Maximally Supersymmetric Gauge Theories: New Theoretical Playground

Dmitri Kazakov

in collaboration with L. Bork, A. Borlakov, M. Kompaniets,
D.Tolkachev and D.Vlasenko

Motivation

Maximal SYM
Theories in D-dimensions where maximal possible number of super symmetries in realized
$D=4 \mathrm{~N}=4 \quad$ It is believed that these theories possess
$\mathrm{D}=6 \mathrm{~N}=2$
$\mathrm{D}=8 \mathrm{~N}=1$
$\mathrm{D}=10 \mathrm{~N}=1$ distinguished properties:

- integrability,
- exact solutions,
- can provide break through into non-perturbative phenomena,
- can solve the problem of UV divergences in quantum gravity

Motivation

Maximal SYM Theories in D-dimensions where maximal possible number of super symmetries in realized
$D=4 \mathrm{~N}=4 \quad$ It is believed +' from 10 dim eories possess $\mathrm{D}=6 \mathrm{~N}=2$
$\mathrm{D}=8 \mathrm{~N}-$ All of them can be
D=1 Al ortring by compions,
superstan provide break through into non-perturbative phenomena,

- can solve the problem of UV divergences in quantum gravity

Motivation

Maximal SYM Theories in D-dimensions where maximal possible number of super symmetries in realized
$\mathrm{D}=4 \mathrm{~N}=4 \quad$ It is believed +' from 10 dim eories possess $\mathrm{D}=6 \mathrm{~N}=2$
$\mathrm{D}=8 \mathrm{~N}-$ All of them can be
$D=11$ superstring by compions, phenomena,

- can solve the problem of UV divergences in quantum gravity

$\mathrm{D}=4 \mathrm{~N}=8$ Supergravity

Motivation

Maximal SYM Theories in D-dimensions where maximal possible number of super symmetries in realized
$\mathrm{D}=4 \mathrm{~N}=4 \quad$ It is believed "' from 10 dim distinguich eories possess $\mathrm{D}=6 \mathrm{~N}=2$
$\mathrm{D}=8 \mathrm{~N}$ - All of them can be
$\mathrm{D}=1$ superstring by provide break through into non-perturbative phenomena,

- can solve the problem of UV divergences in quantum gravity
$D=4$ N=8 Supergravity
\% On-shell finite up to 8 loops
© Similar to higher dim SYM

Motivation

Maximal SYM Theories in D-dimensions where maximal possible number of super symmetries in realized
$\mathrm{D}=4 \mathrm{~N}=4 \quad$ It is believed +' from 1odim ${ }^{\text {distinguich abtained }}$ eories possess $\mathrm{D}=6 \mathrm{~N}=2$
$\mathrm{D}=8 \mathrm{~N}-$ All of them can
$\mathrm{D}=1$ superstring by provide break through into non-perturbative phenomena,

- can solve the problem of UV divergences in quantum gravity

D=4 N=8 Supergravity
\% On-shell finite up to 8 loops
Similar to higher dim SYM

Study of higher dim SYM gives insight into quantum gravity

Motivation

Maximal SYM
$\mathrm{D}=4 \mathrm{~N}=4$
D=6 N=2
$\mathrm{D}=8 \mathrm{~N}=1$
$\mathrm{D}=10 \mathrm{~N}=1$
§ Partial or total cancellation of UV divergences (all bubble and triangle diagrams cancel)
\% First UV divergent diagrams at L=6/(D-4)
\% Conformal or dual conformal symmetry

- Common structure of the integrands

Object: Helicity Amplitudes on mass shell with arbitrary number of legs and loops

The case: Planar limit

$$
N_{c} \rightarrow \infty, g_{Y M}^{2} \rightarrow 0 \text { and } g_{Y M}^{2} N_{c} \text { - fixed }
$$

The aim: to get all loop (exact) result

New approach to gauge theories

Spinor-helicity formalism: S-matrix elements

Any light-like vector $\quad p_{(i)}^{2}=0$ can be presented in the form
Rev. in
BernDixonKosower 96

$$
p_{\mu}^{(i)} \mapsto\left(\sigma^{\mu}\right)_{\alpha \dot{\alpha}} p_{\mu}^{(i)}=\lambda_{\alpha}^{(i)} \tilde{\lambda}_{\dot{\alpha}}^{(i)} \quad \lambda_{\alpha} \in S L(2, \mathbb{C})
$$

$$
\epsilon^{\alpha \beta} \lambda_{\alpha}^{(i)} \lambda_{\beta}^{(j)} \equiv\langle i j\rangle=\sqrt{\left(p_{i}+p_{j}\right)^{2}} e^{i \phi_{i j}}=\sqrt{s_{i j}} e^{i \phi_{i j}}, \phi_{i j} \in \mathbb{R} \quad(\langle i j\rangle)^{*} \equiv[i j]
$$

Solutions to massless Dirac equation
Amplitudes

$$
\begin{aligned}
& \epsilon_{\mu}^{+}(p) \mapsto \epsilon_{\alpha \dot{\alpha}}^{+}(p)=\frac{\lambda_{\alpha}^{k} \tilde{\lambda}_{\dot{\alpha}}^{p}}{\sqrt{2}\langle k p\rangle} \\
& A_{3}\left(g_{1}^{-} g_{1}^{-} g_{3}^{+}\right) \sim \frac{\langle 12\rangle^{4}}{\langle 12\rangle\langle 23\rangle\langle 31\rangle}
\end{aligned}
$$

$$
A_{3}\left(g_{1}^{+} g_{1}^{+} g_{3}^{-}\right) \sim \frac{[12]^{4}}{[12][23][31]}
$$

Polarization vectors

$$
\epsilon_{\mu}^{-}(p) \mapsto \epsilon_{\alpha \dot{\alpha}}^{-}(p)=\frac{\lambda_{\alpha}^{p} \tilde{\lambda}_{\dot{\alpha}}^{k}}{\sqrt{2}[k p]}
$$

Classification

$$
\begin{gathered}
\mathrm{MHV}_{n}=\lambda_{t o t}=n-4 \\
\mathrm{~N}^{k} \mathrm{MHV}_{n}=\lambda_{t o t}=n-2 k
\end{gathered}
$$

There is no need in Faddeev-Popov ghosts, gauge fixing, BRST, Batalin-Vilkovistsky formalism,etc in this approach!

Tree-level example: Five gluons

Force carriers in QCD are gluons. Similar to photons of QED except they self interact.

Consider the five-gluon amplitude:

Used in calculation of $p p \rightarrow 3$ jets at CERN
If you evaluate this following textbook Feynman rules you find...

Result of evaluation (actually only a small part of it):

Reconsider Five-Gluon Tree

With a little Chinese magic, i.e. helicity states:
Xu , Zhang and Chang and many others

$$
\begin{aligned}
& A_{5}^{\text {tree }}\left(1^{ \pm}, 2^{+}, 3^{+}, 4^{+}, 5^{+}\right)=0 \\
& A_{5}^{\text {tree }}\left(1^{-}, 2^{-}, 3^{+}, 4^{+}, 5^{+}\right)=i \frac{\langle 12\rangle^{4}}{\langle 12\rangle\langle 23\rangle\langle 34\rangle\langle 45\rangle\langle 51\rangle} \\
& A_{5}^{\text {tree }}\left(1^{-}, 2^{+}, 3^{-}, 4^{+}, 5^{+}\right)=i \frac{\langle 13\rangle^{4}}{\langle 12\rangle\langle 23\rangle\langle 34\rangle\langle 45\rangle\langle 51\rangle}
\end{aligned}
$$

Use a better organization of color charges:

$$
\mathcal{A}_{5}=\sum_{\text {perms }} \operatorname{Tr}\left(T^{a_{1}} T^{a_{2}} T^{a_{3}} T^{a_{4}} T^{a_{5}}\right) A_{5}(1,2,3,4,5)
$$

Motivated by the color organization of open string amplitudes.

Recent progress in multi-leg FD calculations

Recent progress in multi-leg FD calculations

UV divergences in all Loops

$D=4 \mathrm{~N}=4 \quad$ No UV div
IR div on shell
$D=6 \mathrm{~N}=2 \quad$ UV div from 3 loops No IR div
$D=8 \mathrm{~N}=1 \quad$ UV div from 1 loop No IR div
$\mathrm{D}=10 \mathrm{~N}=1 \quad$ UV div from 1 loop No IR div

All these theories are non-renormalizable by power counting
The coupling g^{2} has dimension $\quad\left[g^{2}\right]=\frac{1}{M^{D-4}}$
The aim: to get all loop (exact) result for the leading (at least) divs

Colour decomposition

Colour ordered amplitude

$$
\mathcal{A}_{n}^{a_{1} \ldots a_{n}}\left(p_{1}^{\lambda_{1}} \ldots p_{n}^{\lambda_{n}}\right)=\sum_{\sigma \in S_{n} / Z_{n}} \operatorname{Tr}\left[\sigma\left(T^{a_{1}} \ldots T^{a_{n}}\right)\right] A_{n}\left(\sigma\left(p_{1}^{\lambda_{1}} \ldots p_{n}^{\lambda_{n}}\right)\right)+\mathcal{O}\left(1 / N_{c}\right)
$$

Planar Limit $\quad N_{c} \rightarrow \infty, g_{Y M}^{2} \rightarrow 0$ and $g_{Y M}^{2} N_{c}$ - fixed

Four-point amplitude

$$
\begin{aligned}
& \mathrm{A}_{4}(\mathrm{l}), \text { phys. }(1,2,3,4)=\mathrm{T}^{1} \mathrm{~A}_{4}(0)(1,2,3,4) \mathrm{M}^{(1)}(\mathrm{s}, \mathrm{t})+\mathrm{T}^{2} \mathrm{~A}_{4}(0)(1,2,4,3) \mathrm{M}^{(1)}(\mathrm{s}, \mathrm{u})+\mathrm{T}^{3} \mathrm{~A}_{4}(0)(1,4,2,3) \mathrm{M}^{(1)}(\mathrm{t}, \mathrm{u}) . \\
& \mathrm{T}^{1}=\operatorname{Tr}\left(\mathrm{T}^{\mathrm{a} 1} \mathrm{~T}^{\mathrm{a} 2} \mathrm{~T}^{\mathrm{a} 3} \mathrm{~T}^{\mathrm{a} 4}\right)+\operatorname{Tr}\left(\mathrm{T}^{\mathrm{a} 1} \mathrm{~T}^{\mathrm{a} 4} \mathrm{~T}^{\mathrm{a} 3} \mathrm{~T}^{\mathrm{a} 2}\right), \\
& \mathrm{T}^{2}=\operatorname{Tr}\left(\mathrm{T}^{\mathrm{a} 1} \mathrm{~T}^{\mathrm{a} 2} \mathrm{~T}^{\mathrm{a} 4} \mathrm{~T}^{\mathrm{a3}}\right)+\operatorname{Tr}\left(\mathrm{T}^{\mathrm{a} 1} \mathrm{~T}^{\mathrm{a} 3} \mathrm{~T}^{\mathrm{a} 4} \mathrm{~T}^{\mathrm{a} 2}\right), \\
& \mathrm{T}^{3}=\operatorname{Tr}\left(\mathrm{T}^{\mathrm{a} 1} \mathrm{~T}^{\mathrm{a} 4} \mathrm{~T}^{\mathrm{a} 2} \mathrm{~T}^{\mathrm{a} 3}\right)+\operatorname{Tr}\left(\mathrm{T}^{\mathrm{a} 1} \mathrm{~T}^{\mathrm{a} 3} \mathrm{~T}^{\mathrm{a} 2} \mathrm{~T}^{\mathrm{a} 4}\right)
\end{aligned}
$$

Tree level amplitude usually has a simple universal form proportional to the delta function (conservation of momenta), in SUSY case conservation of supercharge in on shell momentum superspace

Perturbation Expansion for the Amplitudes for any D

$A_{4} / A_{4}^{\text {tree }}$

No bubbles
No Triangles
$-g^{2} \quad$ st \square

$-g^{6}$ \square $+$ $+s^{2} t$ \square . $+s t^{2}$
\square

First UV div at $\mathrm{L}=[6 /(\mathrm{D}-4)]$ loops

IR finite

Perturbation Expansion for the Amplitudes for any D

$A_{4} / A_{4}^{\text {tree }}$

No bubbles
No Triangles

First UV div at L=[6/(D-4)] loops

IR finite

Universal expansion for any D in maximal SYM due to Dual conformal invariance

Leading Divergences from Generalized «Renormalization Group»

- In renormalizable theories the leading divergences can be found from the 1-loop term due to the renormalization group, in particular, for a single coupling theory the coefficient of $1 / \epsilon^{n}$ in \mathbf{n} loops in given by

$$
a_{n}^{(n)}=\left(a_{1}^{(1)}\right)^{n}
$$

Leading Divergences from Generalized «Renormalization Group»

- In renormalizable theories the leading divergences can be found from the 1-loop term due to the renormalization group, in particular, for a single coupling theory the coefficient of $1 / \epsilon^{n}$ in \mathbf{n} loops in given by

$$
a_{n}^{(n)}=\left(a_{1}^{(1)}\right)^{n}
$$

- In non-renormalizable theories the leading divergences can be also found from 1-loop due to locality and R-operation

$$
\mathcal{R}^{\prime} G=1-\sum_{\gamma} K \mathcal{R}_{\gamma}^{\prime}+\sum_{\gamma, \gamma^{\prime}} K \mathcal{R}_{\gamma}^{\prime} K \mathcal{R}_{\gamma^{\prime}}^{\prime}-\ldots
$$

Leading Divergences from Generalized «Renormalization Group»

- In renormalizable theories the leading divergences can be found from the 1-loop term due to the renormalization group, in particular, for a single coupling theory the coefficient of $1 / \epsilon^{n}$ in \mathbf{n} loops in given by

$$
a_{n}^{(n)}=\left(a_{1}^{(1)}\right)^{n}
$$

- In non-renormalizable theories the leading divergences can be also found from 1-loop due to locality and R-operation

$$
\mathcal{R}^{\prime} G=1-\sum_{\gamma} K \mathcal{R}_{\gamma}^{\prime}+\sum_{\gamma, \gamma^{\prime}} K \mathcal{R}_{\gamma}^{\prime} K \mathcal{R}_{\gamma^{\prime}}^{\prime}-\ldots
$$

$$
\mathcal{R}^{\prime} G_{n}=\frac{A_{n}^{(n)}\left(\mu^{2}\right)^{n \epsilon}}{\epsilon^{n}}+\frac{A_{n-1}^{(n)}\left(\mu^{2}\right)^{(n-1) \epsilon}}{\epsilon^{n}}+\ldots+\frac{A_{1}^{(n)}\left(\mu^{2}\right)^{\epsilon}}{\epsilon^{n}}
$$

$$
\text { Leading pole }+\frac{B_{n}^{(n)}\left(\mu^{2}\right)^{n \epsilon}}{\epsilon^{n-1}}+\frac{B_{n-1}^{(n)}\left(\mu^{2}\right)^{(n-1) \epsilon}}{\epsilon^{n-1}}+\ldots+\frac{B_{1}^{(n)}\left(\mu^{2}\right)^{\epsilon}}{\epsilon^{n-1}}
$$ + lower order terms

SubLeading pole

$$
\begin{array}{ll}
A_{1}^{(n)}, B_{1}^{(n)} & \text { 1-loop graph } \\
B_{2}^{(n)} & \text { 2-loop graph }
\end{array}
$$

R-operation and Recurrence Relation

$\mathrm{D}=8 \mathrm{~N}=1$

Horizontal boxes

R-operation and Recurrence Relation

$\mathrm{D}=8 \mathrm{~N}=1$

Horizontal boxes

R-operation and Recurrence Relation

$\mathrm{D}=8 \mathrm{~N}=1$

Perturbation Expansion for the Amplitudes

D=6 N=2

Result up to 5 loops

Leading Divergences

$$
L . P .=2 s t g^{4}\left[g^{2} \frac{s+t}{6 \epsilon}+g^{4} \frac{s^{2}+s t+t^{2}}{36 \epsilon^{2}}+g^{6} \frac{s^{3}+\frac{2}{5} s^{2} t+\frac{2}{5} s t^{2}+t^{3}}{216 \epsilon^{3}}\right]
$$

Perturbation Expansion for the Amplitudes

$\mathrm{D}=6 \mathrm{~N}=2$

Result up to 5 loops

Leading Divergences

$$
L . P .=2 s t g^{4}\left[g^{2} \frac{s+t}{6 \epsilon_{2}}+g^{4} \frac{s^{2}+s t+t^{2}}{36 \epsilon^{2}}+g^{6} \frac{s^{3}+\frac{2}{5} s^{2} t+\frac{2}{5} s t^{2}+t^{3}}{216 \epsilon^{3}}\right]
$$

Perturbation Expansion for the Amplitudes

$\mathrm{D}=6 \mathrm{~N}=2$

Result up to 5 loops

Leading Divergences

$$
L . P .=2 s t g^{4}\left[g^{2} \frac{s+t}{6 \epsilon_{4}}+g^{4} \frac{s^{2}+s t+t^{2}}{36 \epsilon^{2}}+g^{6} \frac{s^{3}+\frac{2}{5} s^{2} t+\frac{2}{5} s t^{2}+t^{3}}{216 \epsilon^{3}}\right]
$$

Leading powers of $\mathbf{s}>\mathbf{0}$

$$
\sum_{n=1}^{\infty}\left(\frac{g^{2} s}{6 \epsilon}\right)^{n}=\frac{\frac{g^{2} s}{6 \epsilon}}{1-\frac{g^{2} s}{6 \epsilon}} \quad \downarrow \quad \begin{gathered}
\text { Pole! } \\
\epsilon \rightarrow+0
\end{gathered}
$$

Perturbation Expansion for the Amplitudes

$\mathrm{D}=6 \mathrm{~N}=2$

Result up to 5 loops

Leading Divergences

$$
L . P .=2 s t g^{4}\left[g^{2} \frac{s+t}{6 \epsilon_{\uparrow}}+g^{4} \frac{s^{2}+s t+t^{2}}{36 \epsilon^{2}}+g^{6} \frac{s^{3}+\frac{2}{5} s^{2} t+\frac{2}{5} s t^{2}+t^{3}}{216 \epsilon^{3}}\right]
$$

Leading powers of $\mathbf{s}>\mathbf{0}$

$$
\sum_{n=1}^{\infty}\left(\frac{g^{2} s}{6 \epsilon}\right)^{n}=\frac{\frac{g^{2} s}{6 \epsilon}}{1-\frac{g^{2} s}{6 \epsilon}} \quad<\quad \begin{gathered}
\text { Pole! } \\
\epsilon \rightarrow+0
\end{gathered}
$$

Leading powers of $t<0$

$$
\sum_{n=1}^{\infty}\left(\frac{g^{2} t}{6 \epsilon}\right)^{n}=\frac{\frac{g^{2} t}{6 \epsilon}}{1-\frac{g^{2} t}{6 \epsilon}} \quad \rightarrow \quad \epsilon \rightarrow+0
$$

Perturbation Expansion for the Amplitudes

$\mathrm{D}=6 \mathrm{~N}=2$

Result up to 5 loops

Leading Divergences

$$
L . P .=2 s t g^{4}\left[g^{2} \frac{s+t}{6 \epsilon_{4}}+g^{4} \frac{s^{2}+s t+t^{2}}{36 \epsilon^{2}}+g^{6} \frac{s^{3}+\frac{2}{5} s^{2} t+\frac{2}{5} s t^{2}+t^{3}}{216 \epsilon^{3}}\right]
$$

Leading powers of $\mathbf{s}>\mathbf{0}$

$$
\sum_{n=1}^{\infty}\left(\frac{g^{2} s}{6 \epsilon}\right)^{n}=\frac{\frac{g^{2} s}{6 \epsilon}}{1-\frac{g^{2} s}{6 \epsilon}} \quad \downarrow \quad \begin{gathered}
\text { Pole! } \\
\epsilon \rightarrow+0
\end{gathered}
$$

Leading powers of $\mathrm{t}<0$

$$
\sum_{n=1}^{\infty}\left(\frac{g^{2} t}{6 \epsilon}\right)^{n}=\frac{\frac{g^{2} t}{6 \epsilon}}{1-\frac{g^{2} t}{6 \epsilon}} \quad \rightarrow \quad \epsilon \rightarrow+0
$$

Compare D=4 YM

$$
g^{2}=\frac{g_{B}^{2}}{1-\frac{11 C_{2}}{3} \frac{g_{B}^{2}}{\epsilon}}
$$

Perturbation Expansion for the Amplitudes

$\mathrm{D}=6 \mathrm{~N}=2$

Result up to 5 loops

Leading Divergences

$$
L . P .=2 s t g^{4}\left[g^{2} \frac{s+t}{6 \epsilon_{\leftarrow}}+g^{4} \frac{s^{2}+s t+t^{2}}{36 \epsilon^{2}}+g^{6} \frac{s^{3}+\frac{2}{5} s^{2} t+\frac{2}{5} s t^{2}+t^{3}}{216 \epsilon^{3}}\right]
$$

Leading powers of $\mathbf{s}>\mathbf{0}$

$$
\sum_{n=1}^{\infty}\left(\frac{g^{2} s}{6 \epsilon}\right)^{n}=\frac{\frac{g^{2} s}{6 \epsilon}}{1-\frac{g^{2} s}{6 \epsilon}} \quad \downarrow \quad \begin{gathered}
\text { Pole! } \\
\epsilon \rightarrow+0
\end{gathered}
$$

Leading powers of $\mathrm{t}<0$

$$
\sum_{n=1}^{\infty}\left(\frac{g^{2} t}{6 \epsilon}\right)^{n}=\frac{\frac{g^{2} t}{6 \epsilon}}{1-\frac{g^{2} t}{6 \epsilon}} \quad \rightarrow \quad \epsilon \rightarrow+0
$$

Compare D=4 YM

$$
g^{2}=\frac{g_{B}^{2}}{1-\frac{11 C_{2}}{3} \frac{g_{B}^{2}}{\epsilon}}
$$

General case will be given below

Perturbation Expansion for the Amplitudes

$\mathrm{D}=8 \mathrm{~N}=1 \quad$ Leading Divergences

Result up to 4 loops

$$
\begin{aligned}
L . P . & =-s t\left[g^{2} \frac{1}{3!\epsilon}+g^{4} \frac{s^{2}+t^{2}}{3!4!\epsilon^{2}}+g^{6} \frac{4}{3} \frac{15 s^{4}-s^{3} t+s^{2} t^{2}-s t^{3}+15 t^{4}}{3!4!5!\epsilon^{3}}\right. \\
& \left.+g^{8} \frac{1}{63} \frac{16770 s^{6}-536 s^{5} t+412 s^{4} t^{2}-384 s^{3} t^{3}+412 s^{2} t^{4}-536 s t^{5}+16770 t^{6}}{3!4!5!6!\epsilon^{4}}\right] .
\end{aligned}
$$

Perturbation Expansion for the Amplitudes

$\mathrm{D}=8 \mathrm{~N}=1 \quad$ Leading Divergences

Result up to 4 loops

$$
\begin{aligned}
L . P . & =-s t\left[g^{2} \frac{1}{3!\epsilon}+g^{4} \frac{s^{2}+t^{2}}{3!4!\epsilon^{2}}+g^{6} \frac{4}{3} \frac{15 s^{4}-s^{3} t+s^{2} t^{2}-s t^{3}+15 t^{4}}{3!4!5!\epsilon^{3}}\right. \\
& \left.+g^{8} \frac{1}{63} \frac{16770 s^{6}-536 s^{5} t+412 s^{4} t^{2}-384 s^{3} t^{3}+412 s^{2} t^{4}-536 s t^{5}+16770 t^{6}}{3!4!5!6!\epsilon^{4}}\right] .
\end{aligned}
$$

D=10 N=1 Leading Divergences Result up to 4 loops

$$
\left.\begin{array}{rl}
L . P . & =-s t\left[g^{2} \frac{s+t}{5!\epsilon}+g^{4} \frac{8 s^{4}+2 s^{3} t+2 s t^{3}+8 t^{4}}{5!7!\epsilon^{2}}\right. \\
& +g^{6} \frac{2\left(2095 s^{7}+115 s^{6} t+33 s^{5} t^{2}-11 s^{4} t^{3}-11 s^{3} t^{4}+33 s^{2} t^{5}+115 s t^{6}+2095 t^{7}\right)}{5!7!7!45 \epsilon^{3}} \\
& +g^{8} \frac{32\left(211218880 s^{10}+753490 s^{9} t-1395096 s^{8} t^{2}+1125763 s^{7} t^{3}-916916 s^{6} t^{4}\right.}{13!7!7!5!5 \epsilon^{4}} \\
+ & \left.+843630 s^{5} t^{5}-916916 s^{4} t^{6}+1125763 s^{3} t^{7}-1395096 s^{2} t^{8}+753490 s t^{9}+211218880 t^{10}\right) \\
13!7!7!5!5 \epsilon^{4}
\end{array}\right]
$$

Perturbation Expansion for the Amplitudes

$\mathrm{D}=8 \mathrm{~N}=1 \quad$ Leading Divergences

Result up to 4 loops

$$
\begin{aligned}
L . P . & =-s t\left[g^{2} \frac{1}{3!\epsilon}+g^{4} \frac{s^{2}+t^{2}}{3!4!\epsilon^{2}}+g^{6} \frac{4}{3} \frac{15 s^{4}-s^{3} t+s^{2} t^{2}-s t^{3}+15 t^{4}}{3!4!5!\epsilon^{3}}\right. \\
& \left.+g^{8} \frac{1}{63} \frac{16770 s^{6}-536 s^{5} t+412 s^{4} t^{2}-384 s^{3} t^{3}+412 s^{2} t^{4}-536 s t^{5}+16770 t^{6}}{3!4!5!6!\epsilon^{4}}\right] .
\end{aligned}
$$

D=10 N=1 Leading Divergences Result up to 4 loops

$$
\begin{aligned}
& L . P .=-s t\left[g^{2} \frac{s+t}{5!\epsilon}+g^{4} \frac{8 s^{4}+2 s^{3} t+2 s t^{3}+8 t^{4}}{5!7!\epsilon^{2}}\right. \\
&+g^{6} \frac{2\left(2095 s^{7}+115 s^{6} t+33 s^{5} t^{2}-11 s^{4} t^{3}-11 s^{3} t^{4}+33 s^{2} t^{5}+115 s t^{6}+2095 t^{7}\right)}{5!7!7!45 \epsilon^{3}} \\
&+g^{8} \frac{32\left(211218880 s^{10}+753490 s^{9} t-1395096 s^{8} t^{2}+1125763 s^{7} t^{3}-916916 s^{6} t^{4}\right.}{13!7!7!5!5 \epsilon^{4}} \\
&\left.+\frac{\left.+843630 s^{5} t^{5}-916916 s^{4} t^{6}+1125763 s^{3} t^{7}-1395096 s^{2} t^{8}+753490 s t^{9}+211218880 t^{10}\right)}{13!7!7!5!5 \epsilon^{4}}\right]
\end{aligned}
$$

R-operation and Recurrence Relation

$\mathrm{D}=6 \mathrm{~N}=2$

Horizontal boxes + tennis court

$$
n A_{n}=-A_{n-1} \quad \longrightarrow \quad A_{n}=(-1)^{n} \frac{2}{n!} \quad\left(-g^{2} s\right)^{n}
$$

R-operation and Recurrence Relation

$\mathrm{D}=6 \mathrm{~N}=2$
Horizontal boxes + tennis court

$$
n A_{n}=-A_{n-1} \quad \longrightarrow \quad A_{n}=(-1)^{n} \frac{2}{n!} \quad\left(-g^{2} s\right)^{n}
$$

Horizontal boxes + double tennis court

R-operation and Recurrence Relation

$$
n A_{n}=-A_{n-1} \quad \longrightarrow \quad A_{n}=(-1)^{n} \frac{2}{n!} \quad\left(-g^{2} s\right)^{n}
$$

Horizontal boxes + double tennis court

$$
n A_{n}^{t}=-\frac{1}{3} A_{n-1}^{t}, \quad n A_{n}^{s}=-A_{n-1}^{s}+\frac{1}{3} A_{n-1}^{t}
$$

R-operation and Recurrence Relation

$\mathrm{D}=6 \mathrm{~N}=2$

Horizontal boxes + tennis court

A_{n-1}

$$
n A_{n}=-A_{n-1} \quad \longrightarrow \quad A_{n}=(-1)^{n} \frac{2}{n!} \quad\left(-g^{2} s\right)^{n}
$$

Horizontal boxes + double tennis court

$$
\begin{gathered}
n A_{n}^{t}=-\frac{1}{3} A_{n-1}^{t}, \\
A_{n}^{t}=\frac{(-1)^{n}}{3^{n-3}} \frac{1}{n!}, \quad A_{n}^{s}=\frac{1}{2} \frac{(-1)^{n}}{3^{n-3}} \frac{1}{n!}-\frac{1}{2}(-1)^{n} \frac{1}{n!}
\end{gathered}
$$

R-operation and Recurrence Relation

$\mathrm{D}=6 \mathrm{~N}=2$

Horizontal boxes + tennis court

$$
n A_{n}=-A_{n-1} \quad \longrightarrow \quad A_{n}=(-1)^{n} \frac{2}{n!} \quad\left(-g^{2} s\right)^{n}
$$

Horizontal boxes + double tennis court

$$
\begin{aligned}
& n A_{n}^{t}=-\frac{1}{3} A_{n-1}^{t}, \\
& A_{n}^{t}=\frac{(-1)^{n}}{3^{n-3}} \frac{1}{n!}, \quad A_{n}^{s}=\frac{1}{2} \frac{(-1)^{n}}{3^{n-3}} \frac{1}{n!}-\frac{1}{2}(-1)^{n} \frac{1}{n!} \\
& \left(-g^{2} s\right)^{n-1}\left(-g^{2} t\right)
\end{aligned}
$$

R-operation and Recurrence Relation

$\mathrm{D}=6 \mathrm{~N}=2$

Horizontal boxes + tennis court

$$
n A_{n}=-A_{n-1} \quad \longrightarrow \quad A_{n}=(-1)^{n} \frac{2}{n!} \quad\left(-g^{2} s\right)^{n}
$$

Horizontal boxes + double tennis court

$$
\begin{array}{cc}
n A_{n}^{t}=-\frac{1}{3} A_{n-1}^{t}, & n A_{n}^{s}=-A_{n-1}^{s}+\frac{1}{3} A_{n-1}^{t} \\
A_{n}^{t}=\frac{(-1)^{n}}{3^{n-3}} \frac{1}{n!}, & A_{n}^{s}=\frac{1}{2} \frac{(-1)^{n}}{3^{n-3}} \frac{1}{n!}-\frac{1}{2}(-1)^{n} \frac{1}{n!} \\
\left(-g^{2} s\right)^{n-1}\left(-g^{2} t\right) & \left(-g^{2} s\right)^{n}
\end{array}
$$

R-operation and Recurrence Relation

D=6 N=2

Horizontal boxes + tennis court

A_{n-1}

$$
n A_{n}=-A_{n-1} \quad \longrightarrow \quad A_{n}=(-1)^{n} \frac{2}{n!} \quad\left(-g^{2} s\right)^{n}
$$

Horizontal boxes + double tennis court

$$
\begin{array}{cc}
n A_{n}^{t}=-\frac{1}{3} A_{n-1}^{t}, & n A_{n}^{s}=-A_{n-1}^{s}+\frac{1}{3} A_{n-1}^{t} \\
A_{n}^{t}=\frac{(-1)^{n}}{3^{n-3}} \frac{1}{n!}, & A_{n}^{s}=\frac{1}{2} \frac{(-1)^{n}}{3^{n-3}} \frac{1}{n!}-\frac{1}{2}(-1)^{n} \frac{1}{n!} \\
\left(-g^{2} s\right)^{n-1}\left(-g^{2} t\right) & \left(-g^{2} s\right)^{n}
\end{array}
$$

- Similar relations one can get for all other series
- All of them have $1 / n$! behavior
- Number of these series group as n !

Ladder diagrams (leading divs)

$\mathrm{D}=8 \mathrm{~N}=1$

Horizontal boxes
$A_{n}^{(n)}=s^{n-1} A_{n}$
$n A_{n}=-\frac{2}{4!} A_{n-1}+\frac{2}{5!} \sum_{k=1}^{n-2} A_{k} A_{n-1-k}, \quad n \geq 3 \quad A_{1}=1 / 6 \quad$ 1 loop box

Ladder diagrams (leading divs)

$\mathrm{D}=8 \mathrm{~N}=1$

Horizontal boxes
$A_{n}^{(n)}=s^{n-1} A_{n}$
$n A_{n}=-\frac{2}{4!} A_{n-1}+\frac{2}{5!} \sum_{k=1}^{n-2} A_{k} A_{n-1-k}, \quad n \geq 3 \quad A_{1}=1 / 6 \quad$ 1 loop box
Summation

$$
\Sigma_{m}(z)=\sum_{n=m}^{\infty} A_{n}(-z)^{n}
$$

Ladder diagrams (leading divs)

$\mathrm{D}=8 \mathrm{~N}=1$

Horizontal boxes
$A_{n}^{(n)}=s^{n-1} A_{n}$
$n A_{n}=-\frac{2}{4!} A_{n-1}+\frac{2}{5!} \sum_{k=1}^{n-2} A_{k} A_{n-1-k}, \quad n \geq 3 \quad A_{1}=1 / 6 \quad$ 1 loop box
Summation $\quad \Sigma_{m}(z)=\sum_{n=m}^{\infty} A_{n}(-z)^{n}$
$-\frac{d}{d z} \Sigma_{3}=-\frac{2}{4!} \Sigma_{2}+\frac{2}{5!} \Sigma_{1} \Sigma_{1}$.

Ladder diagrams (leading divs)

$\mathrm{D}=8 \mathrm{~N}=1$

Horizontal boxes

$$
A_{n}^{(n)}=s^{n-1} A_{n}
$$

$$
n A_{n}=-\frac{2}{4!} A_{n-1}+\frac{2}{5!} \sum_{k=1}^{n-2} A_{k} A_{n-1-k}, \quad n \geq 3 \quad A_{1}=1 / 6 \quad \text { 1 loop box }
$$

Summation $\quad \Sigma_{m}(z)=\sum_{n=m}^{\infty} A_{n}(-z)^{n}$
$-\frac{d}{d z} \Sigma_{3}=-\frac{2}{4!} \Sigma_{2}+\frac{2}{5!} \Sigma_{1} \Sigma_{1} . \quad \Sigma_{3}=\Sigma_{1}+A_{1} z-A_{2} z^{2}, \quad \Sigma_{2}=\Sigma_{1}+A_{1} z, \quad A_{1}=\frac{1}{3!}, \quad A_{2}=-\frac{1}{3!4!}$

Ladder diagrams (leading divs)

$\mathrm{D}=8 \mathrm{~N}=1$

$$
A_{n}^{(n)}=s^{n-1} A_{n}
$$

$$
n A_{n}=-\frac{2}{4!} A_{n-1}+\frac{2}{5!} \sum_{k=1}^{n-2} A_{k} A_{n-1-k}, \quad n \geq 3 \quad A_{1}=1 / 6 \quad \text { 1 loop box }
$$

$$
\text { Summation } \quad \Sigma_{m}(z)=\sum_{n=m}^{\infty} A_{n}(-z)^{n}
$$

$$
-\frac{d}{d z} \Sigma_{3}=-\frac{2}{4!} \Sigma_{2}+\frac{2}{5!} \Sigma_{1} \Sigma_{1} . \quad \Sigma_{3}=\Sigma_{1}+A_{1} z-A_{2} z^{2}, \quad \Sigma_{2}=\Sigma_{1}+A_{1} z, \quad A_{1}=\frac{1}{3!}, \quad A_{2}=-\frac{1}{3!4!}
$$

$$
\Sigma_{A} \equiv \Sigma_{1}
$$

Diff eqn

$$
\frac{d}{d z} \Sigma_{A}=-\frac{1}{3!}+\frac{2}{4!} \Sigma_{A}-\frac{2}{5!} \Sigma_{A}^{2} \quad z=g^{2} s^{2} / \epsilon
$$

Ladder diagrams (leading divs)

$\mathrm{D}=8 \mathrm{~N}=1$

Horizontal boxes
$n A_{n}=-\frac{2}{4!} A_{n-1}+\frac{2}{5!} \sum_{k=1}^{n-2} A_{k} A_{n-1-k}, \quad n \geq 3 \quad A_{1}=1 / 6 \quad$ 1 loop box
Summation

$$
\Sigma_{m}(z)=\sum_{n=m}^{\infty} A_{n}(-z)^{n}
$$

$$
\begin{gathered}
-\frac{d}{d z} \Sigma_{3}=-\frac{2}{4!} \Sigma_{2}+\frac{2}{5!} \Sigma_{1} \Sigma_{1} . \quad \Sigma_{3}=\Sigma_{1}+A_{1} z-A_{2} z^{2}, \quad \Sigma_{2}=\Sigma_{1}+A_{1} z, \quad A_{1}=\frac{1}{3!}, \quad A_{2}=-\frac{1}{3!4!} \\
\Sigma_{A} \equiv \Sigma_{1} \quad \text { Diff eqn } \quad \frac{d}{d z} \Sigma_{A}=-\frac{1}{3!}+\frac{2}{4!} \Sigma_{A}-\frac{2}{5!} \Sigma_{A}^{2} \quad z=g^{2} s^{2} / \epsilon
\end{gathered}
$$

$$
\Sigma_{A}(z)=-\sqrt{5 / 3} \frac{4 \tan (z /(8 \sqrt{15}))}{1-\tan (z /(8 \sqrt{15})) \sqrt{5 / 3}}=\sqrt{10} \frac{\sin (z /(8 \sqrt{15}))}{\sin \left(z /(8 \sqrt{15})-z_{0}\right)}
$$

$$
\Sigma(z)=-\left(z / 6+z^{2} / 144+z^{3} / 2880+7 z^{4} / 414720+\ldots\right) \quad z_{0}=\arcsin (\sqrt{3 / 8})
$$

All loop Exact Recurrence Relation

$\mathrm{D}=6 \mathrm{~N}=2$

s-channel term $\quad S_{n}(s, t) \quad$ t-channel term $\quad T_{n}(s, t) \quad T_{n}(s, t)=S_{n}(t, s)$
Exact relation for ALL diagrams

$$
\begin{gathered}
n S_{n}(s, t)=-2 s \int_{0}^{1} d x \int_{0}^{x} d y\left(S_{n-1}\left(s, t^{\prime}\right)+T_{n-1}\left(s, t^{\prime}\right)\right)
\end{gathered} \begin{gathered}
n \geq 4 \\
t^{\prime}=t(x-y)-s y
\end{gathered} S_{3}=-s / 3, T_{3}=-t / 3>
$$

All loop Exact Recurrence Relation

$\mathrm{D}=6 \mathrm{~N}=2$

s-channel term $\quad S_{n}(s, t) \quad$ t-channel term $\quad T_{n}(s, t) \quad T_{n}(s, t)=S_{n}(t, s)$
Exact relation for ALL diagrams

$$
\begin{aligned}
& n S_{n}(s, t)=-2 s \int_{0}^{1} d x \int_{0}^{x} d y\left(S_{n-1}\left(s, t^{\prime}\right)+T_{n-1}\left(s, t^{\prime}\right)\right) \\
& n \geq 4 \\
& t^{\prime}=t(x-y)-s y \\
& S_{3}=-s / 3, T_{3}=-t / 3 \\
& \text { Summation } \\
& \Sigma_{k}(s, t, z)=\sum_{n=k}^{\infty}(-z)^{n} S_{n}(s, t)
\end{aligned}
$$

All loop Exact Recurrence Relation

$\mathrm{D}=6 \mathrm{~N}=2$

s-channel term $\quad S_{n}(s, t) \quad$ t-channel term $\quad T_{n}(s, t) \quad T_{n}(s, t)=S_{n}(t, s)$

Exact relation for ALL diagrams

$$
n S_{n}(s, t)=-2 s \int_{0}^{1} d x \int_{0}^{x} d y\left(S_{n-1}\left(s, t^{\prime}\right)+T_{n-1}\left(s, t^{\prime}\right)\right)
$$

$$
\begin{gathered}
n \geq 4 \\
t^{\prime}=t(x-y)-s y
\end{gathered}
$$

$$
S_{3}=-s / 3, T_{3}=-t / 3
$$

Summation

$$
\Sigma_{k}(s, t, z)=\sum_{n=k}^{\infty}(-z)^{n} S_{n}(s, t)
$$

Diff eqn

$$
\frac{d}{d z} \Sigma_{4}(s, t, z)=\left.2 s \int_{0}^{1} d x \int_{0}^{x} d y\left(\Sigma_{3}\left(s, t^{\prime}, z\right)+\Sigma_{3}\left(t^{\prime}, s, z\right)\right)\right|_{t^{\prime}=x t+y u}
$$

All loop Exact Recurrence Relation

$\mathrm{D}=6 \mathrm{~N}=2$

s-channel term $\quad S_{n}(s, t) \quad$ t-channel term $\quad T_{n}(s, t) \quad T_{n}(s, t)=S_{n}(t, s)$

Exact relation for ALL diagrams

$$
n S_{n}(s, t)=-2 s \int_{0}^{1} d x \int_{0}^{x} d y\left(S_{n-1}\left(s, t^{\prime}\right)+T_{n-1}\left(s, t^{\prime}\right)\right)
$$

$$
\begin{gathered}
n \geq 4 \\
t^{\prime}=t(x-y)-s y
\end{gathered}
$$

$$
S_{3}=-s / 3, T_{3}=-t / 3
$$

Summation

$$
\Sigma_{k}(s, t, z)=\sum_{n=k}^{\infty}(-z)^{n} S_{n}(s, t)
$$

Diff eqn

$$
\frac{d}{d z} \Sigma_{4}(s, t, z)=\left.2 s \int_{0}^{1} d x \int_{0}^{x} d y\left(\Sigma_{3}\left(s, t^{\prime}, z\right)+\Sigma_{3}\left(t^{\prime}, s, z\right)\right)\right|_{t^{\prime}=x t+y u}
$$

$$
\Sigma_{4}(s, t, z)=\Sigma_{3}(s, t, z)+S_{3}(s, t) z^{3} \quad \Sigma(s, t, z)=z^{-2} \Sigma_{3}(s, t, z)
$$

All loop Exact Recurrence Relation

$\mathrm{D}=6 \mathrm{~N}=2$

s-channel term $\quad S_{n}(s, t) \quad$ t-channel term $\quad T_{n}(s, t) \quad T_{n}(s, t)=S_{n}(t, s)$

Exact relation for ALL diagrams

$$
n S_{n}(s, t)=-2 s \int_{0}^{1} d x \int_{0}^{x} d y\left(S_{n-1}\left(s, t^{\prime}\right)+T_{n-1}\left(s, t^{\prime}\right)\right)
$$

$$
\begin{gathered}
n \geq 4 \\
t^{\prime}=t(x-y)-s y
\end{gathered}
$$

$$
S_{3}=-s / 3, T_{3}=-t / 3
$$

Summation

$$
\Sigma_{k}(s, t, z)=\sum_{n=k}^{\infty}(-z)^{n} S_{n}(s, t)
$$

Diff eqn

$$
\frac{d}{d z} \Sigma_{4}(s, t, z)=\left.2 s \int_{0}^{1} d x \int_{0}^{x} d y\left(\Sigma_{3}\left(s, t^{\prime}, z\right)+\Sigma_{3}\left(t^{\prime}, s, z\right)\right)\right|_{t^{\prime}=x t+y u}
$$

$$
\Sigma_{4}(s, t, z)=\Sigma_{3}(s, t, z)+S_{3}(s, t) z^{3} \quad \Sigma(s, t, z)=z^{-2} \Sigma_{3}(s, t, z)
$$

$$
\frac{d}{d z} \Sigma(s, t, z)=s-\frac{2}{z} \Sigma(s, t, z)+\left.2 s \int_{0}^{1} d x \int_{0}^{x} d y\left(\Sigma\left(s, t^{\prime}, z\right)+\Sigma\left(t^{\prime}, s, z\right)\right)\right|_{t^{\prime}=x t+y u}
$$

All loop Exact Recurrence Relation

$\mathrm{D}=8 \mathrm{~N}=1$

s-channel term

$$
S_{n}(s, t) \text { t-channel term } \quad T_{n}(s, t) \quad T_{n}(s, t)=S_{n}(t, s)
$$

Exact relation for ALL diagrams

$$
\begin{aligned}
& \quad n S_{n}(s, t)=-\left.2 s^{2} \int_{0}^{1} d x \int_{0}^{x} d y y(1-x)\left(S_{n-1}\left(s, t^{\prime}\right)+T_{n-1}\left(s, t^{\prime}\right)\right)\right|_{t^{\prime}=t x+y u} \\
& +\quad s^{4} \int_{0}^{1} d x x^{2}(1-x)^{2} \sum_{k=1}^{n-2} \sum_{p=0}^{2 k-2} \frac{1}{p!(p+2)!} \frac{d^{p}}{d t^{\prime p}}\left(S_{k}\left(s, t^{\prime}\right)+T_{k}\left(s, t^{\prime}\right)\right) \times \\
& S_{1}=\frac{1}{12}, T_{1}=\frac{1}{12} \quad \times\left.\frac{d^{p}}{d t^{\prime p}}\left(S_{n-1-k}\left(s, t^{\prime}\right)+T_{n-1-k}\left(s, t^{\prime}\right)\right)\right|_{t^{\prime}=-s x}(t s x(1-x))^{p}
\end{aligned}
$$

All loop Exact Recurrence Relation

$\mathrm{D}=8 \mathrm{~N}=1$

s-channel term

$$
S_{n}(s, t) \text { t-channel term } \quad T_{n}(s, t) \quad T_{n}(s, t)=S_{n}(t, s)
$$

Exact relation for ALL diagrams

$$
\begin{aligned}
& \quad n S_{n}(s, t)=-\left.2 s^{2} \int_{0}^{1} d x \int_{0}^{x} d y y(1-x)\left(S_{n-1}\left(s, t^{\prime}\right)+T_{n-1}\left(s, t^{\prime}\right)\right)\right|_{t^{\prime}=t x+y u} \\
& +\quad s^{4} \int_{0}^{1} d x x^{2}(1-x)^{2} \sum_{k=1}^{n-2} \sum_{p=0}^{2 k-2} \frac{1}{p!(p+2)!} \frac{d^{p}}{d t^{\prime p}}\left(S_{k}\left(s, t^{\prime}\right)+T_{k}\left(s, t^{\prime}\right)\right) \times \\
& S_{1}=\frac{1}{12}, T_{1}=\frac{1}{12} \quad \times\left.\frac{d^{p}}{d t^{\prime p}}\left(S_{n-1-k}\left(s, t^{\prime}\right)+T_{n-1-k}\left(s, t^{\prime}\right)\right)\right|_{t^{\prime}=-s x}(t s x(1-x))^{p}
\end{aligned}
$$

summation

All loop Exact Recurrence Relation

$\mathrm{D}=8 \mathrm{~N}=1$

s-channel term

$$
S_{n}(s, t) \text { t-channel term } \quad T_{n}(s, t) \quad T_{n}(s, t)=S_{n}(t, s)
$$

Exact relation for ALL diagrams

$$
\begin{aligned}
& \quad n S_{n}(s, t)=-\left.2 s^{2} \int_{0}^{1} d x \int_{0}^{x} d y y(1-x)\left(S_{n-1}\left(s, t^{\prime}\right)+T_{n-1}\left(s, t^{\prime}\right)\right)\right|_{t^{\prime}=t x+y u} \\
& +\quad s^{4} \int_{0}^{1} d x x^{2}(1-x)^{2} \sum_{k=1}^{n-2} \sum_{p=0}^{2 k-2} \frac{1}{p!(p+2)!} \frac{d^{p}}{d t^{\prime p}}\left(S_{k}\left(s, t^{\prime}\right)+T_{k}\left(s, t^{\prime}\right)\right) \times \\
& S_{1}=\frac{1}{12}, T_{1}=\frac{1}{12} \quad \times\left.\frac{d^{p}}{d t^{\prime p}}\left(S_{n-1-k}\left(s, t^{\prime}\right)+T_{n-1-k}\left(s, t^{\prime}\right)\right)\right|_{t^{\prime}=-s x}(t s x(1-x))^{p}
\end{aligned}
$$

$$
\Sigma_{3}(s, t, z)=\Sigma_{1}(s, t, z)-S_{2}(s, t) z^{2}+S_{1}(s, t) z, \Sigma_{2}(s, t, z)=\Sigma_{1}(s, t, z)+S_{1}(s, t) z
$$

All loop Exact Recurrence Relation

$\mathrm{D}=8 \mathrm{~N}=1$

s-channel term

$$
S_{n}(s, t) \quad \text { t-channel term } \quad T_{n}(s, t) \quad T_{n}(s, t)=S_{n}(t, s)
$$

Exact relation for ALL diagrams

$$
\begin{aligned}
& \quad n S_{n}(s, t)=-\left.2 s^{2} \int_{0}^{1} d x \int_{0}^{x} d y y(1-x)\left(S_{n-1}\left(s, t^{\prime}\right)+T_{n-1}\left(s, t^{\prime}\right)\right)\right|_{t^{\prime}=t x+y u} \\
& +\quad s^{4} \int_{0}^{1} d x x^{2}(1-x)^{2} \sum_{k=1}^{n-2} \sum_{p=0}^{2 k-2} \frac{1}{p!(p+2)!} \frac{d^{p}}{d t^{\prime p}}\left(S_{k}\left(s, t^{\prime}\right)+T_{k}\left(s, t^{\prime}\right)\right) \times \\
& S_{1}=\frac{1}{12}, T_{1}=\frac{1}{12} \quad \times\left.\frac{d^{p}}{d t^{\prime p}}\left(S_{n-1-k}\left(s, t^{\prime}\right)+T_{n-1-k}\left(s, t^{\prime}\right)\right)\right|_{t^{\prime}=-s x}(t s x(1-x))^{p}
\end{aligned}
$$

summation $\quad \Sigma_{3}(s, t, z)=\Sigma_{1}(s, t, z)-S_{2}(s, t) z^{2}+S_{1}(s, t) z, \Sigma_{2}(s, t, z)=\Sigma_{1}(s, t, z)+S_{1}(s, t) z$ Diff eqn

$$
\begin{aligned}
& \frac{d}{d z} \Sigma(s, t, z)=-\frac{1}{12}+\left.2 s^{2} \int_{0}^{1} d x \int_{0}^{x} d y y(1-x)\left(\Sigma\left(s, t^{\prime}, z\right)+\Sigma\left(t^{\prime}, s, z\right)\right)\right|_{t^{\prime}=t x+y u} \\
& -s^{4} \int_{0}^{1} d x x^{2}(1-x)^{2} \sum_{p=0}^{\infty} \frac{1}{p!(p+2)!}\left(\left.\frac{d^{p}}{d t^{\prime p}}\left(\Sigma\left(s, t^{\prime}, z\right)+\Sigma\left(t^{\prime}, s, z\right)\right)\right|_{t^{\prime}=-s x}\right)^{2}(t s x(1-x))^{p} .
\end{aligned}
$$

All loop Solution (leading divs)

$\mathrm{D}=6 \mathrm{~N}=2$

PT (15 terms)

PT and Pade versus ladder for $\mathbf{t = s}$

Ladder

Lddder 2

$$
\Sigma_{L}(s, z)=\frac{2}{s^{2} z^{2}}\left(e^{s z}-1-s z-\frac{s^{2} z^{2}}{2}\right)
$$

$$
z=\frac{g^{2}}{\epsilon}
$$

Numerical solution of the full equation is close to the ladder approx

All loop Solution (leading divs)

D=8 N=1

Conclusions

Conclusions

: The UV divergences for the on-shell scattering amplitudes DO NOT CANCEL in any given order of PT

Conclusions

: The UV divergences for the on-shell scattering amplitudes DO NOT CANCEL in any given order of PT
\% The recurrence relations allow one to calculate the leading UV divergences in ALL orders of PT algebraically starting from 1 loop

Conclusions

\% The UV divergences for the on-shell scattering amplitudes DO NOT CANCEL in any given order of PT
: The recurrence relations allow one to calculate the leading UV divergences in ALL orders of PT algebraically starting from 1 loop
: The recurrence relations allow one to calculate the sub leading UV divergences in ALL orders of PT algebraically starting from 1 and 2 loops

Conclusions

; The UV divergences for the on-shell scattering amplitudes DO NOT CANCEL in any given order of PT
\% The recurrence relations allow one to calculate the leading UV divergences in ALL orders of PT algebraically starting from 1 loop
: The recurrence relations allow one to calculate the sub leading UV divergences in ALL orders of PT algebraically starting from 1 and 2 loops
: This procedure apparently continues the same way for all divergences just like in renormalizable theories

Conclusions cont'd

Conclusions cont'd

\% The sum of the leading UV divergences to ALL orders obeys the nonlinear integro-differential equation

Conclusions cont'd

\% The sum of the leading UV divergences to ALL orders obeys the nonlinear integro-differential equation
: The numerical solution indicates that solution to the full equation seems to behave like the ladder approximation

Conclusions cont'd

\#The sum of the leading UV divergences to ALL orders obeys the nonlinear integro-differential equation
§The numerical solution indicates that solution to the full equation seems to behave like the ladder approximation
© There is no simple limit when $\quad \epsilon \rightarrow+0$

Conclusions cont'd

\% The sum of the leading UV divergences to ALL orders obeys the nonlinear integro-differential equation
\# The numerical solution indicates that solution to the full equation seems to behave like the ladder approximation
\because There is no simple limit when $\quad \epsilon \rightarrow+0$
\% This means that one cannot simply remove the UV divergence and nonrenormalizability of a theory is not improved when summing the infinite series

Conclusions cont'd

: The sum of the leading UV divergences to ALL orders obeys the nonlinear integro-differential equation

The numerical solution indicates that solution to the full equation seems to behave like the ladder approximation

There is no simple limit when $\quad \epsilon \rightarrow+0$
\% This means that one cannot simply remove the UV divergence and nonrenormalizability of a theory is not improved when summing the infinite series
\% The knowledge of all loop form of the UV divergences remains to be exploited

