

Neutral pion form factor by the NA62 experiment

Marco Mirra*

Università degli studi di Napoli Federico II and Sezione INFN Napoli, Italy

*on behalf of the NA62 collaboration:

Birmingham, CERN, Dubna, Fairfax, Ferrara, Florence, Frascati, Mainz, Merced, Moscow, Naples, Perugia, Pisa, Protvino, Rome I, Rome II, Saclay, San Luis Potosí, Stanford, Sofia, Turin, Vancouver

New Trends in High-Energy Physics

October 4 2016, Budva, Becici, Montenegro

Outline

> North area experiments

> The π^0 form factor measurement from π^0 Dalitz decays

> A related research for dark photon in π^0 decay

> Conclusions

North Area experiments

Kaon Physics at CERN:

- ✓ Fixed target experiments at CERN SPS
- ✓ Kaon decay-in-flight

Currently in NA62: ~200 participants 29 institutions from 13 countries

π^0 Dalitz decay: $\pi^0 o \gamma e^+ e^-$

π^0 decay mode

Mode	Fraction (Γ_i/Γ)	Confidence level
2γ	(98.823±0.034) %	S=1.5
$e^+e^-\gamma$	$(1.174\pm0.035)\%$	S=1.5
γ positronium	(1.82 \pm 0.29) $ imes$ 1	10 ⁻⁹
$e^+ e^+ e^- e^-$	(3.34 ± 0.16) $ imes$	10 ⁻⁵
e^+e^-	$(6.46 \pm 0.33) \times$	10 ⁻⁸

Kinematic variables

$$x = \frac{(p_{e^+} + p_{e^-})^2}{m_{\pi^0}^2} = \left(\frac{M_{ee}}{m_{\pi^0}}\right)^2 \qquad y = \frac{2p_{\pi^0}(p_{e^+} - p_{e^-})}{m_{\pi^0}^2(1-x)}$$
with $r^2 = 4m_e^2/m_{\pi^0}^2 \le x \le 1$
with $-\sqrt{1 - r^2/x} \le y \le \sqrt{1 - r^2/x}$
Differential decay width
$$\frac{1}{\Gamma(\pi_{2\gamma}^0)} \frac{d^2\Gamma(\pi_D^0)}{dxdy} = \frac{\alpha}{4\pi} \frac{(1-x)^3}{x} \left(1 + y^2 + \frac{r^2}{x}\right) \frac{(1+\delta(x,y))|F(x)|^2}{(1+\delta(x,y))|F(x)|^2}$$
Transition Form Factor
$$F(x) \approx 1 + ax$$
a is the TFF slope

04/10/2016 M. Mirra

Neutral pion form factor by the NA62 experiment 4

π^0 Dalitz decay: transition form factor

TFF slope can be extracted from the distribution of the of x Dalitz variable.

$$\frac{1}{\Gamma(\pi_{2\gamma}^{0})}\frac{d\Gamma(\pi_{D}^{0})}{dx} = \frac{2\alpha}{3\pi}\frac{(1-x)^{3}}{x}\left(1+\frac{r^{2}}{x}\right)\sqrt{1-\frac{r^{2}}{x}(1+\delta(x))(1+ax)^{2}}$$

- VMD expectation: TFF slope *a* = 0.03
 [L.G.Landsberg, Phys.Rept 128 (1985) 301]
- Enters hadronic contribution to $(g 2)_{\mu}$ [Knecht, EPJ Web Conf. 118 (2016) 01017] [Nyffeler, arXiv:1602.03398]
- ➤ Influences the decay rate $\pi^0 \rightarrow e^+e^-$ [Husek et al., EPJ C74 (2014) 3010]
- Comparison of the TFF slope predictions with model independent measurements is a remarkable test of the theoretical models

TFF is a very tiny effect and it needs very precise measurement of *x* and proper treatment of the radiative corrections

π^0 Dalitz decay: radiative corrections

They are essential because their contibution to the $d\Gamma/dx$ spectrum is larger than TFF $\delta = \delta_{virt} + \delta_{brem} + \delta_{1\gamma IR}$

Original paper by *Mikaelian and Smith*, *PRD5 (1972) 1763*: ~5% correction to $d\Gamma/dx$ slope

Recent improvement by *Husek, Kampf and Novotny, PRD92 (2015) 054027*: further 0.5% correction to the $d\Gamma/dx$ slope

04/10/2016 M. Mirra

Neutral pion form factor by the NA62 experiment 6

π^0 Dalitz decay: radiative correction

The radiative corrections introduce an effective negative slope to the LO *x* spectrum, which is about two times larger in absolute terms than the expected effect of the TFF.

π^0 Dalitz decay at NA62

 π_D^0 decay spectrum $d\Gamma/dx$ is sensitive to the TFF mostly in the x > 0.1 region, so a large fraction of events lies in the region which is not sensitive to the TFF.

 $\pi^- p$ inelastic interaction in point A, generating π^0 decaying Dalitz Too low statistics...

- A clean and large sample of π_D^0 can be obtained at NA62-R_K, that is not only a Kaon Factory but also a Pion Factory: production of a large sample of π^0 mesons mainly via the $K^+ \rightarrow \pi^+ \pi^0$ (BR ~ 21%)
- NA62 data (2007): ~ 2×10¹⁰ K[±] decays in the fiducial region Data taking optimized for the R_K measurement: identification of e[±] from K[±]→ e[±]v Factor 10 reduction of beam intensity w.r.t. NA48/2:
 - → efficient minimum bias trigger configuration
 - → minimum accidental background

π^0 Dalitz MC production

MC $K_{2\pi D}$ [:] all generated events

- Husek et al. (2015) computation is used in this analysis; radiative corrections implemented in the MC π⁰_D event generator, including inner bremsstrahlung photons
- > 3 MC samples used in this analysis:
 - $K^{\pm} \rightarrow \pi_D^0 \pi^{\pm} (K_{2\pi D})$
 - $K^{\pm} \rightarrow \pi_D^0 \mu^{\pm} \nu (K_{\mu 3D})$
 - $K^{\pm} \rightarrow \pi^0_D e^{\pm} \nu \left(K_{e3D} \right)$
- At the generator level a constant value for the TFF slope is used:
 a_{sim} = 0.032 (central value of the PDG world average)

NA62-R_K experimental setup

NA62- R_K data taking: 4 months in 2007 (K⁺) 74 GeV/c mostly K⁺ only beam

π^0 Dalitz selection at NA62-R_K

The NA62-R_K data sample:

- $\approx 2 \ge 10^{10}$ kaon decays in the fiducial region
- $\approx 5 \ge 10^9 \pi^0$ mesons from $K^+ \to \pi^+ \pi^0$
- negligible mean free path (few μm): prompt decay

Main selection criteria:

- events with exactly one reconstructed **3-tracks vertex**
- position of the reconstructed vertex inside the fiducial decay region
- 1 γ candidate isolated in the LKr e.m. calorimeter (not geometrically associated to any track by the reconstruction software)

π^0 Dalitz sample at NA62-R_K

- **>** Cut on $\pi^+\pi^0$ invariant mass (reconstructed K^+ mass)
- > Cut on $e^+e^-\gamma$ invariant mass (reconstructed π^0 mass)
- Full kinematic closure

π^0 Dalitz sample at NA62-R_K

Signal region:

$$\underline{0.01} < x = \left(\frac{M_{ee}}{m_{\pi^0}}\right)^2 < 1$$

Due to minimum distance of the e^{\pm} tracks in DCH1. Distribution not sensitive to the TFF in the x<0.01 region

Number of of fully reconstructed π_D^0 events: 1.05 x 10⁶ small contribution from K_{µ3D}

The TFF slope is obtained by adjusting the simulation to the data x spectrum

π^0 Dalitz: TFF slope fit

- Split the reconstructed Dalitz x data into 20 equi-populated bins
- Compare data with MC events generated using a constant TFF slope given by the central value of the PDG world average $\mathbf{a}_{sim} = 0.032$
- Re-weight MC events to get simulated distributions with different values of the slope from the same MC sample:

$$w(a) = \frac{(1 + ax_{true})^2}{(1 + a_{sim}x_{true})^2}$$

• Fit result: slope value from the best data/MC agreement with χ^2 test

NA62- R_K preliminary fit result: $a = (3.70 \pm 0.53_{stat}) \times 10^{-2}$ with χ^2 /ndf = 52.5/49

π^0 TFF slope uncertaint

SOURCE	$\delta a imes 10^2$
Statistical - Data	0.49
Statistical - MC	0.20
TOTAL STATISTICAL	0.53
Beam momentum simulation	0.30
Spectrometer momentum scale	0.15
Spectrometer resolution	0.05
LKr non-linearity and energy scale	0.04
Particle mis-ID	0.08
Accidental background	0.08
Neglected π_D^0 sources in MC	0.01
TOTAL SYSTEMATICS	0.36

NA62-R_K preliminary result: $a = (3.70 \pm 0.53_{stat} \pm 0.36_{syst}) \times 10^{-2}$

NA62-R_K π^0 TFF preliminary result

NA62- R_{K} preliminary result: $a = (3.70 \pm 0.53_{stat} \pm 0.36_{syst}) \times 10^{-2}$

[final result and paper in preparation]

- ✓ TFF slope measurement in the time-like momentum transfer region with a precision of ~15-20 %.
- ✓ The NA62 (2007 data) preliminary measurement of TFF slope is the most precise to date in the time-like region of momentum transfer
- Chiral perturbation theory [EPJ C46 (2006) 191]
 a = (2.90 ± 0.50) × 10⁻²
- Dispersion theory [EPJ C74 (2014) 3180] $a = (3.07 \pm 0.06) \times 10^{-2}$
- Two-hadron saturation model [EPJ C75 (2015) 586] $a = (2.92 \pm 0.04) \times 10^{-2}$

04/10/2016 M. Mirra

Neutral pion form factor by the NA62 experiment 16

A related research: dark photon

Simplest hidden sector model: one extra U(1) gauge symmetry with one extra gauge boson, the dark photon A' with mass $m_{A'}$

- QED-like interactions with SM fermions $\mathcal{L} \sim g' q_f \bar{\psi}_f \gamma^{\mu} \psi_f U'_{\mu}$ (not all SM fermions need to charged under this new symmetry)
- Interaction with the visible sector proceed through kinetic mixing between QED and the new U(1) gauge boson

Motivations:

- Possible explanation for positron excess in cosmic rays (PAMELA, FERMI, AMS-02) by dark matter annihilation
- Possible solution to the muon g-2 anomaly

Dark photon at NA48/2

Search for the decay chains $K_{2\pi}/K_{\mu3}$ followed by prompt $\pi^0 \to \gamma A'$, $A' \to e^+e^-$

Same signature as $K_{2\pi D}$ and $K_{\mu 3D}$ for the the Dalitz π^0 decay study

NA48/2 data used:

- Detector setup similar to NA62-R_K but reduced dipole magnetic field ($p_{t_kick} = 120$ MeV/c)
- $2 \times 10^{11} K^{\pm}$ decays in the fiducial volume
- 5×10^{10} tagged π^0 decays from $K_{2\pi}$ (BR=20.7%), $K_{\mu3}$ (BR=3.4%)
- Excellent trigger for 3-track vertices
- Very good e^+e^- invariant mass $(m_{e^+e^-})$ relative resolution ~1.1%
- Sensitivity determined by irreducibile : $\pi^0 \rightarrow \gamma e^+ e^-$ background
- Acceptance for both signal chains up to 4.5% depending on $m_{A'}$
- Search for a narrow peak in the $m_{e^+e^-}$ spectrum

$\pi^0 \rightarrow \gamma e^+ e^-$ sample at NA48/2

Two exclusive selections:

 $K_{2\pi D}$ selection

- $\left|m_{\pi\gamma ee}-m_{K}
 ight|<20~{
 m Mev/c^{2}}$
- $|m_{\gamma ee} m_{\pi^0}| < 8 \text{ Mev/c}^2$
- No missing momentum

 $N(K_{2\pi D}) = 1.38 \times 10^7$

$K_{\mu 3D}$ selection

- $m_{miss}^2 = \left(P_K P_\mu P_{\pi^0} \right)^2$ compatible with 0
- $|m_{\gamma ee} m_{\pi^0}| < 8 \text{ Mev/c}^2$
- Missing total and transverse momentum

 $N(K_{2\pi D}) = 0.31 \times 10^7$

04/10/2016 M. Mirra

Neutral pion form factor by the NA62 experiment

120

m_{ee} (MeV/c²)

K_{2πD} selection:

Data

 $K^{\pm} \rightarrow \pi^{\pm} \pi^{0}_{D}$

80

100

K_{u3D} selection:

Data

100

80

 $K^{\pm} \rightarrow \pi_{D}^{0} \mu^{\pm} \nu$

 $K^{\pm} \rightarrow \pi^{\pm} \pi^{0} \pi^{0}$

 $K^{\pm} \rightarrow \pi^{\pm} \pi_{D}^{0}$

120

mee (MeV/c²)

 $K^{\pm} \rightarrow \pi_{D}^{0} \mu^{\pm} \nu$

Search for dark photon at NA48/2

- Scan for DP signal in the mass range: 9 MeV/c²≤m_A,<120 MeV/c²
- Mass step $0.5\sigma_m$, signal window $\pm 1.5\sigma_m$
- DP mass hypotesis tested: 404
- Global fit for the background shape.

Local significance never exceeds 3σ no DP signal observed

Dark photon exclusion at NA48/2

DP exclusion summary: all results published by 2015 ε**2** KLOE WASA 92,00 10⁻⁵ HADES (g-2) 10⁻⁶ E774 NA48/2 E141 10⁻⁷ $\frac{10^2}{m_{a'}}$ (MeV/c²) 10

Improvement on the existing limits in the m_A, range 9-70 MeV/c²

- Sensitivity limited by irreducible π_D^0 background
- Most stringent limits on ε^2 at low $m_{A'}$
- Upper limit on ε^2 scales with $(1/N_K)^{1/2}$, so a modest improvement achievable with larger K[±] data sample
- If dark photon couples to quarks and decays mainly to SM fermions, it is ruled out as explanation for anomalous (g-2)_µ

Phys. Lett. B746 (2015) 178

Conclusion

Kaon decay in flight experiments at CERN provide large samples of tagged neutral pions.

- **NA62-R_K** preliminary results:
- ✓ measurement of the π^0 Transition Form Factor slope parameter: $a = (3.70 \pm 0.53_{stat} \pm 0.36_{syst}) \times 10^{-2}$
- ✓ the precision of the TFF measurement has been improved in the time-like momentum region.
- ✓ paper in preparation

NA48/2 final result on Dark Photon search [Phys. Lett. B746 (2015) 178]:

✓ existing limits on ε² in the 9 - 70 MeV/c² mass range are improved
 ✓ DP excluded as explanation for (g-2)_μ anomaly if it decays mainly to SM fermions

Backup

$K_{2\pi D}$ MC selection

Selected events from MC

MC sample	Generated events	Acceptance
$K_{2\pi D}$	386268415	1.9 %
$K_{\mu 3D}$	105196033	0.020 %
K _{e3D}	103672720	0.013 %

04/10/2016 M. Mirra

Neutral pion form factor by the NA62 experiment

NA62-R_K trigger

- *Q*1: a coincidence of at least one hit in each of the HOD planes, both hits belonging to the same quadrant.
- *ELKr* (10 GeV): a total energy deposition >10 GeV in the LKr calorimeter.
- 1 TRKLM: at least one hit in at least two views and less than 15 hits in any of the views in the DCHs.
- L3(Ke2): at least one track with LKr energy / momentum (E/p) ratio larger than 0.6 and momentum in the range (5-90) GeV/c.

