

JAS 2019 – Ion Colliders

Heavy-lons in the LHC

by

Michaela Schaumann

CERN, Beams Department, Operations Group

With big acknowledgements to John Jowett

05.11.2019

Introduction

- History and Notations
- Effects on Luminosity

Pb-Pb Collisions

- Secondary Beams
- Getting the beams into LHC
- Beam and Luminosity Evolution
- Performance Summary

Other Operational Modes

- p-Pb collisions
- Other unforeseen, but successful operational modes

Introduction to LHC

The largest machine in the world: The Large Hadron Collider (LHC)

27 km circumference100m underground

Accelerates protons and heavy-ions to E = 6.5 Z TeV (2018).

Collides 2 counter-rotating beams in 4 physics experiments.

Collision Modes in LHC

p-p

The LHC spends most of its time colliding **proton-proton (p-p)** in its 4 main experiments.

All are also highly capable heavy-ion experiments: ALICE (IP2) and ATLAS (IP1) / CMS (IP5) LHCb (IP8) since 2012 also LHCf (cosmic ray physics)

1 month/year colliding **fully stripped lead** (²⁰⁸Pb⁸²⁺) or Pb ions with protons.

A short History and Future ...

12 one-month heavy-ion runs between 2010 and 2030. 6/12 done.

Energy of ions/nuclei and nucleons

Energy and momentum are related via the square of the 4-momentum vector, $\mathbf{P} = (E/c, \mathbf{p})$:

Operate at same beam rigidity for different species \rightarrow equivalent beam energy:

$$E_{ion} = E_p Z$$

At high energy E >> mc²

Keep similar magnetic cycles for proton and heavy-ion operation.

$$E \approx pc = 7.0 Z \text{ TeV} = 2.76 A \text{ TeV} = 574 \text{ TeV}$$

Energy per charge,
relation to proton energy
Energy per nucleon
Energy of the particle

Centre-of-Mass Energy

CERN

Centre-of-Mass (CMS) energy is available for the production of new particles.

 $P_{1} = \begin{pmatrix} E_{1}/c \\ \vec{p_{1}} \end{pmatrix} \qquad P_{2} = \begin{pmatrix} E_{2}/c \\ \vec{p_{2}} \end{pmatrix}$

$$E = E_{beam1} + E_{beam2}$$

From the sum of the 4-momentum vectors the **centre-of-mass energy in collision of two different species** can be calculated:

$$\sqrt{(P_1 + P_2)^2} = \sqrt{s} \approx 2p_p \sqrt{Z_1 Z_2}$$

Centre-of-mass energy **per colliding nucleon pair**:

$$\sqrt{s_{NN}} \approx 2p_p \sqrt{\frac{Z_1 Z_2}{A_1 A_2}}$$

proton momentum

LHC Pb-Pb run in 2015/18:

$$\sqrt{s} = 2 \times 6.37 \times 82 \text{ TeV} > 1 \text{ PeV}$$
$$\sqrt{s_{NN}} = 2 \times 6.37 \times \frac{82}{208} \text{ TeV} = 5.02 \text{ TeV}$$

New energy frontier in nucleus-nucleus collisions. Continues beyond RHIC ($\sqrt{s_{NN}} = 0.2 \text{ TeV}$) and previous fixed target experiments.

Choice of Beam Energy

CÉRN

particle charge

Max. beam energy achieved in p-p collisions: $E_b = 6.5 Z$ TeV.

For Pb-Pb, **beam energy** reduction to $E_b = 6.37$ Z TeV.

 \rightarrow Allows comparison of 3 collision modes at the same center-of-mass energy $\sqrt{s_{NN}}$

A particle bunch is characterised by its **number of particles**, $N_b(t)$, and the **normalised** emittances, $\epsilon_{n,i}(t)$, in the three planes (i = x, y, s).

The transverse emittances relate to the beam sizes σ_{xy} :

$$\sigma_{xy}^2 = \epsilon_{xy} \beta_{xy}$$

The beam size shrinks during acceleration by adiabatic damping. Therefore we define the so-called **normalised emittance** ϵ_n , which is constant with energy:

$$\epsilon_{n,xy} = \epsilon_{xy}\sqrt{\gamma^2 - 1} \approx \epsilon_{xy}\gamma$$

Normalized emittance in LHC (γ @7 Z TeV, same beam size) $\epsilon_{n,p} = 3.75 \,\mu\text{m}$ $\gamma_p = 7461$ $\epsilon_{n,Pb} = 1.5 \,\mu\text{m}$ $\gamma_{Pb} = 2963.5$ The rel. Lorentz factor is related to the energy as $E=\gamma mc^2$

Thus, for particles in the same magnetic field

$$\gamma_{ion} = Z \frac{m_p}{m_{ion}} \gamma_p$$

Heavy-lon vs. Proton Operation

- Some similarities with protons: aperture, optics, orbits
 → Bending ∝ Charge (q = Ze): Bρ = p/q
- Charge per ion bunch ~10% of proton bunch:

 \rightarrow collective effects driven by impedance or beam-beam are weak

- Higher charge and mass: Beam dynamics and performance limits of heavy ions are quite different from those of protons.
- Many beam dynamic effects are proportional to high powers of Z. In same accelerator:
 - \rightarrow Strong Intra-beam scattering (IBS) $\alpha Z^3/A^2$.
 - \rightarrow Radiation damping $\alpha Z^5/A^4$.
 - \rightarrow Large event cross-sections for electromagnetic processes.

 \Rightarrow Fast intensity decay and **short luminosity lifetimes**.

 \Rightarrow Secondary beams emerging from the interaction point (IP).

Dominant Effects on Emittance

Intra-Beam Scattering (IBS)

Multiple small-angle Coulomb scattering among charged particles inside their bunch.

Emittance Growth and Particle Losses

Growth rate dynamically changing with beam properties:

$$\alpha_{\rm IBS} \propto \frac{1}{\gamma} \frac{N_b}{\epsilon_{n,x} \epsilon_{n,y} \epsilon_s}$$

Dominating effect in the LHC. Tends to reduce luminosity.

Radiation Damping

Energy loss due to synchrotron radiation emitted by charged particles bent on a circular orbit.

Emittance Shrinkage

Damping rate is **constant** for a given beam energy:

 $\alpha_{\rm rad} \propto \gamma^3$

Starts to become noticeable at LHC energies (and above). Tends to increase luminosity

IBS and radiation damping both depend on particle type.

Luminosity is a measure of the ability of a particle accelerator to produce the required number of interactions:

For *k*_{*b*} **colliding bunches**, which are equal and round:

$$F(\theta_c) = 1/\sqrt{1 + \left(\frac{\theta_c \sigma_z}{2}\right)^2 \frac{\gamma}{\epsilon_n \beta^*}}$$

Depends on machine settings (crossing-angle θ_c , β -function at IP) and beam parameters (emittance ϵ_n , bunch length σ_z)

Machine parameters θ_c, β^* are individually set for the requirements of each experiments.

Number of colliding bunches k_b per IP depends on filling pattern.

LHC Heavy-Ion runs are complicated!

4 experiments with sometimes very different requests and conditions, luminosity sharing, ...

Nucleon-Nucleon Luminosity

The nucleus-nucleus luminosities for collisions of different species or asymmetric collisions (e.g. p-Pb) are very different and may seem low compared to p-p.

In order to make a meaningful comparison one has to look at the **nucleon-nucleon luminosity**:

$$\mathcal{L} = 1.0 \times 10^{27} \text{cm}^{-2} \text{s}^{-1} \text{ (Pb - Pb)} = 4.3 \times 10^{31} \text{cm}^{-2} \text{s}^{-1} \text{ (nucleon - nucleon)}$$

Interaction Cross-sections

CERN

Bound-free pair production (BFPP)

 208 Pb⁸²⁺ + 208 Pb⁸²⁺ \rightarrow^{208} Pb⁸²⁺ + 208 Pb⁸¹⁺ + e⁺

These **ultraperipheral interactions** have large interaction cross-sections in Pb-Pb collisions and are the main contribution to **fast luminosity burn-off** and **short beam lifetime**:

Event rate:
$$\frac{dR}{dt} = -\frac{dN}{dt} = \sigma_c \mathcal{L}$$

Electromagnetic dissociation (EMD)

 $\label{eq:208} {\rm Pb}^{82+} + {\rm ^{208}\ Pb}^{82+} \rightarrow {\rm ^{208}\ Pb}^{82+} + {\rm ^{207}\ Pb}^{82+} + n$...and higher orders

$$\sigma_{c,tot} = \sigma_{BFPP} + \sigma_{EMD} + \sigma_{hadron}$$

$$\approx 281 \text{ b} + 226 \text{ b} + 8 \text{ b}$$

$$= 515 \text{ b} \qquad \text{@ 7 Z TeV}$$

Secondary Beams Created in the Collision

CERN

These reactions change the charge-to-mass ratio of the ions, which changes bending in (main) dipoles: $B\rho = p/q$

Secondary Beam Paths right of IP5 Secondary beams with 0.03 Main: 208-Pb-82+ rigidity change 0.02 $B\rho(1+\delta)$ BFPP: 208-Pb-81+ BFPP1 EMD1 0.01 EMD: 207-Pb-82+ where x [m] 0.00 $\delta = \frac{1 + \Delta m / m_{Pb}}{1 + \Delta O / O} - 1$ -0.01**Intense secondary** -0.02beams are produced -0.03that impact in a 100 200 300 400 500 0 Luminosity limit, s [m from IP5] superconducting if deposited power BFPP1 magnet downstream exceeds quench limit. main beam from the IP. EMD1

Loss Pattern around the Ring

CERN

Direct limit of luminosity

Beam loss spikes around all IPs where ions collide ...

Deposit power >140W \rightarrow exceeds quench limit of the superconducting magnets. Luminosity limit found at L≈2.3 x 10²⁷ cm⁻² s⁻¹ (≅50W into magnet)

Quench Risk Mitigation with Orbit Bumps

CERN

Orbit bumps are used to move the secondary beam losses to a less vulnerable location in order to reduce risk of quench.

Careful setup of bumps in beginning of the run to achieve desired loss displacement.

Technique operationally used in ATLAS/CMS since 2015. Allowed record luminosity of L > 6 x 10²⁷ cm⁻² s⁻¹ in 2018.

BFPP Mitigation around ALICE & LHCb

Due to different optics around ALICE and LHCb, bump technique does not work.

<u>ALICE</u>

- Peak luminosity limited by detector saturation to 1 x 10²⁷ cm⁻² s⁻¹.
- Bump to distribute losses over two cells.

<u>LHCb</u>

- No mitigation implemented.
- 75ns bunch scheme provides many more collisions in LHCb.
- Peak luminosity levelled **1 x 10²⁷cm⁻²s⁻¹**

BFPP Mitigation around ALICE & LHCb – LS2 Upgrade

Due to different optics around ALICE and LHCb, bump technique does not work.

ALICE

- Currently implementing upgrade
- Will allow to go to ~7 x 10²⁷cm⁻²s⁻¹
- Installation of **collimator in the empty cryostat** location + orbit bump.

<u>LHCb</u>

- No mitigation foreseen.
- 75ns bunch scheme provides many more collisions in LHCb.
- Peak luminosity levelled **1 x 10²⁷cm⁻²s⁻¹**

More about secondary beams & their treatment discussed in lecture by F. Cerutti

M. Schaumann - Heavy-Ions in the LHC, JAS'2019, Dubna, Russia

Accelerator Cycle (Fill)

CERN

Injector cycles (e.g. PS or SPS) are analogous except: collisions \rightarrow extraction

Filling Pattern: Production of Beam in the Injectors

Filling Pattern: design \rightarrow 100ns \rightarrow 75ns

LHC Pb-Pb Bunch Intensities

Screenshot from 2018 operation: bunch intensities at top energy just before collisions

- Injectors provided intensities far above the design.
- Typical structure:
- Along bunch train, due to losses at the SPS injection plateau.
- Along the beam, similar losses in the LHC.
- Max. total number of bunches per beam: 733

Intensity and Emittance Evolution

CERN

Beam intensity decay **dominated by burn-off** (losses from production of collisions)

IBS counteracts radiation damping in horizontal plane

In vertical, IBS is negligible → rad. damping leads to shrinkage

Bunch length similar behavior to horizontal emittance

Typical Luminosity Evolution in 2018

Each experiment has individual requirements: max. Luminosity, β^* , crossing-angle, ... \rightarrow Separated machine setup per IP, luminosity levelling, *luminosity sharing*

ATLAS & CMS:

- $\beta^*=0.5$ m, $\theta_c=170\mu$ rad
- Short levelling period
- Record: 6.1 x 10²⁷cm⁻²s⁻¹ peak luminosity

ALICE:

CERN

- $\beta^* = 0.5 \text{m}, \theta_c = 60 \mu \text{rad}$
- Levelled to design saturation level most of the time in physics.
- Upgrade to ~7 x 10²⁷cm⁻²s⁻¹ in LS2.

LHCb:

- β^* = 1.5m, $\theta_c = 250 \mu$ rad
- Also levelled to design value

LHC **Pb-Pb design luminosity** was chosen to be the detector saturation value of the ALICE experiment.

Most of HL-LHC performance demonstrated!

	Pb-Pb (Design)	Pb-Pb (2018 achieved)	"HL-LHC" Pb-Pb (after LS2)	Upgrade Status
Energy [TeV]	7 Z	6.37 Z	7 Z	••• Magnet training
$oldsymbol{eta}^*$ at IP (1/2/5,8) [m]	(0.5, -)	(0.5, 1.5)	(0.5, 1.5)	
Emittance [μ m]	1.5	~2	1.65	
Bunch Intensity [10 ⁸ ions]	0.7	2.2	1.8	
No. Bunches	592	733	1232	SPS RF
Bunch Spacing	100ns	100ns → 75ns	50ns	(slip-stacking)
Peak Luminosity at IP1/2/5/8 [10 ²⁷ cm ⁻² s ⁻¹]	-/1/1/-	6.1/1/6.1/1	?/7/7/?	Uumi levelling
Company in LUCh (not considered in detail yet)				

Green values reached & exceeded LHC design

Some collisions in LHCb (not considered in detail yet)

Delivered Luminosity: Pb-Pb

CÉRN

LHC design goal of 1nb⁻¹ in Pb-Pb luminosity already exceeded.

Future performance estimate from 2021: 3 nb⁻¹/run → 12 nb⁻¹ in 4 more Pb-Pb runs

LHC has operated in 5 different modes, but was designed only for 2:

- Design: p-p, Pb-Pb
- Upgrade: p-Pb, Xe-Xe (pilot run), Pb81+ (MD in July)

Few hours runs with new particle types showed that the LHC is highly flexible and well under control.

Demonstrating Flexibility

COLLISION MODE UPGRADES

PROTON-LEAD

Storing and Colliding Different Species

Revolution time and RF frequency depend on particle's mass *m*, charge *Q=Ze*:

$$T(p_p, m, Z) = \frac{C}{c} \sqrt{1 + \left(\frac{mc}{Zp_p}\right)^2} \qquad \qquad f_{RF} = \frac{h_{RF}}{T(p_p, m, Z)}$$

where harmonic number h_{RF} = 35640 in LHC

Relation between momenta is fixed by two-in-one magnet design: $p_{Pb} = Zp_p \rightarrow T_p \neq T_{Pb} \rightarrow f_{RF,p} \neq f_{RF,Pb}$ But in order for bunches to meet repeatedly and create collisions we need: $T_p = T_{Pb} \rightarrow f_{RF,p} = f_{RF,Pb}$

→ Use length of closed orbit C to compensate for speed difference. Done by adjusting RF frequency → moving to (slightly) off-momentum orbit

$$T(p_p, m, Z) = \frac{C}{c} \sqrt{1 + \left(\frac{mc}{Zp_p}\right)^2} (1 + \eta \delta)$$

 \rightarrow Pb is slower, need smaller orbit length \rightarrow move inward, $\delta < 0$

 \rightarrow Protons are faster, need longer orbit length \rightarrow move outward, $\delta > 0$

Horizontal offset given by dispersion:

$$\delta = \frac{p - Zp_p}{Zp_p} \quad \begin{array}{l} \mbox{Fractional} \\ \mbox{momentum} \\ \mbox{momentum} \\ \mbox{difference} \\ \mbox{momentum} \\ \mbox{difference} \\ \mbox{momentum} \\ \mbox{q} = \frac{1}{\gamma_T} - \frac{1}{\gamma} \quad \begin{array}{l} \mbox{Phase-slip factor,} \\ \mbox{p}_T = 55.8 \mbox{ for} \\ \mbox{LHC optics} \\ \end{array}$$

 $\Delta x = D_x(s)\delta$

Momentum Offset required through Ramp CERN

Minimize needed aperture \rightarrow take average f_{RF} of both beams and share required momentum offset:

$$\delta_p = -\delta_{Pb} = \frac{c^2 \gamma_T^2}{4p_p^2} \left(\frac{m_{Pb}^2}{Z^2} - m_p^2\right)$$

Horizontal offset given by dispersion:

$$\Delta x = D_x(s)\delta$$

Revolution frequencies must be equal for collisions at top energy. Lower limit on beam energy for p-Pb collisions, E=2.7 Z TeV. **RF** frequencies must be unequal for injection, ramp!

Un-equal Frequency Injection and Ramp

CERN

Both beams circulate on the central orbit, but with un-equal frequencies.

- \rightarrow Arrive at different times in the IP **missing synchronization for collisions** in every turn.
- → At injection and during energy ramp beams are always **kept separated** to avoid collisions anyway.

When being accelerated, the speeds of the two species approach each other.

RF frequency program during p-Pb energy ramp

Top Energy: Cogging and Collisions

At top energy (min. 2.7 Z TeV):

- Equalize revolution frequencies for collisions \rightarrow move beams to off-momentum orbit.
- **Cogging**: RF re-phasing to re-establish synchronization of bunch arrival times in IP (see video).
- Squeeze and Collide

History and Performance of p-Pb Collisions at LHC

Long considered desirable by experiments but never included in LHC baseline design.

2005: First estimates
2011: Preparation of LHC + feasibility test
2012: Physics case document + Pilot-run (one night)
2013: 1st full physics runs
2016: 2nd run with multiple collision conditions

	ATLAS/CMS	ALICE	LHCb
2016	190 nb ⁻¹	40 nb⁻¹	30 nb ⁻¹
Total	222 nb ⁻¹	72 nb ⁻¹	35 nb ⁻¹

Future performance estimate: ~700 nb⁻¹/run (ATLAS/CMS) ~350 nb⁻¹/run (ALICE levelled)

UNFORESEEN OPERATIONAL MODES

Xe-Xe Collisions

CERN

- Lighter ions are not part of the present HL-LHC baseline.
 - Potential for higher nucleon-nucleon luminosities (smaller el.mag. cross-sections)
- 17h of low-intensity running with Xe beams in 2017.
 - Demonstrated the feasibility to operate with other species.
 - Great physics outcome fed the interest in lighter ions for HL-LHC era

M. Schaumann - Heavy-Ions in the LHC, JAS'2019, Dubna, Russia

Partially Stripped Ions

- The Gamma Factory initiative proposes to use partially stripped ion (PSI) beams as drivers of a new type, high intensity photon source.
- Initial beam tests with PSI beams have been executed in the SPS in 2017/18.
- In 2018 the LHC injected, accelerated and stored lead ions with one remaining electron (208Pb81+) for the first time.

²⁰⁸Pb⁸¹⁺

CERN

Physics Beyond Colliders

Partially Stripped Ions

CÉRN

A few Pb81+ bunches circulated at 6.5 Z TeV with **beam lifetimes of ~40 hours**.

Worst collimation cleaning efficiency ever observed. Introduces dominant limit of the beam intensity.

Electrons are stripped off at first interaction with collimators leading to a change of rigidity outside acceptance:

Image BSR

0.5-[u] >

-0.5-

-1+ -1

Loss

maps

18:52:00

19:07:00

2h

UTC time

18:07:00

18:22:00

18:37:00

-0.8

Synchrotron Light Monitor

X [mm] - Energy : 6499 - bunch : 1781

4%

 \rightarrow Pb82+ lost in cell 11R7.

Losses at FT

17:37:00

17:22:00

17:52:00

0.04

0.02

0.01

0.0

27:07:00

10.03 FT

Take home message ...

The LHC is highly flexible: has operated in 5 modes but was designed for 2 Design: p-p, Pb-Pb

Upgrade: p-Pb, Xe-Xe, Pb⁸¹⁺

extraordinary injector performance

optimizations between & during runs

Rapid switching between modes

The LHC Heavy-lon performance is much higher than originally foreseen.

"first 10-year" Pb-Pb luminosity goal of 1nb⁻¹ has been exceeded

demonstrated "HL-LHC" peak luminosity performance Control of heavy-ion beam losses, like collimation & BFPP, is critical, complicated and may surprise.

Heavy ions will come back to the LHC end of 2021 after the injector and LHC hardware upgrades with the "HL-LHC" configuration.

© Matthias Enter - Fotolia.com

Everything clear! Hmm

In general an ion is described by

charge *Qe* (Lorenz-Invariant or rest) mass *m* nucleon number ("mass number") *A*.

Mainly collide **fully-stripped ions**, bare nuclei $\rightarrow Q = Z$ (charge or proton number)

in LHC we use ²⁰⁸ Pb ⁸²⁺ with
Z = 82
A = 208

$$\begin{split} m_{208\text{-Pb-82+}} &= 207.976652071 \text{u} - 82 m_e \\ &= (193.729 - 82 \times 0.000511) \text{ GeV / } \text{c}^2 \\ &= 193.687 \text{ GeV / } \text{c}^2 \end{split}$$

N.B. $208m_p = 195.161 \text{ GeV} / c^2$ is a poor approximation! For this species the binding energy of the 82 electrons < 1 MeV.

1u = 931.49410242(28) MeV

Critical difference between RHIC and LHC

CÉRN)

The Idea of a Gamma Factory

1.) Resonant absorption of the laser photons by the Partially Stripped Ion (PSI) beam.

2.) Followed by a spontaneous atomictransition emissions of secondary photons.

LASER photon strongly boosted by $(2\gamma_{rel})^2 \rightarrow$ For LHC energy, photon energy exceeds those reachable for FEL at high light intensity.

- Technique to obtain **effective 50/50ns bunch spacing within Pb trains**. Builds together with LEIR intensity upgrade the new LIU baseline option.
- The SPS is filled with 2 "super-batches" of 6 x 4-bunch-PS-batches with a bunch spacing of 100ns.
- The 2 super-batches are captured by two independently controlled 200MHz cavity systems.

- a) Decelerate first super-batch, accelerate second super-batch.
- b) Batches are allowed to slip until they interleave.
- c) Bring back to same energy.
- a) Recapture at an average RF frequency.

LHCb interaction point is displaced by **15 buckets (=37.5ns)** with respect to symmetry point.

In order to have a collision in LHCb a long-range (LR) beam-beam encounter is required at a distance of 37.5ns or 11.25m away from the symmetry point.

Long-range beam-beam encounters occur at **s** = **n x** ½ **bunch spacing**:

25ns bunch spacing \rightarrow LR @ 12.5ns, 25ns, **37.5ns** ... \rightarrow **collisions in LHCb** 50ns bunch spacing \rightarrow LR @ 25ns, 50ns ... \rightarrow need to displace a train of bunches to create collisions **75ns bunch spacing** \rightarrow LR @ **37.5ns**, 75ns ... \rightarrow **collisions in LHCb** 100ns bunch spacing \rightarrow LR @ 50ns, 100ns ... \rightarrow need to displace a train of bunches to create collisions

The **Beam Loss Monitor (BLM) System** measures secondary particles from beam losses all around LHC circumference.

M. Schaumann - Heavy-Ions in the LHC, JAS'2019, Dubna, Russia

Notations – Energy of ions/nuclei and nucleons

Energy and momentum are related via the square of the 4-momentum vector, $\mathbf{P} = (E / c, \mathbf{p}),$

$$P^2 = \frac{E^2}{c^2} - p^2 = m^2 c^2$$

Nucleus of• charge Ze• (rest) mass m• nucleon number A

where *m* is the Lorentz-invariant mass (rest mass) of the nucleus.

Traditionally, in low-energy ion accelerators, the kinetic energy per nucleon is quoted in parameter lists:

$$E_{kin} = rac{\sqrt{p^2 c^2 + m^2 c^4} - mc^2}{A} pprox rac{E}{A}$$
 at high energy

but this quantity does not appear in any equation of motion!

At LHC (highly relativistic case) we use:

$$E \approx pc = 7.0 Z \text{ TeV} = 2.76 A \text{ TeV} = 574 \text{ TeV}$$

Energy per charge,
relation to proton energy Energy per nucleon Energy of the particle

Derive Center-of-Mass Equations for Collisions of two Species

$$(P_{1} + P_{2})^{2} = (E_{1} + E_{2})^{2}/c^{2} - (\vec{p}_{1} + \vec{p}_{2})^{2}$$

$$= E_{1}^{2}/c^{2} + E_{2}^{2}/c^{2} + 2E_{1}E_{2}/c^{4} - \vec{p}_{1}^{2} - \vec{p}_{2}^{2} - 2p_{1}p_{2}\cos\alpha$$

$$= 4p_{1}p_{2}$$

$$4p_{p}^{2}Z_{1}Z_{2}$$

$$\sqrt{(P_1 + P_2)^2} = \sqrt{s} = 2p_p^2 \sqrt{Z_1 Z_2}$$
$$\sqrt{s_{NN}} = 2p_p^2 \sqrt{\frac{Z_1 Z_2}{A_1 A_2}}$$

CERN

Center-of-Mass Energy

Center-of-Mass Energy per nucleon

The total luminosity in 1 experiment

is the **sum over all colliding individual bunches** of the 2 beams:

$$\mathcal{L} = \sum_{(i,j)\in\text{coll.pairs}}^{k_b} \frac{N_{1,i}N_{2,j}f_{\text{rev}}\sqrt{\gamma^2 - 1}}{2\pi\beta^*\sqrt{\epsilon_{x,1,i} + \epsilon_{x,2,j}}\sqrt{\epsilon_{y,1,i} + \epsilon_{y,2,j}}}$$

Integrated Luminosity Prediction per Pb-Pb run

CÉRN

For a 24-day run, with 3 experiments at $\beta^*=0.5$ m, assuming (pessimistically) an operational efficiency of 50% and average luminosity of 3E27 cm⁻² s⁻¹, the total luminosity is

 $L_{int,annual} = (50\%)(3.0 \times 10^{27} \text{ cm}^{-2}\text{s}^{-1})(24 \text{ day}) \approx 3.1 \text{ nb}^{-1}$ (c.f. target of 2.85 nb⁻¹)

→ 12 nb⁻¹ in the 4 Pb-Pb runs foreseen after LS2

Integrated Luminosity Prediction per p-Pb run

• Assuming

CÉRN

- a turnaround time of 2.5 h (optimistic!)
- operational efficiency of 50%,
- and optimal fill length of 6.1 h,
- The total luminosity in 1 month of p-Pb running is estimated to
 - 714 nb⁻¹ for ATLAS/CMS
 - 346 nb⁻¹ for ALICE

Getting protons into the LHC

CERN

Linac

PSB

PS

SPS

LHC

The CERN accelerator complex Complexe des accélérateurs du CERN

CÉRN

Steady increase of luminosity/fill

Increasing Levelling targets (ATLAS/CMS/LHCb) Levelling time (after solving ALICE beam size problem)

Source: http://lpc.web.cern.ch/

Levelling "a la carte"

Under certain conditions and depending on the experiments request, it is desirable to adapt the luminosity dynamically with beams in collision – **luminosity levelling**

Levelling by beam offset

Levelling by crossing angle

Levelling by β^* (= beam size at IP)

CERN

M. Schaumann - Heavy-Ions in the LHC, JAS'2019, Dubna, Russia

Intra-Beam Scattering

Intra-Beam Scattering Growth Rates

$$\alpha_{\mathrm{IBS},s} = \left\langle A_{\mathrm{p}} \frac{r_{h}^{2}}{r_{p}^{2}} f(a,b,q) \right\rangle$$

$$\alpha_{\mathrm{IBS},x} = \left\langle A_{\mathrm{p}} \left[f\left(\frac{1}{a}, \frac{b}{a}, \frac{q}{a}\right) + \frac{D_{x}^{2}\sigma_{h}^{2}}{\sigma_{x}^{2}} f(a,b,q) \right] \right\rangle$$

$$\alpha_{\mathrm{IBS},y} = \left\langle A_{\mathrm{p}} \left[f\left(\frac{1}{a}, \frac{b}{a}, \frac{q}{a}\right) + \frac{D_{y}^{2}\sigma_{h}^{2}}{\sigma_{x}^{2}} f(a,b,q) \right] \right\rangle$$
Complicated Integral,
to be evaluated
numerically at each
element of lattice
$$f(a,b,q) = 8\pi \int_{0}^{1} \left\{ 2\ln \left[\frac{q}{2} \left(\frac{1}{P} + \frac{1}{Q} \right) \right] - 0.577 \dots \right\} \frac{1 - 3u^{2}}{PQ} du$$

$$A_{\mathrm{p}} = \frac{2r_{0}^{2}cN_{b}}{64\pi^{2}\beta_{\mathrm{rel}}^{3}\gamma^{4}\epsilon_{x}\epsilon_{y}\sigma_{s}\sigma_{p}}$$
Dynamic change with
beam parameters
$$\frac{1}{\sigma_{h}^{2}} = \frac{1}{\sigma_{p}^{2}} + \frac{D_{x}^{2}}{\sigma_{x}^{2}} + \frac{D_{y}^{2}}{\sigma_{y}^{2}}$$

$$g^{2} = a^{2} + (1 - a^{2})u^{2}$$

Radiation Damping

CÉRN

The average energy loss into synchrotron radiation in a circular accelerator leads to damping of the transverse and longitudinal **emittances** like $\int_{1}^{1} dt = \int_{1}^{2} r dt dt$

$$A_{i} = A_{0,i}e^{-\alpha_{\text{rad},i}t}$$
, where $i = x, y, s_{i}$

Note: 1.) Independ of beam parameters.
 2.) Depend on Energy³, machine size and particle type.

3.) In this approximation, longitudinal damping is twice as fast as transverse: $\alpha_{\text{rad},s} = 2\alpha_{\text{rad},x} = 2\alpha_{\text{rad},y}$.

4.) Rad. damping for Pb 2x faster than for protons: $\alpha_{rad,xy} = 12h$

5.) Fast enough to overcome IBS at full energy and intensity

Data used to estimate future running.

Lighter ions have potential for **significantly higher nucleon-nucleon luminosity**:

- Expect higher bunch charge in the injector chain
- Lower cross sections for ultraperipheral collisions

 $\rightarrow \sigma_{\text{BFPP}} \sim Z^7$, $\sigma_{\text{EMD}} \sim Z^4$

 \rightarrow Slower burn-off and longer fills, more ions left for usable luminosity

Beam Evolution

A particle bunch is characterised by its **number of particles**, $N_b(t)$, and the **emittances**, $\epsilon_{n,i}(t)$, in the three planes (i = x, y, s).

 α are growth rates or inverse lifetimes, describing how fast the corresponding process changes a quantity.

The bunch's evolution is usually obtained by (numerically) solving those differential equations, or by tracking simulations.