
 

Chapter 4. Power series method 

4.1 Cubic nonlinearity 

A widely used approach to analyze nonlinear problems is perturbation theory, which 

replaces the original nonlinear problem with the resembling problem, but with known 

solution and small perturbation. Representing the difference between the problems by 

small parameter 𝜀𝜀 and using unperturbed solution, we try to find the perturbed solution in 

the form of 𝜀𝜀 power series. 

We start from the simplest case — the one-dimensional horizontal motion described by 

equation (4.1.1) 

𝑥𝑥′′ + 𝐾𝐾𝑥𝑥(𝑠𝑠)𝑥𝑥 = −1
6
𝑛𝑛(𝑠𝑠)𝑥𝑥3.                                       (4.1.1) 

We left only cubic nonlinearity on the right-hand side, because it is easier to study than 

the leading quadratic coefficient. Also, we assume azimuthally symmetric case when 

𝐾𝐾𝑥𝑥(𝑠𝑠) = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 and 𝑛𝑛(𝑠𝑠) = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐. Floquet transformation helps to change nonlinear Hill 

equation to equation of mathematical pendulum with perturbation 

𝑑𝑑2𝜁𝜁
𝑑𝑑𝜓𝜓2 + 𝜈𝜈𝑜𝑜2𝜁𝜁 = −1

6
𝜈𝜈02𝑛𝑛𝛽𝛽3𝜁𝜁3.                                    (4.1.2) 

Introduction of the new notation 𝑥𝑥 = 𝜁𝜁, 𝑡𝑡 = 𝜓𝜓,𝜔𝜔 = 𝜈𝜈 and 𝛼𝛼 = −1
6
𝑛𝑛𝛽𝛽3 replaces equation 

(4.1.2) with more general 

𝑥𝑥′′ + 𝜔𝜔0
2𝑥𝑥 = 𝜀𝜀 𝛼𝛼𝜔𝜔0

2𝑥𝑥3.                                         (4.1.3) 

Similar equations appear in the study of the synchrotron motion in an accelerator or in 

the motion of a nonlinear pendulum. On the right-hand side of (4.1.3) we introduced 

dimensionless parameter 𝜀𝜀, to explicitly isolate the cubic term as a perturbation and for 



 

the ease of calculations. In the obtained solution we will assign 𝜀𝜀 = 1. Note that the actual 

small (implicit) parameter of the problem is betatron oscillations amplitude. We are 

looking for the solution of (4.1.3) expanded in power series in 𝜀𝜀 

𝑥𝑥 = 𝑥𝑥0 + 𝜀𝜀𝑥𝑥1 + 𝜀𝜀2𝑥𝑥2 + ⋯                                         (4.1.4) 

Substituting this series in (4.1.3) and gathering coefficients of the same powers in 𝜀𝜀 yields 

harmonic oscillator equation in the zeroth order, and the solution is 

𝑥𝑥0 = 𝐴𝐴 cos𝜔𝜔0𝑡𝑡,                                                  (4.1.5) 

where initial conditions are 𝑥𝑥0(0) = 𝐴𝐴, 𝑥𝑥0′ (0) = 0. The first order in 𝜀𝜀 gives equation 

𝑥𝑥1′′ + 𝜔𝜔0
2𝑥𝑥1 = 𝛼𝛼𝜔𝜔0

2𝑥𝑥03 = 𝛼𝛼𝜔𝜔0
2𝐴𝐴3 cos3(𝜔𝜔0𝑡𝑡),                               (4.1.6) 

and cos3(𝜔𝜔0𝑡𝑡) expands as the sum of two terms 

cos3(𝜔𝜔0𝑡𝑡) = 1
4

(cos(3𝜔𝜔0𝑡𝑡) + 3 cos(𝜔𝜔0𝑡𝑡)).                                 (4.1.7) 

General solution of the inhomogeneous differential equation is a sum of homogeneous 

equation fundamental solution and particular solution of the inhomogeneous equation. 

Equation 

𝑦𝑦′′ + 𝑦𝑦 = 𝑎𝑎 cos�𝑝𝑝(𝑡𝑡 + 𝛼𝛼)�                                        (4.1.8) 

has two types of particular solutions 

𝑦𝑦 = 1
2
𝑎𝑎 𝑡𝑡 𝑠𝑠𝑠𝑠𝑠𝑠(𝑡𝑡 + 𝛼𝛼) , 𝑤𝑤𝑤𝑤𝑤𝑤ℎ 𝑝𝑝 = 1,

 𝑦𝑦 = 𝑎𝑎
1−𝑝𝑝2

𝑐𝑐𝑐𝑐𝑐𝑐�𝑝𝑝(𝑡𝑡 + 𝛼𝛼)� ,𝑤𝑤𝑤𝑤𝑤𝑤ℎ 𝑝𝑝 ≠ 1.
                               (4.1.9) 

Applying (4.1.9) to equation (4.1.6) with the right-hand side (4.1.7) yields particular 

solution for the first term 

𝑥𝑥11 = − 1
32
𝛼𝛼𝐴𝐴3 cos(3𝜔𝜔0𝑡𝑡)                                      (4.1.10) 



 

and for the second 

𝑥𝑥12 = 3
8
𝛼𝛼𝐴𝐴3𝜔𝜔0𝑡𝑡 sin(𝜔𝜔0𝑡𝑡).                                     (4.1.11) 

The second solution grows linearly in time regardless of the initial amplitude А, whereas 

intuitive assumption (confirmed by experience) is that motion should be close to linear 

and bounded for small amplitudes (which are the true smallness parameters). 

Solution (4.1.11) is called secular, and it appeared from incorrect choice of approximate 

solution (4.1.4). Correct approach developed by Lindstedt (Poincaré-Lindstedt method) 

consists of simultaneous expansion of deviation 𝑥𝑥 and frequency 𝜔𝜔. Assuming 𝑥𝑥 = 𝑥𝑥(𝑢𝑢) 

is a periodic function of 𝑢𝑢 = 𝜔𝜔𝜔𝜔 with a period of 2𝜋𝜋 we expand 𝑥𝑥 and 𝜔𝜔 in powers of ε, 

so that along with (4.1.4) we have 

𝜔𝜔 = 𝜔𝜔0 + 𝜀𝜀𝜔𝜔1 + 𝜀𝜀2𝜔𝜔2 + ⋯.                                 (4.1.12) 

Substituting (4.1.4) and (4.1.12) in (4.1.3) yields 

(𝜔𝜔0
2 + 2𝜀𝜀𝜔𝜔0𝜔𝜔1 + ⋯ )(𝑥𝑥0′′ + 𝜀𝜀𝑥𝑥1′′ + ⋯ ) + 𝜔𝜔0

2(𝑥𝑥0 + 𝜀𝜀𝑥𝑥1 + ⋯ ) =
= 𝛼𝛼𝛼𝛼𝜔𝜔0

2(𝑥𝑥0 + 𝜀𝜀𝑥𝑥1 + ⋯ )3      (4.1.13) 

where prime is differentiation with respect to 𝑢𝑢. The zeroth order equation is 

𝑥𝑥0′′ + 𝑥𝑥0 = 0,                                             (4.1.14) 

with solution 𝑥𝑥0 = 𝐴𝐴 cos(𝑢𝑢) = 𝐴𝐴 cos(𝜔𝜔𝜔𝜔). First order equation is 

𝜔𝜔0
2𝑥𝑥1′′ + 2𝜔𝜔0𝜔𝜔1𝑥𝑥0′′ + 𝜔𝜔0

2𝑥𝑥1 = 𝛼𝛼𝜔𝜔0
2𝑥𝑥03,                               (4.1.15) 

or 

𝑥𝑥1′′ + 𝑥𝑥1 = −2 𝜔𝜔1
𝜔𝜔0
𝑥𝑥0′′ + 𝛼𝛼𝑥𝑥03.                                      (4.1.16) 

Substituting zeroth order solution 𝑥𝑥0 = 𝐴𝐴 cos(𝜔𝜔𝜔𝜔) into (4.1.16) gives 



 

𝑥𝑥1′′ + 𝑥𝑥1 = 2 𝜔𝜔1
𝜔𝜔0
𝐴𝐴 cos(𝜔𝜔𝜔𝜔) + 𝛼𝛼

4
𝐴𝐴3(cos(3𝜔𝜔𝜔𝜔) + 3 cos(𝜔𝜔𝜔𝜔)).              (4.1.16) 

Periodicity of 𝑥𝑥 = 𝑥𝑥(𝜔𝜔𝜔𝜔) requires cancellation of cos(𝜔𝜔𝜔𝜔) terms, otherwise, solution will 

have secular terms. Therefore, we have to choose 

𝜔𝜔1 = −3
8
𝛼𝛼𝜔𝜔0𝐴𝐴2,                                             (4.1.17) 

and solution of equation (4.1.16) is 

𝑥𝑥1 = �𝐶𝐶1 −
𝛼𝛼
16
𝐴𝐴3�  cos𝜔𝜔𝜔𝜔 + 𝐶𝐶2 sin𝜔𝜔𝜔𝜔 − 𝛼𝛼

32
𝐴𝐴3 cos 3𝜔𝜔𝜔𝜔.                      (4.1.18) 

With initial conditions 𝑥𝑥1(0) = 0, 𝑥𝑥1′(0) = 0 (we already used initial oscillation 

amplitude in the zeroth order solution) the first order solution is 

𝑥𝑥1 = 𝛼𝛼
32
𝐴𝐴3(cos𝜔𝜔𝜔𝜔 − cos 3𝜔𝜔𝜔𝜔),                                 (4.1.19) 

and solution of (4.1.3) up to the first order is 

𝑥𝑥 = 𝐴𝐴 cos𝜔𝜔𝜔𝜔 + 𝛼𝛼
32
𝐴𝐴3(cos𝜔𝜔𝜔𝜔 − cos 3𝜔𝜔𝜔𝜔).                       (4.1.20) 

Solution of simple problem (4.1.3) revealed several key differences between linear and 

nonlinear motions. Nonlinear perturbation is the reason that oscillation frequency is not 

the same for different particles but depends on theirs oscillation amplitude squared 

(4.1.17). Such systems are called non-isochronous. In addition, solution includes several 

harmonics of the fundamental frequency (first and third in our case); therefore, it is 

anharmonic. 

Now we will discuss anharmonicity influence on the phase trajectories. Differentiating 

(4.1.20) with respect to 𝑢𝑢 = 𝜔𝜔𝜔𝜔 yields 

𝑥𝑥′ = −𝐴𝐴 sin𝜔𝜔𝜔𝜔 − 𝛼𝛼
32
𝐴𝐴3(sin𝜔𝜔𝜔𝜔 − 3 sin𝜔𝜔𝜔𝜔).                      (4.1.21) 



 

Phase trajectories of the linear motion are circles, with radius defined by initial amplitude 

𝑥𝑥2 + 𝑥𝑥′2 = 𝐴𝐴2.                                                (4.1.22) 

In our case, adding the squares of (4.1.20) and (4.1.21) results 

𝑥𝑥2 + 𝑥𝑥′2 = 𝐴𝐴2 
 + 𝛼𝛼

16
𝐴𝐴4�1 − 2 cos(2𝜔𝜔𝜔𝜔) + cos(4𝜔𝜔𝜔𝜔)�

 + 1
2
� 𝛼𝛼
16
�
2
𝐴𝐴6(3 − 2 cos(2𝜔𝜔𝜔𝜔) + cos(4𝜔𝜔𝜔𝜔) − 2 cos(6𝜔𝜔𝜔𝜔)).

    (4.1.23) 

The phase trajectory of (4.1.23) is a circle with radius 𝑅𝑅0 = 𝐴𝐴 distorted by the oscillation 

frequency harmonics with Δ𝑅𝑅 ∼ 𝐴𝐴3 + 𝐴𝐴5 + ⋯ . The sketch of the phase trajectory is on 

Fig.4.1.1. 

 

Fig.4.1.1 Nonlinear distortion of phase trajectories 

The depth of the phase circle modulation increases with initial amplitude 𝐴𝐴.  

Considering phase trajectories in the form 

𝑥𝑥2 + 𝑥𝑥′2 = �𝑅𝑅0 + Δ𝑅𝑅(𝐴𝐴)�2,                                   (4.1.24) 



 

where 𝑅𝑅0 = 𝐴𝐴, and Δ𝑅𝑅 is a function of initial deviation, we estimate for maximum 

distortion 

(𝑅𝑅0 + Δ𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚)2 = 𝐴𝐴2 �1 + 𝛼𝛼
16
𝐴𝐴2 + � 𝛼𝛼

16
�
2
𝐴𝐴4 + ⋯�.                  (4.1.25) 

Naturally, we want to demand convergence of the series with addition of solution’s higher 

orders. Using Cauchy's radical test to analyze convergence of the series 

𝑆𝑆 = ∑ 𝑎𝑎𝑛𝑛𝑛𝑛 = ∑ � 𝛼𝛼
16
�
𝑛𝑛
𝐴𝐴2𝑛𝑛𝑛𝑛 ,                                  (4.1.26) 

we obtain 

�𝑎𝑎𝑛𝑛𝑛𝑛 = 𝛼𝛼
16
𝐴𝐴2 < 1.                                       (4.1.27) 

In other words, proposed solution expanded in series exists only for initial oscillation 

amplitude 

𝐴𝐴 < 4
√𝛼𝛼

 .                                              (4.1.28) 

Our derivation was rough; therefore, obtained result is only an illustration of the nonlinear 

dynamics important property. Contrarily to unperturbed equation of motion, where 

oscillation amplitude is limited only by external geometrical factors (vacuum chamber 

walls), solution of perturbed equation of motion has a limitation of the oscillation 

amplitude. Motion with the greater amplitude is unstable. The maximum allowable initial 

amplitude (4.1.28) defines an area called dynamic aperture. Also, from (4.1.28) we 

conclude that with larger perturbation 𝛼𝛼 dynamic aperture is smaller. 



 

At the end of the discussion we switch back to original variables 𝐴𝐴 = 𝐴𝐴𝑥𝑥/�𝛽𝛽, 𝜔𝜔 =

𝜈𝜈 and 𝛼𝛼 = −𝑛𝑛 𝛽𝛽3/6, and obtain betatron oscillation frequency correction from the cubic 

perturbation in the case of an azimuthally symmetric magnetic field: 

Δ𝜈𝜈 = 1
16
𝑛𝑛 𝐴𝐴𝑥𝑥2𝛽𝛽𝑥𝑥2𝜈𝜈0.                                       (4.1.29) 

 

4.2 Quadratic nonlinearity 

 The power series method allows searching of the higher orders solutions. However, 

the search procedure becomes more and more complicated with each step: the number of 

terms in the power series and the number of harmonics increase. Hence, the fair question 

arises: what order of the expansion is sufficient, so that deriving it was technically 

possible, and obtained solution plausibly described behavior of the system. 

The question is not simple, and we will return to it repeatedly. To illustrate complexity of 

the problem, we consider a quadratic perturbation of the particle motion in the circular 

accelerator (the first term on the right-hand side of equation (3.1.5)) 

𝑥𝑥′′ + 𝐾𝐾𝑥𝑥(𝑠𝑠)𝑥𝑥 = −1
2
𝑚𝑚(𝑠𝑠)𝑥𝑥2.                                        (4.2.1) 

 

After Floquet transformation our equation is 

𝑑𝑑2𝜁𝜁
𝑑𝑑𝜓𝜓2 + 𝜈𝜈02𝜁𝜁 = −1

2
𝜈𝜈02𝑚𝑚𝛽𝛽

5
2𝜁𝜁2,                                     (4.2.2) 

and simplification of the notation similarly to (4.1.3) results 

𝑥𝑥′′ + 𝜔𝜔0
2𝑥𝑥 = 𝜀𝜀𝜀𝜀𝜔𝜔0

2𝑥𝑥2,                                           (4.2.3) 



 

where 𝛼𝛼 = −1
2
𝑚𝑚𝛽𝛽5/2 . Substituting solution in the form of series (4.1.4) and (4.1.12), 

proceeding with calculations as in (4.1.13-16), we obtain equation of the first order 

approximation 

 

𝑥𝑥1′′ + 𝑥𝑥1 = 2𝐴𝐴𝜔𝜔1
𝜔𝜔0

cos𝜔𝜔𝜔𝜔 + 𝛼𝛼𝐴𝐴2 cos2 𝜔𝜔𝜔𝜔

 = 2𝐴𝐴𝜔𝜔1
𝜔𝜔0

cos𝜔𝜔𝜔𝜔 + 𝛼𝛼𝐴𝐴2

2
(1 + cos 2𝜔𝜔𝜔𝜔)

              (4.2.4) 

Avoiding secular terms yields 𝜔𝜔1 = 0. It means that oscillation frequency does not 

depend on the amplitude in the first order approximation for quadratic nonlinearity. But 

does it mean that this type of perturbation does not lead to amplitude dependence at all? 

Continue to solve in the next order. 

Solution of equation (4.2.4) with the initial conditions given in the previous chapter 

is 

𝑥𝑥1 = 1
6
𝛼𝛼𝐴𝐴2(3 − 2 cos𝜔𝜔𝜔𝜔 − cos 2𝜔𝜔𝜔𝜔).                                  (4.2.5) 

Equation of the second order approximation (∼ 𝜀𝜀2) is 

𝑥𝑥2′′ + 𝑥𝑥2 = 2𝛼𝛼𝑥𝑥0𝑥𝑥1 − 2𝑥𝑥0′′
𝜔𝜔2
𝜔𝜔0

.                                     (4.2.6) 

Substituting the zero and the first order solutions in the right hand side gives 

𝑥𝑥2′′ + 𝑥𝑥2 = −1
6
𝛼𝛼2𝐴𝐴3 + �5

6
𝛼𝛼2𝐴𝐴3 + 2𝐴𝐴𝜔𝜔2

𝜔𝜔0
� cos𝜔𝜔𝜔𝜔 − 1

6
𝛼𝛼2𝐴𝐴3(cos 2𝜔𝜔𝜔𝜔 + cos 3𝜔𝜔𝜔𝜔). (4.2.7) 

To obtain regular motion in the second order, we have to define 

𝜔𝜔2 = − 5
12
𝛼𝛼2𝜔𝜔0𝐴𝐴2,                                            (4.2.8) 



 

thus the second order solution for a sextupole perturbation leads to the same quadratic 

dependence of the oscillation frequency on the amplitude as the first order of the octupole 

perturbation (4.1.17). If we stopped solving only at the first order, then the result would 

have been incorrect (no amplitude dependence). 

Returning to the notation of the original problem yields 

Δ𝜈𝜈 = − 5
48
𝑚𝑚2𝐴𝐴𝑥𝑥2𝛽𝛽𝑥𝑥4𝜈𝜈0.                                        (4.2.9) 

Derivation of the second order solution was quite laborious and did not give 

fundamentally new results (origin of various harmonics is seen from (4.2.7)). 

 

4.3 Resonances 

 So far we were assuming that equation (4.1.3) right hand side is independent of 

time (in our notation time is phase function of betatron oscillations 𝜓𝜓(𝜃𝜃)). However, 

equation nonlinear coefficient and beta function depend on the azimuthal angle 𝜃𝜃 = 𝑠𝑠/𝑅𝑅. 

Hence, in the general case the inhomogeneous equation is 

𝑥𝑥′′ + 𝜔𝜔0
2𝑥𝑥 = 𝑔𝑔(𝑡𝑡),                                              (4.3.1) 

where perturbation 𝑔𝑔(𝑡𝑡) is a periodic function, which expands in Fourier series (for 

simplicity we assume that the function is even) 

𝑔𝑔(𝑡𝑡) = 𝑎𝑎0
2

+ ∑ 𝑎𝑎𝑛𝑛 cos𝑛𝑛Ω𝑡𝑡∞
1 .                                      (4.3.2) 

Substituting this expression into (4.3.1) and searching for particular solution in the form 

of a Fourier series yields 

𝑥𝑥𝑛𝑛(𝑡𝑡) = 𝑎𝑎𝑛𝑛
𝜔𝜔0
2−𝑛𝑛2Ω2

cos𝑛𝑛Ω𝑡𝑡.                                      (4.3.3) 



 

Resonance condition 𝜔𝜔0 ≈ ±𝑛𝑛Ω creates infinitely large terms in the solution series and 

prevents convergence of the series. 

Obtained result shows that described method is not suitable for studying system behavior 

in the vicinity of the nonlinear resonance. It also reveals that this behavior (in particular, 

topology of the phase space) substantially differs from the behavior of the non-resonance 

system. 
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