIC

Particle Flow Paradigm

- ★ Particle flow approach:
 - Try and measure energies of individual particles
 - Reduce dependence on intrinsically "poor" HCAL resolution
- * Idealised Particle Flow Calorimetry paradigm:
 - charged particles measured in tracker (essentially perfectly)
 - Photons in ECAL
 - Neutral hadrons (and ONLY neutral hadrons) in HCAL
 - Only 10 % of jet energy from HCAL improved jet energy resolution

M. Pandurovic CLIC physics at CLIC