MODERN STATUS OF SUPERSYMMETRY

A Gladyshev (JINR, Dubna)

NEW TRENDS IN HIGH ENERGY PHYSICS 2016 October 3, 2016

Fundamental Particles

The Standard Model: drawbacks

□ Large number of free parameters:

- \Box gauge coupling constants g_s , g, g'
- □ 3×3 matrices of Yukawa coupling constants
- coupling constant of the Higgs self-interaction
- □ the Higgs mass parameter
- mixing angles and phases

How one can reduce the number of parameters ?

□ The choice of the gauge group:

why there are three independent symmetry groups ?

 $SU(3)_C \times SU(2)_{EW} \times U(1)_Y$

The Standard Model: drawbacks

- □ The unification of the strong and electroweak interactions is formal
- □ Why the «strong» interactions are strong and «weak» ones are weak?
- □ Why there are 3 generations of the matter fields ?
- □ The origin of particle masses: why are particles massive ?
- □ Why the top-quark is heavy and leptons are light ?
- □ Is the Higgs boson a fundamental particle ?
- □ Why the proton charge is equal to the electron charge ?
- □ How can we include gravity into the theory ?

□ The Standard Model has no answers

The Standard Model: what to do?

CONCLUSION: The Standard Model is an effective theory valid within a certain approximation

- □ WHAT TO DO: consider *more symmetric* theories
- □ Examples:
 - Grand Unification Theories: The strong, weak and electromagnetic interactions are described by one symmetry group
 - Supersymmetry: Bosons and fermions are described in a common way.

The idea of unification is based on the observation that three gauge couplings tends to the same point at high energy

□ Evolution equations (SM)

$$\frac{d\tilde{\alpha}_i}{dt} = b_i \tilde{\alpha}_i^2, \quad \tilde{\alpha}_i = \frac{\alpha_i}{4\pi} = \frac{g_i^2}{16\pi^2}, \quad t = \log \frac{Q^2}{\mu^2}$$
$$\frac{1}{\tilde{\alpha}_i} = \frac{1}{\tilde{\alpha}_{0i}} - b_i t$$
$$b_i = \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix} = \begin{pmatrix} 41/10 \\ -19/6 \\ -7 \end{pmatrix}$$

However, there is no Grand Unification at high energies if we use the Standard Model evolution equations for the gauge couplings

□ Evolution equations (MSSM)

$$\frac{d\tilde{\alpha}_i}{dt} = b_i \tilde{\alpha}_i^2, \quad \tilde{\alpha}_i = \frac{\alpha_i}{4\pi} = \frac{g_i^2}{16\pi^2}, \quad t = \log \frac{Q^2}{\mu^2}$$
$$\frac{1}{\tilde{\alpha}_i} = \frac{1}{\tilde{\alpha}_{0i}} - b_i t$$
$$b_i = \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix} = \begin{pmatrix} 33/5 \\ 1 \\ -3 \end{pmatrix}$$

In the Minimal supersymmetric Standard Model the gauge coupling constants do unify !

□ CONCLUSION: we need supersymmetry for unification

 \Box The scale of supersymmetry breaking is ~ 1 TeV

Hierarchy problem

Hierarchy problem

Why there are very different energy scales ?

- □ Electroweak symmetry breaking scale ($M_W \sim 100 \text{ GeV}$)
- □ Grand Unification scale $(M_{GUT} \sim 10^{15 \cdot 16} \text{ GeV})$ or Plank scale $(M_{Pl} \sim 10^{19} \text{ GeV})$
- Possible solution: to postulate the hierarchy.
 Very unnatural !

Hierarchy problem

Another side of the problem: the hierarchy is destroyed by the radiative corrections

Consider the correction to the light Higgs boson mass

$$m_H \sim v \sim 10^2 \ GeV$$

 $M_{\Sigma} \sim V \sim 10^{16} \ GeV$

$$(M) \implies \delta m^2 \sim \lambda^2 \cdot M^2$$

$$\stackrel{2}{\rightarrow} light (m) \qquad 10^2 \ 10^{-1} \ 10^{16}$$

Even if the hierarchy was postulated it is destroyed by radiative corrections (unless they cancel up to 10⁻¹⁴)

Hierarchy problem

Supersymmetry can help to solve the hierarchy problem

- Let us add a «superpartner» a particle with the same mass but with a different spin.
 Then the divergency cancells.
- The «accuracy» of cancellation is controlled by the mass-squared difference.

$$m_{boson}^2 - m_{fermion}^2 = M_{SUSY}^2$$

□ If the correction is not larger than the mass itself then we have

$$\delta m_h^2 \sim g^2 M_{SUSY}^2 \sim m_h^2 \sim 10^4 GeV \implies M_{SUSY} \sim 10^3 GeV$$

Supersymmetry: motivations

- Consistency of Grand Unification theory : unification of gauge coupling constants
- □ Solution to the hiearchy problem
- Supersymmetry populates «The Great Desert»: it predicts new particles and their spectrum
- □ Supersymmetry suggest a solution of the Dark Matter problem
- Radiative electroweak symmetry breaking.
 The Higgs boson mass is calculable.
- □ Supersymmetry can be tested experimentally

SUSY is the most popular idea beyond the Standard Model

Supersymmetric SM

- □ How to construct a supersymmetric model:
 - Define the matter and gauge field content
 - Using the vector superfields construct thefield strength tensor(s)
 - Using the chiral and anti-chiral superfields construct the kinetic terms and the superpotential
 - □ Write down the full lagrangian in terms of superfields
 - □ Integrate over grassmanian coordinates
 - □ Eliminate auxiliary fields using equations of motion
- The result is the lagrangian describing the ordinary fields, the superpartners and their interactions

Minimal SUSY SM (MSSM)

In supersymmetric theories the number of bosonic degrees of freedom is equal to the number of fermionic degrees of freedom

 In the Standard Model we have
 28 bosonic degrees of freedom : (4 + 8) × 2 + 2 × 2

vector fields Higgs boson (γ,Z,W⁺,W⁻, gluons)

□ 90 (96) fermionic degrees of freedom: $(6 \times 3 + 3) \times 4 + 3 \times 2$ (4) quarks and charged leptons neutrinos

□ The Standard Model is not supersymmetric

	Bosons	Fermions	,	SU(3)	SU(2)	U(1)			
Matter fields									
L_i			$L_i = \begin{pmatrix} v \end{pmatrix}$	1	2	-1			
E_i		leptons	$(e)_L$ $E_i = e_R$	1	1	2			
Q_i			$Q_i = \begin{pmatrix} u \\ u \end{pmatrix}$	3	2	1/3			
U_i		quarks	$U_i = u_R$ $D_i = d_R$	3*	1	-4/3			
				3*	1	2/3			
	Gauge fields								
G^{a}	gluons g^a			8	0	0			
V^k	W^{\pm}, Z - bosons			1	3	0			
V '	photon γ			1	1	0			
Higgs field									
Н	Higgs boson $H = \begin{pmatrix} H^+ \\ H^0 \end{pmatrix}$			1	2	-1			

	Bosons	Fermions	SU(3)	SU(2)	U(1)	
		Matter fields				
L_i	$\tilde{L}_i = \begin{pmatrix} \tilde{V} \\ \tilde{z} \end{pmatrix}$	$L_i = \begin{pmatrix} v \\ v \end{pmatrix}$	1	2	-1	
	$\tilde{E}_i = \tilde{e}_R$	$E_i = e_R$	1	1	2	
Q_i	$\tilde{Q}_i = \begin{pmatrix} \tilde{u} \\ \tilde{J} \end{pmatrix}$	$Q_i = \begin{pmatrix} u \\ \cdot \end{pmatrix}$	3	2	1/3	
U_i	squarks $U_{L} = \tilde{u}_{R}$	quarks $U_{L} = u_{p}$	3*	1	-4/3	
D_i	$\tilde{D}_i = \tilde{d}_R$	$D_i^r = d_R^r$	3*	1	2/3	
	Gauge fields			-		
G^{a}	gluons g ^a	gluino \tilde{g}^a	8	0	0	
V^k	W^{\pm}, Z - bosons	wino $ ilde{W}^{\scriptscriptstyle \pm}$, zino $ ilde{Z}$,	1	3	0	
V '	photon γ	photino $\tilde{\gamma}$	1	1	0	
	Higgs fields		-	-		
H_1	Higgs boson $H_1 = \begin{pmatrix} H_1^+ \\ H_1^0 \end{pmatrix}$	higgsino $ ilde{H}_1 = \begin{pmatrix} ilde{H}_1^+ \\ ilde{H}_1^0 \end{pmatrix}$	1	2	-1	
H_2	Higgs boson $H_2 = \begin{pmatrix} H_2^0 \\ H_2^- \end{pmatrix}$	higgsino $ ilde{H}_2 = \begin{pmatrix} ilde{H}_2^0 \\ ilde{H}_2^- \end{pmatrix}$	1	2	1	

Minimal SUSY SM (MSSM)

□ Consequences of R-parity conservation:

 Interactions of particles and superpartners are the same (just replace two of the particles in the interaction vertex by superpartners)

□ Superpartners are created in pairs

□ The lightest supersymmetric particle is stable !

Breaking of supersymmetry

- Since superpartners are not observed, in nature supersymmetry can be realised as broken symmetry
- □ In the MSSM the soft supersymmetry breaking mechanism is used.
- One assumes that breaking takes place in the hidden sector.
 Mediators of the supersymmetry sbreakin from the hidden sector to the visible one can be

(the difference is only in details)

Breaking of supersymmetry

- Soft breaking of supersymmetry can be parametrized by additional terms in the lagrangian
 - The mass terms for the scalar components of chiral superfiels
 - □ The mass terms for the fermion components of vector superfiels
 - Bilenear softsupersymetry breaking term
 - □ Trilinear soft supersymetry breaking terms

 $m_{ii}^2 A_i^* A_i$

 $M \lambda \lambda$ $B_{ij} \mu_{ij} A_i A_j$

 $A_{iik}\lambda_{iik}A_iA_iA_k$

 Supersymmetry is broken since components of the same superfield have different masses

Breaking of supersymmetry

The part of the MSSM lagrangian responsible for supersymmetry breaking reads

$$-L_{SoftBreaking} = \sum_{scalars} m_i^2 |A_i|^2 + \sum_{gauge} M_i (\lambda_i \lambda_i + \overline{\lambda}_i \overline{\lambda}_i) + A_U y_U Q_L H_2 U_R + A_U y_D Q_L H_1 D_R + A_U y_L L_L H_1 E_R + B \mu H_1 H_2$$

□ Too many free parameters (more than a hundred !)

□ Now one can calculate the mass spectrum of superparticles

□ Later we will see how to reduce the number of parameters

Constrained MSSM

Parameters of the Minimal Supersymmetric Standard Model

- Gauge cuopling constants
- Yukawa coupling constants
- □ Higgs mixing parameter

□ Soft supersymmetry breaking parameters

- □ The Higgs self-interaction coupling is not arbitrary, it is fixed by supersymmetry. $\lambda = \frac{g^2 + {g'}^2}{8}$
- The main uncertainty is due to the soft supersymmetry breaking parameters

 α_i , i=1,2,3

$$y_{ab}^k, k = U, D, L, (E)$$

Constrained MSSM

Universality hypothesis: soft supersymmetry breaking parameters unify at the scale of Grand Unification

$$-L_{SoftBreaking} = m_0^2 \sum_{scalars} |A_i|^2 + m_{1/2} \sum_{gauge} (\lambda_i \lambda_i + \overline{\lambda}_i \overline{\lambda}_i) + A (y_t Q_L H_2 U_R + y_b Q_L H_1 D_R + y_L L_L H_1 E_R) + B \mu H_1 H_2$$

As a result, MSSM has

5 free parameters

 $\mu, A, m_0, m_{1/2}, B(\tan\beta)$

while the Standard Model has 2 ones

 m, λ

Constrained MSSM

- □ To make prediction one can choose a certain way
 - Take low-energy values of parameters (superpartners masses, mixing parameters, etc.) and then calculate observables as functions of these values.
 - Take high-energy values of parameters, then using evolution equations find their low-energy values, calculate masses, and then calculate observables. All the calculation now uses a small number of free parameters.

"Experimental" data are sufficient to find allowed set of parameters

SUSY Dark Matter

 Dark Matter in the Universe.
 MSSM has a good candidate for the WIMP – neutralino – a mixture of superpartners of photon, Z-boson and Higgses

- □ Neutral (no electric charge, no colour)
- □ Weakly interacting (due to supersymmetry)
- □ Stable (!) if R-parity is conserved
- □ Heavy enough to account for cold non-baryonic dark matter

SUSY production at colliders

Supersymmetric particles can be produced at collider if the energy is large enough

$$m_{sparticle} \leq \frac{\sqrt{s}}{2}$$

- Production and subsequent decay crucially depends on the model and the mass spectrum
- If the R-parity is conserved only lightest SUSY particles (neutralinos) remain after decays. The main feature is the missing energy taken away by LSP, since they escape detection

SUSY production at colliders

- Processes of creation of supersymmetric particles
- □ e⁺e⁻ colliders

Hadron colliders

- Missing Energy: from LSP
- Multi-Jet: from cascade decay (gaugino)
- Multi-Leptons: from decay of charginos/neutralios

Production	Main decay mode	Signature
$ ilde{g}, ilde{q} ilde{q}, ilde{g} ilde{q}$	$\tilde{g} \rightarrow q \bar{q} \tilde{\chi}_1^0$	$E_T + \text{multijets (+ leptons)}$
	$q\bar{q}'\tilde{\chi}_1^{\pm}$ $m_{\tilde{q}} > m_{\tilde{g}}$	
	$g ilde{\chi}_1^0$	
	$\tilde{q} \to q \tilde{\chi}_i^0 $ $m_z > m_z$	
	$\tilde{q} \to q' \tilde{\chi}_i^{\pm} \int^{m_g > m_q}$	
$ ilde{\chi}_1^{\pm} ilde{\chi}_2^0$	$\tilde{\chi}_1^{\pm} \rightarrow \tilde{\chi}_1^0 \ell^{\pm} \nu, \tilde{\chi}_2^0 \rightarrow \tilde{\chi}_1^0 \ell \ell$	Trilepton + E_T
	$\tilde{\chi}_1^{\pm} \rightarrow \tilde{\chi}_1^0 q \bar{q}', \tilde{\chi}_2^0 \rightarrow \tilde{\chi}_1^0 \ell \ell$	Dileptons + jet + E_T
$\tilde{\chi}_1^+ \tilde{\chi}_1^-$	$\tilde{\chi}_1^+ \to \ell \tilde{\chi}_1^0 \ell^\pm \nu$	Dilepton + E_T
$ ilde{\chi}^0_i ilde{\chi}^0_i$	$\tilde{\chi}^0_i \rightarrow \tilde{\chi}^0_1 X, \tilde{\chi}^0_i \rightarrow \tilde{\chi}^0_1 X'$	Dilepton + jet + $\not\!$
$ ilde{t}_1 ilde{t}_1$	$\tilde{t}_1 \rightarrow c \tilde{\chi}_1^0$	Two noncollinear jets + E_T
	$\tilde{t}_1 \to b \tilde{\chi}_1^{\pm}, \tilde{\chi}_1^{\pm} \to \tilde{\chi}_1^0 q \bar{q}'$	Single lepton $+ E_T + b's$
	$\tilde{t}_1 \to b \tilde{\chi}_1^{\pm}, \tilde{\chi}_1^{\pm} \to \tilde{\chi}_1^0 \ell^{\pm} \nu$	Dilepton + $\not\!$
$ ilde{\ell} ilde{\ell}$, $ ilde{\ell} ilde{ u}$, $ ilde{ u} ilde{ u}$	$\tilde{\ell}^{\pm} \rightarrow \ell^{\pm} \tilde{\chi}_i^0, \tilde{\ell}^{\pm} \rightarrow \nu_{\ell} \tilde{\chi}_i^{\pm}$	Dilepton + $\!$
	$ ilde{ u} ightarrow u ilde{\chi}_1^0$	Single lepton + E_T

Process	Final state	Process	Final state
$g \qquad \qquad$	2ℓ 2v 6j ¢T	g = g = g = g = g = g = g = g = g = g =	2ℓ 2v 8j ¢T
$ \begin{array}{c} g \\ g \\ g \\ g \\ g \\ g \\ \overline{g} $	4ℓ 4j ₽́T	$\begin{array}{c} g \\ \tilde{g} \\ $	8j ₽́7
$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array}{} g \\ \end{array} \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array}{} g \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} $ } \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} } \\ \end{array} } \\ \end{array} \\ \end{array} } \\ \end{array} \\ \end{array} } \\ \bigg)	2ℓ 6j ¢_T	$g \qquad \tilde{g} \qquad g$	8j ₽́7

Stop production

- Top squarks can be produced at LHC by either direct production or gluino mediated production
- Final state with several top or bottom quarks and neutralinos
- Signature: b-jets, E_T, one or several leptons, light jets

CMS is a particle detector designed to see a wide range of particles and phenomena produced in high-energy collisions in the LHC.

 Limits on gluino pairs to 4 tops

 $pp \rightarrow \widetilde{g}\widetilde{g}, \ \widetilde{g} \rightarrow q\overline{q}\widetilde{\chi}_1^0$ Limits on gluino **ICHEP 2016** [dev] 1400 الشي قريبي 1200 المراجع pairs to light q CMS Preliminary 12.9 fb⁻¹ (13 TeV) -SUS-16-014 (H_T^{miss}) --- Expected SUS-16-015 (M_{T2}) Observed 1000 800 600 400 200

1000

1200

1400

1600

С

800

m_g [GeV]

2000

1800

Limits on stop pairs to 2 tops

m_ñ [GeV]

 Limits on squark pairs to 2 quarks

 Limits on ewk-ino production

ATLAS is one of general-purpose detectors at the LHC. It studies a wide range of physics, from the search for the Higgs boson to extra dimensions and particles that could make up dark matter.

 95% CL exclusion limits for 13 TeV for the Gtt simplified model where gluinos decay via off-shell top squarks to four top quarks and two lightest neutralinos.

95% CL exclusion limits for stop pair production based on 13 fb⁻¹ data taken at $\sqrt{s} = 13$ TeV. The mode stop1 \rightarrow b+C1 is assumed with 100% BR. Various hypotheses on the stop1, C1 and N1 mass hierarchy are used. Contours show different channels, masses, and simplified scenarios.

95% CL exclusion limits for stop pair production based on 13 fb⁻¹ data taken at $\sqrt{s} = 13$ TeV. Four decay modes are considered with 100% BR: stop \rightarrow t+neutralino1, stop \rightarrow W+b+neutralino1, stop \rightarrow c + neutralino1 and stop \rightarrow f+f'+b+neutralino1. Contours belong to different channels, mass hierarchies,

and simplified scenarios.

95% CL exclusion limits for 13 TeV for the simplified model where a pair of gluinos are produced, and each decays via an on-shell chargino to a pair of quarks, a W boson, and the lightest neutralino. The chargino mass is assumed to be between the gluino and neutralino mass.

 95% CL exclusion limits for 13 TeV for the simplified model where a pair of gluinos are produced, and each decays promptly via the lightest chargino and the NLSP to a pair of q, a W, a Z, and the LSP.

95% CL exclusion limits for 13 TeV for simplified models featuring the decay of the gluino to the LSP either directly or through a cascade chain. For each line, the gluino decay mode is assumed to proceed with 100% BR. The limits depend on additional assumptions on the mass of the intermediate states.

ATLAS SUSY Searches* - 95% CL Lower Limits

Status: August 2016

	Model	e, μ, τ, γ	Jets	E_{T}^{miss}	∫£ dt[fb]	Mass limit	√s = 7, 8 TeV	$\sqrt{s} = 13 \text{ TeV}$	Reference
Inclusive Searches	$\begin{array}{l} \label{eq:msubarray} \begin{array}{l} MSUGRA/CMSSM \\ \begin{array}{c} \dot{q}\dot{q}, \dot{q} \rightarrow q \mathcal{E}_{1}^{0} \\ \dot{q}\dot{q}, \dot{q} \rightarrow q \mathcal{E}_{1}^{0} \\ \dot{z}\dot{z}, \dot{z} \rightarrow q \mathcal{E}_{1}^{0} \\ \dot{z}\dot{z}, \dot{z} \rightarrow q \mathcal{E}_{1}^{0} \\ \dot{z}\dot{z}, \dot{z} \rightarrow q \mathcal{E}_{1}^{0} \rightarrow q q \psi^{*} \mathcal{E}_{1}^{0} \\ \dot{z}\dot{z}, \dot{z} \rightarrow q \mathcal{E}_{1}^{0} \\ \dot{z}\dot{z}, \dot{z} \rightarrow q \mathcal{E}_{1}^{0} \\ \dot{z}\dot{z} & z \rightarrow q \mathcal{E}_{1}^{0} \\ \dot{z} & z \rightarrow q \mathcal$	$\begin{array}{c} 0.3 \ e, \ \mu/1-2 \ \tau \\ 0 \\ mono-jet \\ 0 \\ 0 \\ 3 \ e, \ \mu \\ 2 \ e, \ \mu \ (SS) \\ 1-2 \ \tau + 0-1 \ \ell \\ 2 \\ \gamma \\ \gamma \\ 2 \ e, \ \mu \ (Z) \\ 0 \end{array}$	2-10 jets/3 2-6 jets 1-3 jets 2-6 jets 2-6 jets 4 jets 0-3 jets 0-2 jets 2 jets 2 jets 2 jets mono-jet	6 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes	20.3 13.3 3.2 13.3 13.3 13.2 13.2 3.2 20.3 13.3 20.3 20.3	A E A A A A A A A A A A A A A A A A A A	1.85 TeV m(i)1=m	(g) 20 GeV, m 1 ⁴ gcn, q]=m(2 ⁻⁴ gcn, q) k ² ₁ <5 GeV 3GeV 3GeV 500 GeV, m(k ²)=0.5[m(k ² ₁)+m(g)] 400 GeV F)<0.1 mm 350 GeV, cr[NLSP)<0.1 mm, µ<0 380 GeV, cr[NLSP)<0.1 mm, µ>0 3/430 GeV <i>X</i> × 10 ⁻⁴ eV, m(g)-m(g)-1.5 TeV	1507.05525 ATLAS-CONF-2016-078 1804.07773 ATLAS-CONF-2016-078 ATLAS-CONF-2016-078 ATLAS-CONF-2016-037 ATLAS-CONF-2016-037 1807.05979 1806.09150 1507.05403 ATLAS-CONF-2016-068 1503.05200 1502.01518
3 nd gen. <u>ë</u> med.	22, 2→b4ξ ⁰ 22, 2→a4ξ ¹ 22, 2→b4ξ ¹ 22, 2→b3ξ ¹	0 Ο-1 e,μ Ο-1 e,μ	3 b 3 b 3 b	Yes Yes Yes	14.8 14.8 20.1	2 2 7	1.89 TeV m(ℓ ₁ ⁴)-1 1.89 TeV m(ℓ ₁ ⁴)-1 1.37 TeV m(ℓ ₁ ⁴)<	IGeV IGeV 300 GeV	ATLAS-CONF-2016-052 ATLAS-CONF-2016-052 1407.0800
3rd gen. squarks direct production	$\begin{array}{l} & \delta_1 \delta_1, \delta_1 \rightarrow \delta \tilde{\xi}_1^0, \\ & \delta_1 \delta_1, \delta_1 \rightarrow i \tilde{\xi}_1^+, \\ & \tilde{i}_1 \tilde{\tau}_1, \tilde{\tau}_1 \rightarrow \delta \tilde{\xi}_1^0, \\ & \tilde{i}_1 \tilde{\tau}_1, \tilde{\tau}_1 \rightarrow \delta \tilde{\xi}_1^0, \\ & \tilde{i}_1 \tilde{\tau}_1, \tilde{\tau}_1 \rightarrow \delta \tilde{\xi}_1^0, \\ & \tilde{i}_1 \tilde{\tau}_1, \tilde{\tau}_1 \rightarrow \delta \tilde{\tau}_1^0, \\ & \tilde{i}_1 \tilde{\tau}_1, \\ & \tilde{i}_1 \tilde{\tau}_1 \tilde{\tau}_1 \rightarrow \delta \tilde{\tau}_1^0, \\ & \tilde{i}_2 \tilde{\tau}_2, \tilde{\tau}_2 \rightarrow \tilde{\tau}_1 + Z, \\ & \tilde{i}_2 \tilde{\tau}_2, \tilde{\tau}_2 \rightarrow \tilde{\tau}_1 + h. \end{array}$	0 $2 e, \mu$ (SS) $0.2 e, \mu$ $0.2 e, \mu$ 0 $2 e, \mu$ (Z) $3 e, \mu$ (Z) $1 e, \mu$	2 b 1 b 1-2 b 0-2 jets/1-2 mono-jet 1 b 1 b 6 jets + 2 b	Yes Yes 4 Yes 4 Yes 4 Yes Yes Yes Yes	3.2 13.2 .7/13.3 .7/13.3 3.2 20.3 13.3 20.3	840 GeV 325-685 GeV 7-170 GeV 200-720 GeV 305-885 GeV 305-885 GeV 305-885 GeV 305-880 GeV 90-323 GeV 150-600 GeV 290-700 GeV 200-700 GeV 320-820 GeV	$m(\ell_1^2) \ge m(\ell_1^2) $	100 GeV 150 GeV, m(\tilde{k}_{1}^{c}) = m(\tilde{k}_{1}^{c})+100 GeV 2m(\tilde{k}_{1}^{c}), m(\tilde{k}_{1}^{c})=55 GeV GeV (\tilde{k}_{2}^{c})=5 GeV 150 GeV 300 GeV	1806.08772 ATLAS-CONF-2016-097 1209.2102, ATLAS-CONF-2018-077 1508.08618, ATLAS-CONF-2018-077 1904.07773 1403.5222 ATLAS-CONF-2016-038 1506.08616
EW direct	$ \begin{split} \tilde{t}_{1,R} \tilde{t}_{1,R} , \tilde{t}_{-R} , \tilde{t} \to \ell \tilde{t}_{1}^{0} \\ \tilde{x}_{1}^{*} \tilde{x}_{1}^{*}, \tilde{x}_{1}^{*} \to \delta_{1}(\ell p) \\ \tilde{x}_{1}^{*} \tilde{x}_{1}^{*}, \tilde{x}_{1}^{*} \to \delta_{1}(\tilde{v}) \\ \tilde{x}_{1}^{*} \tilde{x}_{2}^{*} \to \delta_{1} , \tilde{v}_{1}^{*} \ell (v) \\ \tilde{x}_{1}^{*} \tilde{x}_{2}^{*} \to W_{1}^{*} 2 \tilde{t}_{1}^{0} \\ \tilde{x}_{1}^{*} \tilde{x}_{2}^{*} \to W_{1}^{*} 2 \tilde{t}_{1}^{0} \\ \tilde{x}_{2}^{*} \tilde{x}_{2}^{*}, \tilde{x}_{23}^{*} \to \delta_{1}^{*} \tilde{t}_{1}^{*}, \tilde{t} \to b \tilde{b} / W W \\ \tilde{x}_{2}^{*} \tilde{x}_{2}^{*}, \tilde{x}_{23}^{*} \to \delta_{1}^{*} \ell \\ GGM (vino NLSP) weak prod \\ GGM (bino NLSP) weak prod \\ \end{split} $	$2 e, \mu$ $2 r, \mu$ 2τ $3 e, \mu$ $2 \cdot 3 e, \mu$ $2 \cdot 3 e, \mu$ $4 e, \mu$ $1 e, \mu + \gamma$ 2γ	0 - 0-2 jets 0-2 <i>b</i> 0 - -	Yes Yes Yes Yes Yes Yes Yes Yes	20.3 20.3 20.3 20.3 20.3 20.3 20.3 20.3	90-335 GeV 140-475 GeV 115-370 GeV 355 GeV 115-370 GeV	$\begin{array}{c} m(\tilde{e}_{1}^{n}) = 0 \\ m(\tilde{e}_{1}^{n}) = 1 \\ m(\tilde{e}_{1}^{n}) = m(\tilde{e}_{1}^{n}) = 0 \\ m(\tilde{e}_{1}^{n}) = m(\tilde{e}_{2}^{n}) = m(\tilde{e}_{1}^{n}) = m(\tilde{e}_{1}^$	$\begin{array}{l} \operatorname{GeV} \\ \operatorname{GeV}_{i},m \tilde{\ell},\tilde{r}\rangle{=}0.5(m(\tilde{\ell}_{1}^{2}){+}m(\tilde{\ell}_{1}^{0})] \\ \operatorname{GeV}_{i},m \tilde{\ell},\tilde{r}\rangle{=}0.5(m(\tilde{\ell}_{1}^{2}){+}m(\tilde{\ell}_{1}^{0})) \\ \tilde{r}_{1}^{1}\rangle{=}0,m(\tilde{\ell},\tilde{r}){=}0.5(m(\tilde{\ell}_{1}^{2}){+}m(\tilde{\ell}_{1}^{0})) \\ m(\tilde{r}_{2}^{1}),m(\tilde{r}_{1}^{0}){=}0.5(m(\tilde{r}_{1}^{0}){+}m(\tilde{r}_{1}^{0})) \\ m(\tilde{r}_{1}^{2}),m(\tilde{r}_{1}^{0}){=}0.5(m(\tilde{r}_{2}^{0}){+}m(\tilde{r}_{1}^{0})) \\ mn(\tilde{r}_{1}^{1}){=}0,m \tilde{\ell},\tilde{r} {=}0.5(m(\tilde{r}_{2}^{0}){+}m(\tilde{r}_{1}^{0})) \\ mn(\tilde{r}_{1}^{1}){=}0,m \tilde{\ell},\tilde{r} {=}0.5(m(\tilde{r}_{2}^{0}){+}m(\tilde{r}_{1}^{0})) \\ \end{array}$	1403 5294 1403 5294 1407 0350 1402 7029 1403 5294, 1402 7029 1501 07110 1405 5088 1507 05493
Long-lived particles	Direct $\hat{k}_1^+ \hat{k}_1^-$ prod., long-lived J Direct $\hat{k}_1^+ \hat{k}_1^-$ prod., long-lived J Stable, stopped \hat{g} R-hadron Metastable \hat{g} R-hadron GMSB, stable $\hat{\tau}, \hat{k}_1^0 \rightarrow \hat{\tau}(\hat{e}, \hat{\mu}) + 1$ GMSB, $\hat{k}_1^0 \rightarrow \hat{\tau}\hat{G}$, long-lived \hat{k}_1^0 $\hat{g}_2^-, \hat{k}_1^0 \rightarrow eev(spin/\mu\mu\nu)$ GGM $\hat{g}_2^-, \hat{k}_1^0 \rightarrow Z\hat{G}$	$\begin{array}{ll} & \text{Disapp. trk} \\ \mathbb{P}_1^* & \text{dE/dx trk} \\ & \text{O} \\ & \text{trk} \\ & \text{dE/dx trk} \\ & \text{dE/dx trk} \\ & \mathbb{P}_1^* \\ & \mathbb{P}_2^* \\ & \text{displ. } ex/ept/\mu \\ & \text{displ. } vtx + jet \end{array}$	1 jet - 1-5 jets - - - - ts -	Yes Yes - - Yes - Yes	20.3 18.4 27.9 3.2 19.1 20.3 20.3 20.3	270 GeV 495 GeV 850 GeV 537 GeV 440 GeV 1.0 TeV 1.0 TeV	$\begin{array}{c} m(\tilde{\epsilon}_{1}^{*}) + n\\ m(\tilde{\epsilon}_{1}^{*}) = 1\\ \textbf{1.38 TeV}\\ \textbf{1.37 TeV}\\ \textbf{1.67 TeV}\\ 10 < \tan \\ 10 < \tan \\ 1 < n(\tilde{\epsilon}_{1}^{*}) = 1\\ 10 < \tan \\ 1 < n(\tilde{\epsilon}_{1}^{*}) \\ \textbf{1} < n($	(ξ ² ₁) ~ 160 MeV, τ(ξ ² ₁) = 0.2 na ηξ ² ₁) ~ 160 MeV, τ(ξ ² ₁) < 15 na 00 GeV, 10 μs <τ(ξ) < 1000 a 00 GeV, τ> 10 na 8<50 <3 na, SP38 model η) < 740 mm, m(ξ) = 1.3 TeV η) < 480 mm, m(ξ) = 1.1 TeV	1310.9675 1506.05332 1310.6584 1806.05129 1804.04520 1411.6705 1409.5542 1504.05182 1504.05182
RPV	$ \begin{array}{l} LFV pp \rightarrow \tilde{v}_{\tau} + X, \tilde{v}_{\tau} \rightarrow q\mu/e\tau/\mu \\ Biinear \ RPV \ CMSSM \\ \tilde{k}_{1}^{+} \tilde{k}_{1}^{-}, \tilde{k}_{1}^{+} \rightarrow W_{1}^{0}, \tilde{k}_{1}^{0} \rightarrow eev, e\mu_{1}, \\ \tilde{k}_{1}^{+} \tilde{k}_{1}^{-}, \tilde{k}_{1}^{+} \rightarrow W_{1}^{0}, \tilde{k}_{1}^{0} \rightarrow eev, e\mu_{1}, \\ \tilde{k}_{2}^{+} \tilde{k}_{1}^{-}, \tilde{k}_{1}^{+} \rightarrow W_{1}^{0}, \tilde{k}_{1} \rightarrow eev, e\mu_{1}, \\ \tilde{k}_{2}^{+} \tilde{k}_{2}^{-} \rightarrow qet_{1}^{0}, \tilde{k}_{1} \rightarrow eev, \\ \tilde{k}_{2}^{+} \tilde{k}_{2}^{-} \rightarrow qet_{1}^{0}, \tilde{k}_{1} \rightarrow eev, \\ \tilde{k}_{2}^{+} \tilde{k}_{2}^{-} \rightarrow qet_{1}^{+}, \tilde{k}_{1} \rightarrow be_{3} \\ \tilde{k}_{1}^{+} \tilde{k}_{1} \rightarrow be_{3} \\ \tilde{k}_{1}^{+} \tilde{k}_{1} \rightarrow be_{4} \end{array} $	$r = e^{j\mu_e e_{\tau_e} \mu r}$ $2 e, \mu (SS)$ $\mu \mu r = 4 e, \mu$ $r_{\tau} = 3 e, \mu + \tau$ 0 = 4 $2 e, \mu (SS)$ 0 $2 e, \mu$	- 0-3 b - - 5 large-R j 0-3 b 2 jets + 2 b 2 b	Yes Yes Yes ets ets Yes	3.2 20.3 13.3 20.3 14.8 14.8 13.2 15.4 20.3	2. 2. 450 GeV 1.08 Te 450 GeV 450-510 GeV 450-510 GeV 0.4-1.0 TeV 0.4-1.0 TeV	1.9 TeV × _{in1} =0 1.45 TeV rr(i)=m TeV rr(i)=in rr(i)=0 rr(i)=in eV BR(r)=E 1.35 TeV rr(i)=in 1.3 TeV rr(i)=in / BR(r)=F	<pre>k11, λ_{112/101/200}=0.07 ((), ι=₂₂₂+1 mm b000 eV, λ₁₂₂+0 (k = 1, 2) 22vrr(\$²), λ₁₂₂+0 (k = 1, 2) 22vrr(\$²), λ₁₂₂+0 (k =1, 2) 20Vr(\$²), λ₁₂₂+0 (k =1, 2) 20Vr(\$²),</pre>	1807.08070 1404.2500 ATLAS-CONF-2016-075 1405.5086 ATLAS-CONF-2016-057 ATLAS-CONF-2016-057 ATLAS-CONF-2016-037 ATLAS-CONF-2016-037 ATLAS-CONF-2016-034 ATLAS-CONF-2015-015
Other	Scalar charm, $\tilde{\epsilon} \rightarrow \varsigma \tilde{\ell}_1^0$	0	2 c	Yes	20.3	510 GeV	m(ž ² ₁)<	200G#V	1501.01325
*Onl sta	y a selection of the avails tes or phenomena is sho	ıble mass limi vn	its on nev	/	10	-1	1	Mass scale [TeV]	

states or phenomena is shown.

ATLAS Preliminary

Summary of SUSY searches

- A broad range of searches for SUSY have been performed by CMS and ATLAS for increased sensitivity with partial 2016 data set
- Experiments performed a large set of analyses almost synchronously with data taking
- □ The mass limits pushed up to 1.9 TeV (gluinos) and 900 GeV (stops)
- Much larger data sets will be available at the end of 2016 and during the rest of Run2, and we are looking forward to seeing first significant deviations from SM predictions!