Neutrinoless Double-Beta Decay with Emission of Single Electron

A. Babič, D. Štefánik, M. I. Krivoruchenko, and F. Šimkovic

New Trends in High-Energy Physics Budva, 02.10.–08.10.2016

Czech Technical University in Prague

Institute of Experimental and Applied Physics

Joint Institute for Nuclear Research

Institute for Theoretical and Experimental Physics

Comenius University in Bratislava

Double-Beta Decay

Fermi's effective QFT of beta decay is still valid at energy scales $\ll m_W$: $\langle G_{\rm F} \cos \theta_{\rm C} \rangle$

$$\mathcal{H}_{\beta}(x) = \frac{G_{\beta}}{\sqrt{2}} \bar{e}(x) \gamma^{\mu} (1 - \gamma^{5}) \nu_{e}(x) j_{\mu}(x) + \text{H.c.}$$

$$\bar{p}(x) \gamma_{\mu} (g_{V} - g_{A} \gamma^{5}) n(x)$$

$$\bar{p}(x) \gamma_{\mu} (g_{V} - g_{A} \gamma^{5}) n(x)$$

Double-beta decay $(2\nu\beta^{-}\beta^{-})$ is a rare 2nd-order process which can occur even if single-beta transition is forbidden or suppressed:

 v_e

Neutrinoless Double-Beta Decay

- Phase-space factor $G^{0\nu\beta\beta}(Z,Q) \rightarrow \text{particle kinematics (model-independent)}$
- Nuclear matrix element $M^{0\nu\beta\beta} \rightarrow$ nuclear structure & dynamics (model-dependent)
- Effective Majorana neutrino mass $m_{\beta\beta} \rightarrow$ neutrino physics (unknown)

Effective Majorana Neutrino Mass

NS

 m_3^2

Effective Majorana ν mass:

$$m_{\beta\beta} = \sum_{i} U_{ei}^2 m_i$$

- Absolute scale of ν masses m_i
- Majorana phases in $U_{ei} \rightarrow$ leptonic CP violation (baryon $\frac{m_2^2}{m_1^2}$ asymmetry of the Universe)

NEMO-3 @ LSM:

- Tracking calorimeter detector
- Thin source foils of ¹⁰⁰Mo, ⁸²Se, ⁴⁸Ca, etc.

GERDA @ LNGS:

• ⁷⁶Ge of HPGe in liquid Ar

KamLAND-Zen @ Kamioka:

- ¹³⁶Xe-loaded liquid scintillator
- Most stringent bound:

 $\left|m_{\beta\beta}\right| < 61 - 165 \text{ meV}$

3

Single-Electron Mode of $0\nu\beta^{-}\beta^{-}$

DyEP β^- : Nucleus is always surrounded $\beta_{\rm b}$, electron shells. What if one $e_{\rm b}^-$ remains bound \log_{10}^{10} , $1 + \log_{10}^{10}$ other e^- carries away entire K.E. Q?

$$_{Z}^{A}X \longrightarrow _{Z+2}^{A}Y + e_{b}^{-} + e^{-}$$

- *Electron production (EP)* in an available $s_{1/2}$ or $p_{1/2}$ subshell of the daughter ion ${}_{Z+2}^{A}Y^{2+}$
- Peak near the endpoint of single-electron spectrum

SuperNEMO:

- Source modules (SM): 20×5 kg thin foils of enriched and purified ⁸²Se, ¹⁵⁰Nd or ⁴⁸Ca
- Tracking chamber (TC): 9 planes of highgranularity drift cells in magnetic field \rightarrow particle ID and vertex reconstruction \rightarrow improved background rejection, angular correlations and single-electron spectra
- Calorimeter walls (CW): segmented organic scintillators + PMT: FWHM/ $E \approx 7\%/\sqrt{E/\text{MeV}}$

Relativistic Electron Wave Functions

Solutions to the stationary Dirac equation with Coulomb potential (point-like source):

$$\psi_{\kappa\mu}(\vec{r}) = \begin{pmatrix} f_{\kappa}(r) \ \Omega_{\kappa\mu}(\hat{r}) \\ ig_{\kappa}(r) \ \Omega_{-\kappa\mu}(\hat{r}) \end{pmatrix} \qquad \Omega_{\kappa\mu}(\hat{r}) = \sum_{s=\pm 1/2} C_{l,\mu-s,1/2,s}^{j\mu} Y_{l,\mu-s}(\hat{r}) \chi^{s} \qquad V(r) = -\alpha Z/r$$

$$\kappa = (l - j)(2j + 1) = \pm 1, \pm 2, \dots$$

$$\mu = -j, \dots, +j$$

$$j = |l \pm 1/2|$$

Continuous spectrum \rightarrow dominant term from partial-wave expansion:

$$\psi_{s_{1/2}}^{s}(\vec{p},\vec{r}) = \begin{pmatrix} f_{-1}(r,E) \, \chi^{s} \\ g_{+1}(r,E) \, (\vec{\sigma} \cdot \hat{p}) \, \chi^{s} \end{pmatrix}$$

 $s=\pm 1/2$ Shielding effect \rightarrow reduction of nuclear charge

Neglecting the electron-energy difference $(E_b - E_e)/2$ with respect to the sum of nuclear masses $(M_i + M_f)/2$ and (in case of 0ν mode) the energy q^0 transferred by the Majorana neutrino, the NME for $0\nu \text{EP}\beta^-$ and $2\nu \text{EP}\beta^-$ remain essentially unchanged:

 $M^{0\nu EP\beta} \approx M^{0\nu\beta\beta}$ $M^{2\nu EP\beta} \approx M^{2\nu\beta\beta}$

Decay Rates $\Gamma^{0\nu EP\beta}$ and $\Gamma^{0\nu\beta\beta}$

$$\begin{aligned} \mathbf{0}\mathbf{v}\mathbf{E}\mathbf{P}\boldsymbol{\beta}^{-} \operatorname{decay rate } (\mathbf{g.s.} 0^{+} \rightarrow 0^{+}): \\ \Gamma^{0\nu\mathbf{E}\mathbf{P}\boldsymbol{\beta}} &= g_{A}^{4} \frac{G_{\beta}^{4}m_{e}^{2}}{(2\pi)^{5}R^{2}} \left| M^{0\nu\beta\beta} \right|^{2} \frac{\left| m_{\beta\beta} \right|^{2}}{m_{e}^{2}} \pi \sum_{n=n_{F}+1}^{\infty} B(Z_{b},E_{b}) F(Z_{e},E_{e}) E_{e} p_{e} \\ R &\approx 1.2 \operatorname{fm} A^{1/3} \\ Fermi \ \text{functions:} \\ B(Z_{b},E_{b}) &= f_{n,-1}^{2}(R) + g_{n,+1}^{2}(R) \\ F(Z,E) &= f_{-1}^{2}(R,E) + g_{+1}^{2}(R,E) \end{aligned}$$
Summation runs over all energy levels above the valence shell (with $n = n_{F}$); for the required precision, $F(Z,E) = f_{-1}^{2}(R,E) + g_{+1}^{2}(R,E) \end{aligned}$
we summed numerically up to $n = 10^{3} \\ \mathbf{0}\mathbf{v}\boldsymbol{\beta}^{-}\boldsymbol{\beta}^{-} \operatorname{decay rate:} \\ F^{0\nu\beta\beta} &= g_{A}^{4} \frac{G_{\beta}^{4}m_{e}^{2}}{(2\pi)^{5}R^{2}} \left| M^{0\nu\beta\beta} \right|^{2} \frac{\left| m_{\beta\beta} \right|^{2}}{m_{e}^{2}} \int_{m_{e}}^{Q+m_{e}} dE_{1} F(Z_{e},E_{1}) E_{1} p_{1} F(Z_{e},E_{2}) E_{2} p_{2} \\ F^{0\nu\beta\beta} &= g_{A}^{4} \frac{G_{\beta}^{4}m_{e}^{2}}{(2\pi)^{5}R^{2}} \left| M^{0\nu\beta\beta} \right|^{2} \frac{\left| m_{\beta\beta} \right|^{2}}{m_{e}^{2}} \int_{m_{e}}^{Q+m_{e}} dE_{1} F(Z_{e},E_{1}) E_{1} p_{1} F(Z_{e},E_{2}) E_{2} p_{2} \\ F^{0\nu\beta\beta} &= g_{A}^{4} \frac{G_{\beta}^{4}m_{e}^{2}}{(2\pi)^{5}R^{2}} \left| M^{0\nu\beta\beta} \right|^{2} \frac{\left| m_{\beta\beta} \right|^{2}}{m_{e}^{2}} \int_{m_{e}}^{Q+m_{e}} dE_{1} F(Z_{e},E_{1}) E_{1} p_{1} F(Z_{e},E_{2}) E_{2} p_{2} \\ F^{0\nu\beta\beta} &= g_{A}^{4} \frac{G_{\beta}^{4}m_{e}^{2}}{(2\pi)^{5}R^{2}} \left| M^{0\nu\beta\beta} \right|^{2} \frac{\left| m_{\beta\beta} \right|^{2}}{m_{e}^{2}} \int_{m_{e}}^{Q+m_{e}} dE_{1} F(Z_{e},E_{1}) E_{1} p_{1} F(Z_{e},E_{2}) E_{2} p_{2} \\ F^{0\nu\beta\beta} &= g_{A}^{4} \frac{G_{\beta}^{4}m_{e}^{2}}{(2\pi)^{5}R^{2}} \left| M^{0\nu\beta\beta} \right|^{2} \frac{\left| m_{\beta\beta} \right|^{2}}{m_{e}^{2}} \int_{m_{e}}^{Q+m_{e}} dE_{1} F(Z_{e},E_{1}) E_{1} p_{1} F(Z_{e},E_{2}) E_{2} p_{2} \\ F^{0\nu\beta\beta} &= g_{A}^{4} \frac{G_{\beta}^{4}m_{e}^{2}}{(2\pi)^{5}R^{2}} \left| M^{0\nu\beta\beta} \right|^{2} \frac{\left| m_{\beta\beta} \right|^{2}}{m_{e}^{2}} \int_{m_{e}}^{Q+m_{e}} dE_{1} F(Z_{e},E_{1}) E_{1} p_{1} F(Z_{e},E_{2}) E_{2} p_{2} \\ F^{0\nu\beta\beta} &= g_{A}^{4} \frac{G_{\beta}^{4}m_{e}^{2}}{(2\pi)^{5}R^{2}} \left| M^{0\nu\beta\beta} \right|^{2} \frac{\left| m_{\beta\beta} \right|^{2}}{m_{e}^{2}} \int_{m_{e}}^{Q+m_{e}} dE_{1} F(Z_{e},E_{1}) E_{1} p_{1} F(Z_{e},E_{2}) E_{2} p_{2} \\ F^{0\nu\beta\beta} &= g_{A}^{2} \frac{G_{1}^{2}m_{e}}{(2\pi)^{5}R^{2}} \left|$

 $E_e - m_e \,[\text{MeV}] \quad Q \approx 2.996 \,\text{MeV}$

^A _z X	Q [MeV]	^A _z X	Q [MeV]	^A _z X	Q [MeV]
⁴⁶ 20Ca	0.990	¹¹⁰ 46Pd	2.000	¹⁵⁰ 60 Nd	3.368
⁴⁸ 20Ca	4.272	¹¹⁴ 48Cd	0.537	¹⁵⁴ ₆₂ Sm	1.251
⁷⁰ 30 ^{Zn}	1.001	¹¹⁶ 48Cd	2.805	¹⁶⁰ 64Gd	1.730
⁷⁶ 32Ge	2.039	¹²² 50Sn	0.366	¹⁷⁰ 68Er	0.654
⁸⁰ 34Se	0.134	¹²⁴ 50Sn	2.287	¹⁷⁶ 70Yb	1.087
⁸² 34Se	2.996	¹²⁸ 52 Te	0.867	¹⁸⁶ 74	0.488
⁸⁶ 36Kr	1.256	¹³⁰ 52 Te	2.529	¹⁹² 76Os	0.414
⁹⁴ 40Zr	1.144	¹³⁴ 54Xe	0.830	¹⁹⁸ 78Pt	1.047
⁹⁶ 40Zr	3.350	¹³⁶ 54Xe	2.468	²⁰⁴ 80Hg	0.416
⁹⁸ 42Mo	0.112	¹⁴² 58Ce	1.417	²³² 90Th	0.842
¹⁰⁰ 42Mo	3.034	¹⁴⁶ 60Nd	0.070	²³⁸ 92U	1.145
¹⁰⁴ 44Ru	1.300	¹⁴⁸ 60Nd	1.929		

Q values:

[V. I. Tretyak and Y. G. Zdesenko, Atom. Data Nucl. Data Tabl. 80, 83 (2002)]

Ratios $\Gamma^{0\nu EP\beta}/\Gamma^{0\nu\beta\beta}(Z,Q)$

- 0νΕΡβ⁻ is relatively more significant for isotopes with small Z and Q; top 3: ⁸⁰₃₄Se, ⁹⁸₄₂Mo and ¹⁴⁶₆₀Nd
- Ratio decreases rapidly with both Z and Q and ranges from 1.50×10^{-9} to 1.37×10^{-6}

Overall suppression:

- Electron shielding of nuclear charge substantially 20 reduces the bound-state wave function $B(Z_b, E_b)$ on the surface of the nucleus (~ normalization constant)
- Discrete "phase space" of the bound electron is much more restricted when compared to all possible configurations of d³ p²

Estimation of Half-Lives $T_{1/2}^{0\nu\beta\beta}$ and $T_{1/2}^{0\nu\text{EP}\beta}$

- Within the inverted hierarchy of ν masses (and excluding the possibility of sterile neutrinos), the effective Majorana neutrino mass: $|m_{\beta\beta}| \approx (20 - 50) \text{ meV}$
- Assuming $|\mathbf{m}_{\beta\beta}| = 50 \text{ meV}$ and values of $M^{0\nu\beta\beta}$ from literature (QRPA with CD-Bonn potential), we estimated the $0\nu\beta^{-}\beta^{-}$ and $0\nu EP\beta^{-}$ half-lives $T_{1/2}^{0\nu\beta\beta}$ and $T_{1/2}^{0\nu EP\beta}$:

[F. Šimkovic, V. Rodin, A. Faessler, and P. Vogel, Phys. Rev. C, **87**, 045501 (2013)] [D.-L. Fang, A. Faessler, and F. Šimkovic, Phys. Rev. C, 92, 044301 (2015)]

|m^ve| [eV]

9

Decay Rates $\Gamma^{2\nu EP\beta}$ and $\Gamma^{2\nu\beta\beta}$

The results can be readily extended to $2\nu\beta^{-}\beta^{-}$:

- No unknown parameters of neutrino physics
- Possibility to test various nuclear-theoretical methods by comparing the calculated values of NME $M^{2\nu\beta\beta}$ (and hence $M^{0\nu\beta\beta}$) to the measured half-lives $T_{1/2}^{2\nu\beta\beta}$
- Once again, ratios $\Gamma^{2\nu EP\beta}/\Gamma^{2\nu\beta\beta}$ do not depend on $M^{2\nu\beta\beta}$

$$2\nu EP\beta^{-} \operatorname{decay rate} (g.s. 0^{+} \rightarrow 0^{+}): \qquad Q = M_{i} - M_{f} - 2m_{e}$$

$$\Gamma^{2\nu EP\beta} = g_{A}^{4} \frac{G_{\beta}^{4}}{8\pi^{7}} |M^{2\nu\beta\beta}|^{2} \qquad \omega_{2} = M_{i} - M_{f} - E_{1(b)} - E_{2(e)} - \omega_{1}$$

$$\times \pi \sum_{n=n_{F}+1}^{\infty} B(Z_{b}, E_{b}) \int_{m_{e}}^{Q+2m_{e}-E_{b}} dE F(Z+2, E) E p \int_{0}^{Q+2m_{e}-E_{b}-E} d\omega_{1} \omega_{1}^{2} \omega_{2}^{2}$$

$$2\nu\beta^{-}\beta^{-} \operatorname{decay rate}:$$

$$\Gamma^{2\nu\beta\beta} = g_{A}^{4} \frac{G_{\beta}^{4}}{8\pi^{7}} |M^{2\nu\beta\beta}|^{2}$$

$$\times \int_{m_{e}}^{Q+m_{e}} dE_{1} F(Z+2, E_{1}) E_{1} p_{1} \int_{m_{e}}^{Q+2m_{e}-E_{1}} dE_{2} F(Z+2, E_{2}) E_{2} p_{2} \int_{0}^{Q+2m_{e}-E_{1}-E_{2}} d\omega_{1} \omega_{1}^{2} \omega_{2}^{2}$$

 $\Gamma^{2\nu\beta\beta} = g_A^4 G^{2\nu\beta\beta}(Z,Q) \left| M^{2\nu\beta\beta} \right|^2$

Ratios $\Gamma^{2\nu EP\beta}/\Gamma^{2\nu\beta\beta}(Z,Q)$

- $2\nu EP\beta^-$ leads to results analogous to $0\nu EP\beta^-$; top 3: $^{80}_{34}Se$, $^{98}_{42}Mo$ and $^{146}_{60}Nd$
- Ratio decreases rapidly with both Z and Q and ranges from 1.07×10^{-8} to 9.12×10^{-6}

The relative significance of $\sim 10^{-6}$ is characteristic for a variety of nuclear processes involving atomic structure \rightarrow a general property of the phase space of an electron in a bound state

Evaluation of Half-Lives $T_{1/2}^{2\nu EP\beta}$

Single-electron $2\nu\beta^{-}\beta^{-}$ and $2\nu EP\beta^{-}$ spectra (normalized to unity):

- In principle two distinct signatures
- However, for ⁸²Se the total decay rate $\Gamma^{2\nu EP\beta}$ is suppressed by a factor of 1.51×10^{-7}
- Experiments with access to s.e.s. (SuperNEMO) could set limits on EP

- The half-lives $T_{1/2}^{2\nu \text{EP}\beta}$ are approximately of the order of $T_{1/2}^{0\nu\beta\beta}$ (or even smaller if the effective Majorana neutrino mass $|m_{\beta\beta}| \ll 50 \text{ meV}$)
- However, their $E_1 + E_2$ signatures are different (continuum vs. peak), so that the two modes are easily distinguished

Summary & Outlook

Summary:

- We studied single-electron modes of $0\nu\beta^{-}\beta^{-}$ and $2\nu\beta^{-}\beta^{-}$ in which one electron is produced in $s_{1/2}$ or $p_{1/2}$ bound state of daughter ion ${}_{Z+2}^{A}Y^{2+}$
- We derived shapes of single-electron spectra to be
- interred in next-gen $0\nu\beta\beta$ experiment SuperNEMO Overall suppression amounts for a factor of $10^{-9} \frac{10^{-9}}{10^{-9}}$ 10^{-6} due to shielding effect of nuclear charge (reduction of wave function on nuclear surface) and restricted phase space of bound electron

Outlook:

- Improved description of electron-shell structure by means of many-body Hartree–Fock approximation
- Generalization to various non-standard mechanisms $\frac{3}{2}$ of *L* violation (left-right symmetric interactions, $\frac{1}{2}$ heavy neutrino exchange, Majoron models, etc.)
- Other atomic modes of various rare processes (double-beta decay, double-electron capture, neutrino interactions, etc.)

Thank you for your attention!