Searches for Lepton Number Violation and resonances in the  $\mathbf{K}^{\pm} \rightarrow \pi \mu \mu$  decays at the **NA48/2** experiment

Dmitry Madigozhin

Joint Institute for Nuclear Research on behalf of the NA48/2 Collaboration

New Trends in High-Energy Physics Montenegro, Budva, Becici. 2-8 October 2016.

## **Outline:**

- The NA48/2 experiment
- Theoretical Motivation
- Search for LNV  $K^{\pm} \rightarrow \pi^{\mp} \mu^{\pm} \mu^{\pm}$  decay Majorana neutrinos
- ${\ensuremath{\bullet}}$  Search for resonances in  $K^{\pm}$   $\rightarrow$   $\pi^{\pm}\mu^{+}\mu^{-}$  decays

# NA48/2 (2003-2004)



Theoretical Motivation: **neutrino physics development.** neutrino oscillations  $\rightarrow$  neutrino masses  $\rightarrow$  right-handed neutrinos. For example:

### Majorana Neutrinos

Asaka-Shaposhnikov model (vMSM) [Asaka and Shaposhnikov, PLB 620 (2005) 17]: Dark Matter + Baryon Asymmetry of the Universe (BAU) + low mass of SM v can be explained by adding three sterile Majorana neutrinos to the SM:

- One has a mass of O(KeV) Dark Matter candidate.
- Two others have a mass of O(100 MeV 1 GeV), tune CPV phases, provide an extra-CKM sources of baryon asymmetry and produce a standard neutrino masses through seesaw.

<u>Active sterile neutrino mixing (U-matrix)</u>: Effective vertices involving the sterile neutrinos N<sub>i</sub>, the W<sup>±</sup>, Z bosons and SM leptons, leading to LNV decays: BR(K<sup>±</sup>  $\rightarrow \mu^{\pm}N_{4}$ ) x BR(N<sub>4</sub>  $\rightarrow \pi^{\mp}\mu^{\pm}) \sim |U_{\mu4}|^{4}$ 

### More new particles in some models: Inflatons

**Shaposhnikov-Tkachev** model [Shaposhnikov and Tkachev, PLB 639 (2006) 414]: vMSM + a real scalar field (inflaton  $\chi$ ) with scale-invariant couplings explains Universe homogeneity and isotropy on large scales and structures on smaller scales (believed to be coming from inflation)

- $\chi\textsc{-Higgs}$  mixing with mixing angle  $\theta$
- $\chi$ -Higgs coupling  $\rightarrow$  Universe reheating
- $\chi$  is unstable:  $\tau \sim (10^{-8} 10^{-12})$  s

χ in Kaon decays [may be mχ < 300-400 MeV/c²]

## Same-sign muons sample (LNV)

- Fully reconstructed final states, 3-track vertex topology (50 cm Z resolution, lifetime < 10 ps is negligible)</li>
- Similar topology of the normalisation channel  $K^{\pm}$   $\rightarrow$   $\pi^{\pm}\pi^{+}\pi^{-}$
- → First-order cancellation of systematic effects (trigger inefficiency, etc)
- Search for the LNV  $\ K^{\pm} \rightarrow \pi^{\scriptscriptstyle \mp} \mu^{\pm} \mu^{\pm}$  decay
- Main background:  $K^{\pm} \to \pi^{\pm}\pi^{+}\pi^{-}$  with 2  $\pi^{\pm} \to \mu^{\pm}\nu$  decays (one within the Spectrometer)
- UL on LNV BR( $K^{\pm} \rightarrow \pi^{\pm} \mu^{\pm} \mu^{\pm}$ )
- UL on resonant BR( $K^{\pm} \rightarrow \mu^{\pm}N_{_4}$ )xBR( $N_{_4} \rightarrow \pi^{_{\mp}}\mu^{\pm}$ )

~  $2x10^{11}$  K<sup>±</sup> decays in the fiducial volume (measured from K<sup>±</sup>  $\rightarrow \pi^{\pm}\pi^{+}\pi^{-}$ )

Mass and lifetime dependence of the signal acceptance from dedicated MC simulation of the signal



## Same-sign muons selection (LNV)



• Blind analysis:  $K^{\pm} \rightarrow \pi^{\mp}\mu^{\pm}\mu^{\pm}$  selection based on o  $K^{\pm} \rightarrow \pi^{\mp}\mu^{\pm}\mu^{\pm}$  MC simulation

- Uniform phasespace
- Resonant Majorana neutrino model
- o  $K^{\pm} \rightarrow \pi^{\pm}\pi^{+}\pi^{-}$  MC simulation (10<sup>10</sup> events)

o Control Region:  $M(\pi^{\mp}\mu^{\pm}\mu^{\pm}) < 480 \text{ MeV/c2}$ 

- Event selection: o One reconstructed 3-track vertex |Q|=1o 2 same-sign muons, 1 odd-sign pion (E/p,MUV) o Total P<sub>T</sub> consistent with zero (<0.01 GeV/c) o Signal Region:  $|M(\pi^{\mp}\mu^{\pm}\mu^{\pm}) - M_{\kappa}| < 5 \text{ MeV/c2}$ • Expected background:  $K^{\pm} \rightarrow \pi^{\pm}\pi^{+}\pi^{-}$ MC sample (10<sup>10</sup> events) used to evaluate number of expected  $K^{\pm} \rightarrow \pi^{\pm}\pi^{+}\pi^{-}$  events in Signal Region
- 1 Event in Signal Region observed
- Expected background (from MC):  $N_{exp} = 1.163 \pm 0.867_{stat} \pm 0.021_{ext} \pm 0.116_{syst}$

Rolke-Lopez statistical treatment to get UL(Nsig) $\rightarrow$ 

BR(K  $\rightarrow \pi_{\mp}\mu \pm \mu \pm$ ) < 8.6 x 10-11 @ 90% CL

## **Opposite-sign muons sample (LNC)**

Search for resonances in  $K^{\pm}$   $\rightarrow$   $\pi^{\pm}\mu^{+}\mu^{-}$ 

- Method: exclusive search for the decay chains  $K^{\pm} \rightarrow \mu^{\pm} N_{_4}(N_{_4} \rightarrow \pi^{\pm} \mu^{\mp}), K^{\pm} \rightarrow \pi^{\pm} X(X \rightarrow \mu^{+} \mu^{-})$
- Main background:  $K^{\pm} \rightarrow \pi^{\pm}\mu^{+}\mu^{-}$  (irreducible)  $\rightarrow$  Limited sensitivity
- UL on BR( $K^{\pm} \rightarrow \mu^{\pm}N^{4}$ ) x BR( $N^{4} \rightarrow \pi^{\pm}\mu^{\mp}$ )
- UL on BR(K<sup>±</sup>  $\rightarrow$   $\pi^{\pm}X$ ) x BR(X  $\rightarrow$   $\mu^{+}\mu^{-}$ )



### **Opposite sign muons selection (LNC)**



Event selection: o One 3-track vertex o 2 opposite-sign muons, 1 pion o Total P<sub>T</sub> consistent with zero o Signal Region:  $|M(\pi^{\pm}\mu^{+}\mu^{-}) - M_{\kappa}| < 8 \text{ MeV/c2}$ 

# Search for peaks in $M(\pi^{\pm}\mu^{\pm})$ and $M(\mu^{+}\mu^{-})$ invariant masses

 $K^{\pm} \rightarrow \pi^{\pm}\pi^{+}\pi^{-}$  background: (0.36±0.10)%

Improved selection with respect to previous NA48/2  $K^{\pm}$   $\rightarrow$   $\pi^{\pm}\mu^{+}\mu^{-}$  analysis [PLB 697 (2011) 107]

## **Two-body mass scans**

- Based on selected  $K^{\pm} \rightarrow \pi^{\pm}\mu\mu$  candidates. Variable step =  $0.5\sigma(M_{res})$  and window =  $\pm 2\sigma(M_{res})$
- For each  $M_{res}$ : Observed events in data  $(N_{obs})$  vs Expected events from MC  $(N_{exp}) \rightarrow UL(N_{sig})$
- Rolke-Lopez statistical treatment used in each mass hypothesis M<sub>res</sub> to get UL(N<sub>sia</sub>)

Search for Lepton Number Violation – Majorana neutrinos

- 284 mass hypotheses M<sub>res</sub> tested
- $\bullet$  2 possibilities in building M( $\pi^{_{\mp}}$   $\mu$   $^{\pm}$ ) [same-sign  $\mu uons$ ]: closest invariant mass to M^{res} considered

Search for resonances in LNC  $K^{\pm} \rightarrow \pi^{\pm} \mu^{+} \mu^{-}$  – decays

• The distributions of both invariant masses  $M(\pi^{\pm}\mu^{\mp})$  and  $M(\mu^{+}\mu^{-})$  are probed

• 267 hypotheses for  $M(\pi^{\pm}\mu^{\mp})$ • 280 hypotheses for  $M(\mu^{+}\mu^{-})$ •  $K^{\pm} \rightarrow \pi^{\pm}\mu^{+}\mu^{-}$  – MC simulation uses form factors extracted from the selected data sample to obtain best data/MC agreement



### Search for $K^{\pm} \rightarrow \mu^{\pm} N_{a}(N_{a} \rightarrow \pi^{\mp} \mu^{\pm})$ decays



### Search for $K^{\pm} \rightarrow \mu^{\pm} N_a (N_a \rightarrow \pi^{\pm} \mu^{\mp})$ decays



### Search for $K^{\pm} \rightarrow \pi^{\pm}X(X \rightarrow \mu^{+}\mu^{-})$ decays

Opposite sign muons sample (LNC)

 $UL(BR(K^{\pm} \rightarrow \pi^{\pm} X)BR(X \rightarrow \mu^{+} \mu^{-})) =$ 



### Conclusion

#### **New NA48/2 results presented:**

- Search for LNV  $K^{\pm} \rightarrow \pi^{\mp} \mu^{\pm} \mu^{\pm}$  decay:
- BR( $K^{\pm} \rightarrow \pi^{\mp} \mu^{\pm} \mu^{\pm}$ ) < 8.6 x 10<sup>-11</sup> @ 90% CL [World Best Limit]
- Factor of 10 improvement with respect to previous best limit  $[1.1 \times 10^{-9}]$
- Search for  $K^{\pm} \rightarrow \mu^{\pm}N4$  (N4  $\rightarrow \pi^{\pm} \mu^{\pm}$ ) decays [Majorana neutrinos]
- Limits on BR products of the order of  $10^{-10}$  for neutrino lifetimes < 100 ps
- Search for  $K^{\pm} \rightarrow \mu \pm N4(N4 \rightarrow \pi^{\pm} \mu^{\mp})$  decays [LNC heavy neutrinos]
- Limits on BR products of the order of  $10^{-9}$  for neutrino lifetimes < 100 ps
- Search for  $K^{\pm} \rightarrow \pi^{\pm}X \ (X \rightarrow \mu^{+}\mu^{-})$  decays [Inflatons, ...]
- Limits on BR products of the order of  $10^{-9}$  for resonance lifetimes < 100 ps

Prospects for the new NA62 experiment

NA62 will collect the world-largest K+ decay sample: ~  $10^{13}$  decays in 3 years of data taking (~ 50 times more than NA48/2)

| Mode                          | UL at 90%<br>CL       | Experiment       | NA62<br>acceptance* | * From fast MC<br>with flat                                            |
|-------------------------------|-----------------------|------------------|---------------------|------------------------------------------------------------------------|
| $K^+ \to \pi^+ \mu^+ e^-$     | $1.3 \times 10^{-11}$ | BNL 777/865      | ~ 10%               | phase-space<br>distribution.                                           |
| $K^+ \to \pi^+ \mu^- e^+$     | $5.2 \times 10^{-10}$ | BNL 865          | ~ 10%               |                                                                        |
| $K^+ \to \pi^- \mu^+ e^+$     | $5.0 \times 10^{-10}$ | BNL 865          | ~ 10%               |                                                                        |
| $K^+ \to \pi^- e^+ e^+$       | $6.4 \times 10^{-10}$ | BNL 865          | ~ 5%                |                                                                        |
| $K^+ \to \pi^- \mu^+ \mu^+$   | 8.6×10 <sup>-11</sup> | NA48/2           | ~ 20%               |                                                                        |
| $K^+ \to \mu^- \nu e^+ e^+$   | $2.0 \times 10^{-8}$  | Geneva<br>Saclay | ~ 2%                |                                                                        |
| $K^+ \to e^- \nu \mu^+ \mu^+$ | no data               |                  | ~ 10%               |                                                                        |
| $\pi^0 \to \mu^+ e^-$         | $3.6 \times 10^{-6}$  | KTeV             | ~2%                 | NA62 Sensitivities:                                                    |
| $\pi^0 \to \mu^- e^+$         |                       |                  |                     | ~ $10^{-12}$ for K <sup>+</sup> decays ~ $10^{-11}$ for $\pi^0$ decays |

### Kaon and $\pi^{\scriptscriptstyle 0}$ LNFV decays