Nonlinear Dynamics

Resonances, Chaos and Emittance growth in Circular Accelerators

Kazuhito Ohmi

KEK, Accelerator Lab
Joint US-CERN-Japan-Russia International Accelerator School 2019 Ion Colliders JAS2019, Dubna, Russia

Oct. 28 - Nov. 7, 2019

Overview

(1) Introduction
(2) Hamiltonian in Accelerator/Beam Physics
(3) Nonlinear Dynamics
4. Resonances
(5) Synchrotron motion

6 Applications
(7) Summary

Introduction

Emittance growth is one of important issues in accelerator physics. Incoherent emittance growth due to resonance and chaos is subject of nonlinear beam dynamics. We discuss nonlinear dynamics in circular accelerator,
(1) Hamitonian and Lie formalism
(2) Resonances and chaos
(3) Applications to lepton and hadron colliders, and high intensity proton ring.

Hamiltonian in Accelerator/Beam Physics

Time variable is " s ". 3rd dynamical variable $z=s-c t, z=s-v t$, $z=v\left(t_{0}-t\right)$, or several choices. Any case 3rd variable is related to arrival time advance of partciles at " s ".

$$
\begin{equation*}
H=\frac{E(\delta)}{P_{0} v_{0}}-\left(1+\frac{x}{\rho}\right) \sqrt{(1+\delta)^{2}-p_{x}^{2}-p_{y}^{2}}-\left(1+\frac{x}{\rho}\right) \hat{A}_{s} \tag{1}
\end{equation*}
$$

Magnets and RF field are expressed by $\hat{A}_{s}=e A_{s} / P_{0}$.
Beam-beam force and space charge charge force are added as electric potential effectively.
In Circular accelerator, Hamiltonian is periodic for the circumference C.

$$
\begin{equation*}
H\left(x, p_{x}, y, p_{y}, z, \delta ; s+C\right)=H\left(x, p_{x}, y, p_{y}, z, \delta ; s\right) \tag{2}
\end{equation*}
$$

" s " dependent three degree of freedom

Symplectic transformation

Hamiltonian generates sympletic transformation.
Simplectic transformation of $\boldsymbol{x}=\left(x, p_{x}, y, p_{y}, z, \delta\right)$

$$
\begin{equation*}
\bar{x}=\bar{x}(x) \tag{3}
\end{equation*}
$$

satisfies

$$
\begin{equation*}
\left[\bar{x}_{i}, \bar{x}_{j}\right] \equiv \sum_{k, l=1}^{6} \frac{\partial \bar{x}_{i}}{\partial x_{k}} S_{k l} \frac{\partial \bar{x}_{j}}{\partial x_{l}}=S_{i j} \tag{4}
\end{equation*}
$$

where [,] is the Poisson bracket.

$$
S=\left(\begin{array}{ccc}
S_{2} & 0 & 0 \\
0 & S_{2} & 0 \\
0 & 0 & S_{2}
\end{array}\right) \quad S_{2}=\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right)
$$

When phase space is ellipse, the area of ellipse is kept a constant. Emittance growth should be studied under keeping symplectic condition exactly.

Lie transform

Lie operator, Poisson bracket

$$
\begin{equation*}
: f: g=[f, g]=\sum_{i, j=1}^{6} \frac{\partial f}{\partial x_{i}} S_{i j} \frac{\partial g}{\partial x_{j}}=\sum_{a=1}^{3}\left(\frac{\partial f}{\partial x_{a}} \frac{\partial g}{\partial p_{a}}-\frac{\partial f}{\partial p_{a}} \frac{\partial g}{\partial x_{a}}\right) \tag{5}
\end{equation*}
$$

Useful Formula

$$
\begin{gather*}
e^{: f:} g(x)=g\left(e^{: f:} x\right) \tag{6}\\
e^{: f:} e^{: g:} e^{-: f:}=\exp \left(: e^{: f:} g:\right) \tag{7}
\end{gather*}
$$

$\exp (: A:)$ is symplectic, because $\left[e^{: A:} x, e^{: A:} p_{x}\right]=e^{: A:}\left[x, p_{x}\right]=1 \ldots$
Equation of motion and its solution are represented by Lie operator,

$$
\begin{equation*}
\frac{d \boldsymbol{x}}{d s}=-: H: \boldsymbol{x} \quad \overline{\boldsymbol{x}}=e^{-: H: s} \boldsymbol{x} \tag{8}
\end{equation*}
$$

Examples for Lie operator

(1) Quadrupole magnet with the length $\ell, H=\left(p_{x}^{2}+k_{1} x^{2}\right) / 2$,

$$
\begin{aligned}
\bar{x} & =\cos \left(\sqrt{k_{1}} \ell\right)+\sin \left(\sqrt{k_{1}} \ell\right) / \sqrt{k_{1}} \\
\bar{p}_{x} & =-\sqrt{k_{1}} \sin \left(\sqrt{k_{1}} \ell\right)+\cos \left(\sqrt{k_{1}} \ell\right)
\end{aligned}
$$

(2) Thin sextpole, $H=K_{2} x^{3} / 6$

$$
e^{-H} p_{x}=p_{x}-\frac{K_{2}}{6}\left[x^{3}, p_{x}\right]+K_{2}^{2}\left[x^{3},\left[x^{3}, p_{x}\right]\right] \ldots=p_{x}-\frac{K_{2}}{2} x^{2} \quad e^{-H} x=x
$$

When Lie operator expansion is represenetd by finite series or is replaced by an analytic function, the map is symplectic.
Accelerator lattice ordered $H_{1}, H_{2} \ldots$,

$$
\begin{equation*}
e^{-: H_{1}(\boldsymbol{x})}: e^{-: H_{2}(\boldsymbol{x})}: e^{-: H_{3}(\boldsymbol{x})}: e^{-: H_{4}(\boldsymbol{x})} \ldots \tag{9}
\end{equation*}
$$

This is opposite order against matrix form

$$
\overline{\boldsymbol{x}}=\ldots M_{4} M_{3} M_{2} M_{1} \boldsymbol{x}
$$

Generating function

Another way to integrate Hamiltonian with keeping symplecticity, when Lie operator expansion is infinite series.
For $H(x, p)$, use 2 nd canonical transformation

$$
\begin{gather*}
F_{2}(x, \bar{p})=x_{a} \bar{p}_{a}+H(x, \bar{p}) \tag{10}\\
p_{a}=\frac{\partial F_{2}}{\partial x_{a}}=\bar{p}_{a}+\frac{\partial H}{\partial x_{a}} \tag{11}
\end{gather*}
$$

Implicit relation for $p=p(\bar{p})$ has to be solved as $\bar{p}=\bar{p}(p)$. It is possible.for only limited cases.
(1) $H(x, p)=H_{1}(x)+H_{2}(p)$
(2) H is linear for p.
(3) Numerical solution for example, Newton-Raphson.
(4) \ldots

More advanced examples

(1) Crab waist scheme, $\exp \left(\mp: H_{c w}:\right)$ is operated before and after beam-beam collision.

$$
\begin{gather*}
H_{c w}=\frac{1}{4 \theta_{c}} x^{*} p_{y}^{* 2} \tag{12}\\
\bar{p}_{x}^{*}=p_{x}^{*}-\left[x^{*} p_{x}^{* 2} /\left(4 \theta_{c}, p_{x}^{*}\right]=p_{x}^{*}-p_{y}^{* 2} /\left(4 \theta_{c}\right)\right. \\
\bar{y}^{*}=y^{*}-\left[x^{*} p_{x}^{* 2} /\left(4 \theta_{c}, y *\right]=y^{*}+x^{*} p_{y}^{*} /\left(2 \theta_{c}\right)\right.
\end{gather*}
$$

2nd transformation shifts vertial waist proportional to $x^{*}, x^{*} /\left(2 \theta_{c}\right)$.
(2) Crab crossing, $\exp \left(\mp: H_{c c}:\right)$ is operated,

$$
\begin{gather*}
H_{c c}=\theta_{c} p_{x}^{*} z^{*} \tag{13}\\
\bar{x}^{*}=x-\theta_{c}\left[p_{x}^{*} z, x^{*}\right]=x^{*}+\theta_{c} z^{*} \\
\bar{\delta}^{*}=\delta^{*}-\theta_{c}\left[p_{x}^{*} z^{*}, \delta^{*}\right]=\delta^{*}-\theta_{c} p_{x}^{*}
\end{gather*}
$$

First transformation gives a tilt θ_{c} in $x-z$ plane.

Examples (how to realize)

(1) Crab waist scheme

$$
\begin{equation*}
H_{c w}=\frac{1}{4 \theta_{c}} x^{*} p_{y}^{* 2} \tag{14}
\end{equation*}
$$

$$
T\left(s^{*} \rightarrow s\right) e^{-: H_{\text {sext }}\left(\boldsymbol{X}^{*}\right)} T\left(s \rightarrow s^{*}\right)=e^{-: H_{\text {sext }}\left(T\left(s^{*} \rightarrow s\right) \boldsymbol{X}^{*}\right):}=e^{-: H_{c w}\left(\boldsymbol{X}^{*}\right):}
$$

$$
1 /\left(4 \theta_{c}\right)=K_{2} T_{11} T_{34}^{2} / 2 \quad T_{12}=T_{33}=0
$$

Choosing the phase difference $n \pi$ in horizontal and $\pi / 2+n^{\prime} \pi$ for vertical from IP
(2) Crab crossing with a half crossing angle θ_{c}.

$$
\begin{equation*}
H_{c c}=\theta_{c} p_{x}^{*} z^{*} \tag{15}
\end{equation*}
$$

Using crab cavity induces $H_{c c v}=V^{\prime} x z$

$$
\theta_{c}=V^{\prime} T_{12} \quad T_{11}=0
$$

The horizontal phase difference is chosen $\pi / 2+n \pi$

Collision with crossing angle

Crossing collision is transferred to head-on collision by

$$
\begin{equation*}
H_{c c}=\theta_{c} p_{x}^{*} z^{*} \tag{16}
\end{equation*}
$$

where Lorentz contraction $\left(1 / \cos \theta_{c}\right)$ in P_{0} and z is neglected here. This transformation is compensated by crab cavities.

Figure: Schemetic view for crossing collision (K. Oide,PRA40,315(1989), K. Hirata, PRL74, 2228 (1995)).

One turn map

Transformation after one turn, one turn map, is expressed by

$$
\begin{align*}
\mathcal{M} & =T_{0 \rightarrow 1} e^{-: H_{1}:} T_{1 \rightarrow 2} e^{-: H_{2}: \ldots e^{-: H_{N-1}}: T_{N-1 \rightarrow N} e^{-: H_{N}}} \begin{aligned}
& \\
& T_{N \rightarrow 0} \\
&=T_{0} \prod_{i=1}^{N} \exp \left(-: H_{i}\left(T_{0 \rightarrow i} \boldsymbol{x}\right):\right)
\end{aligned}
\end{align*}
$$

where T_{0} is the revolution matrix at the position $s=0+(n C)$.

$$
\mathcal{M}=T_{0} e^{-: H:}
$$

H can be trancated power series using or

$$
H \approx \oint H\left(T_{0 \rightarrow s} \boldsymbol{x}, s\right) d s
$$

Linearized theory

$$
\begin{equation*}
H(s)=\frac{\delta^{2}}{2 \gamma^{2}}-\frac{x \delta}{\rho(s)}+\frac{p_{x}^{2}+p_{y}^{2}}{2}+\frac{x^{2}}{2 \rho(s)^{2}}+\frac{K_{1}(s)}{2}\left(x^{2}-y^{2}\right)-\frac{V^{\prime}}{E_{0}} z^{2} \tag{18}
\end{equation*}
$$

For region with constant ρ and K_{1}, transfer matrix is obtained easily. 6×6 revolution matrix, which is symplectic.
Three eigenvalue with $e^{ \pm i \mu_{j}}$ and conjugate pair of eigenvectors ($\boldsymbol{v}_{j}, \boldsymbol{v}_{j}^{*}$) are obtained. Real and imaginary part of \boldsymbol{v}_{X} gives X, P_{X},

$$
X=\frac{x}{\sqrt{\beta_{x}}} \quad P_{X}=\frac{\beta_{x} p_{x}+\alpha_{x} x}{\sqrt{\beta_{x}}} \quad J_{X}=\frac{X^{2}+P_{X}^{2}}{2} \quad \phi_{x}=-\tan ^{-1} \frac{P_{X}}{X}
$$

ϕ is betatron phase. (J_{X}, ϕ_{X})are canonical pair.
Y, Z are also expressed in the same way.
X, P_{X} rotate μ_{X} in the phase space after one revolution.

$$
\binom{\bar{X}}{\bar{P}_{X}}=\left(\begin{array}{cc}
\cos \mu_{X} & \sin \mu_{X} \\
-\sin \mu_{x} & \cos \mu_{x}
\end{array}\right)\binom{X}{P_{X}}
$$

Hamiltonian for one turn linear map is $H_{0}=\mu_{x} J_{x}+\mu_{y} J_{y}-\mu_{z} J_{z}$

Nonlinear system

Hamiltonian generating one turn map.for Linear system with small nonlinear perturbation,

$$
H(\boldsymbol{J}, \phi)=H_{0}(\boldsymbol{J})+U(\boldsymbol{J}, \phi)
$$

ϕ is synchro-betatron phase at initial position s_{0}. Average over the synchro-betatron phase $\phi=\left(\phi_{x}, \phi_{y}, \phi_{z}\right)$

$$
\bar{U}(J)=\frac{1}{2 \pi} \oint U(J, \phi) d \phi
$$

Hamiltonian is epressed by averaged part which depends only on \boldsymbol{J} and oscillation part,

$$
H(J, \phi)=\bar{H}(J)+\hat{U}(J, \phi)
$$

Tune

Synchro-betatron phase advance after one turn

$$
\begin{equation*}
\Delta \phi_{j}=\mu_{i}=\frac{\partial \bar{H}}{\partial J_{i}} \tag{19}
\end{equation*}
$$

Tune $\nu_{i}=\mu_{j} /(2 \pi)$ depends on the amplitude \boldsymbol{J} in nonlinear system.
Source of nonlinear
(1) Nonlinear magnets, sextupoles, octupoles....
(2) Beam-beam force
(3) Space charge force
(4) Electron or ion cloud

How to calculate
(1) Integrate nonlinear element in a ring.
(2) Use computer pakkage, Taylar expansion, Differential Algebra...

Differential Algebra to evaluate nonlinear transformation of lattice magnets

Transformation of a magnet is represented by polynomial,

$$
\begin{gathered}
\boldsymbol{x}_{1}=f_{1}\left(\boldsymbol{x}_{0}\right) \\
\boldsymbol{x}_{2}=f_{2}\left(\boldsymbol{x}_{1}\right)=f_{2}\left(f_{1}\left(x_{0}\right)\right) \equiv f_{2} \circ f_{1}\left(x_{0}\right) \\
\ldots . \\
. x_{n}=f_{n} \circ \ldots \circ f_{1}\left(x_{0}\right) . .
\end{gathered}
$$

Coefficient of the polynomial are calculated by computer. The polynomial is trancated by a certain order, for exmple 10, 15... The transfer map expressed by the trancated polynomial is not symplectic.
We can have Lie operator expression for trancated polynomial,

$$
x_{n}=\exp \left(-: H\left(x_{0}\right):\right) x_{0}
$$

Taking invariant part in $H=H(\boldsymbol{J})$, tune shift is evaluated.,

Nonlinearity of lattice magnets

Differential Algbra (SAD+) is executed for J-PARC MR.

$$
\begin{aligned}
H_{00} & =-4.5114 \times 10^{13} J_{x}^{6}+5.12293 \times 10^{16} J_{x}^{5} J_{y}+5.4158 \times 10^{12} J_{x}^{5} \\
& -1.04751 \times 10^{16} J_{x}^{4} J_{y}^{2}+5.1184 \times 10^{12} J_{x}^{4} J_{y}+1.01007 \times 10^{9} J_{x}^{4} \\
& -1.31809 \times 10^{16} J_{x}^{3} J_{y}^{3}+6.64815 \times 10^{12} J_{x}^{3} J_{y}^{2}+2.52657 \times 10^{9} J_{x}^{3} J_{y} \\
& +4.71257 \times 10^{6} J_{x}^{3}+5.93598 \times 10^{15} J_{x}^{2} J_{y}^{4}-2.2846 \times 10^{12} J_{x}^{2} J_{y}^{3} \\
& -2.07724 \times 10^{8} J_{x}^{2} J_{y}^{2}-5.02669 \times 10^{6} J_{x}^{2} J_{y}+979.228 J_{x}^{2} \\
& -2.37342 \times 10^{15} J_{x} J_{y}^{5}-5.60636 \times 10^{11} J_{x} J_{y}^{4}-1.00837 \times 10^{9} J_{x} J_{y}^{3} \\
& -3.71806 \times 10^{6} J_{x} J_{y}^{2}+1578.47 J_{x} J_{y}+5.75634 \times 10^{14} J_{y}^{6} \\
& +3.76351 \times 10^{11} J_{y}^{5}-1.93481 \times 10^{8} J_{y}^{4}+2.72899 \times 10^{6} J_{y}^{3} \\
& +722.764 J_{y}^{2}
\end{aligned}
$$

Resonance driving terms of H, which are function of ϕ, are also obtained.

Tune dependence

$$
\begin{equation*}
\nu(J)=\nu_{0}+\frac{1}{2 \pi} \frac{\partial H_{00}}{\partial J} \tag{20}
\end{equation*}
$$

Tune shift is $\Delta \nu \sim 0.0005$ for J-PARC MR, where the aperture is 65 $\mathrm{mm} . \mathrm{mrad}$. The tune shift of space charge force is $\mathrm{O}(0.1)$.

Figure: Amplitude dependent tune shift due to lattice nonlinear magnets in J-PARC MR.

Tune slope

$$
\begin{equation*}
2 \pi \frac{d \nu(J)}{d J}=\frac{\partial^{2} H_{00}}{\partial J \partial J} \tag{21}
\end{equation*}
$$

The second derivative, tune slope, is ~ 2000 for J-PARC MR. The value is compared with that of space charge force.

Figure: Tune slope due to lattice nonlinear magnets in J-PARC MR. (left) $\partial^{2} H / \partial J_{x}^{2}$, (center) $\partial^{2} H / \partial J_{x} \partial J_{y}$, (right) $\partial^{2} H / \partial J_{y}^{2}$.

Potential induced by Transverse Gaussian charge distribution

Electric potential induced by Gaussian charge distribution,

$$
\begin{equation*}
\Phi(x, y, z)=\frac{e}{4 \pi \epsilon_{0}} \int_{0}^{\infty} \frac{\exp \left(-\frac{x^{2}}{2 \sigma_{x}^{2}+u}-\frac{y^{2}}{2 \sigma_{y}^{2}+u}-\frac{z^{2}}{2 \sigma_{z}^{2}+u}\right)-1}{\sqrt{\left(2 \sigma_{x}^{2}+u\right)\left(2 \sigma_{y}^{2}+u\right)\left(2 \sigma_{z}^{2}+u\right)}} d u \tag{22}
\end{equation*}
$$

A relativistic particle interacting with charge dirtribution with transverse Gaussian (unit charge)

$$
\begin{equation*}
U_{G}(x, y)=\frac{r_{p}}{\gamma} \int_{0}^{\infty} \frac{1-\exp \left(-\frac{x^{2}}{2 \sigma_{x}^{2}+u}-\frac{y^{2}}{2 \sigma_{y}^{2}+u}\right)}{\sqrt{\left(2 \sigma_{x}^{2}+u\right)\left(2 \sigma_{y}^{2}+u\right)}} d u \tag{23}
\end{equation*}
$$

Beam-beam force

Collision with a half crossing angle θ_{c}.

$$
\begin{equation*}
U_{b b}=\frac{r_{p}}{\gamma} \int \lambda_{p}\left(z^{\prime}\right) U_{G}\left[x-\theta_{c}\left(z-z^{\prime}\right), y\right] d s \tag{24}
\end{equation*}
$$

Particles are in betatron oscillation even during small area of collision, ($s \sim s^{*}$)

$$
x(s)=\sqrt{2 \beta_{x}(s) J_{x}} \cos \left(\varphi_{x}(s)+\phi_{x}\right) \quad y(s)=\sqrt{2 \beta_{y}(s) J_{y}} \cos \left(\varphi_{y}(s)+\phi_{y}\right) .
$$

where $\varphi_{x, y}(s)$ is the betatron phase difference fom the interaction point s^{*}

$$
\begin{equation*}
\varphi_{x, y}(s)=\tan ^{-1}\left(\frac{s}{\beta_{x, y}^{*}}\right) . \tag{25}
\end{equation*}
$$

$\phi_{x, y}$, which is the betatron phase at the interaction point, increases $2 \pi \nu_{x, y}$ turn-by-turn. λ_{p} is line density of colliding beam at s. The density is function of the relative position from the beam center z^{\prime}

$$
\begin{equation*}
\lambda_{p}\left(z^{\prime}\right)=\frac{N_{p}}{\sqrt{2 \pi}} \exp \left(-\frac{z^{\prime 2}}{2 \sigma_{z}^{2}}\right) \tag{26}
\end{equation*}
$$

where z^{\prime} is related to s and z with $s=\left(z-z^{\prime}\right) / 2$.

Fourier expansion of the beam-beam potential

$$
\begin{aligned}
U_{\boldsymbol{m}}= & \frac{1}{(2 \pi)^{2}} \int d \phi_{x} d \phi_{y} U_{b b} e^{i \boldsymbol{m} \phi} \\
= & \frac{1}{(2 \pi)^{2}} \frac{r_{p}}{\gamma} \int \lambda_{p} d s \int d \phi e^{i \boldsymbol{m} \phi} \int_{0}^{\infty} \frac{1-\exp \left(-\frac{\left(x(s)-2 s \sin \theta_{c}\right)^{2}}{2 \sigma_{x}^{2}+u}-\frac{y(s)^{2}}{2 \sigma_{y}^{2}+u}\right)}{\sqrt{2 \sigma_{x}^{2}+u} \sqrt{2 \sigma_{y}^{2}+u}} d u \\
= & \frac{r_{p}}{\gamma} \int d s \int_{0}^{\infty} \frac{\lambda_{p}\left(z^{\prime}\right) d t}{\sqrt{2+t} \sqrt{2 r_{y x}+t}} \exp \left(-w_{x}-w_{y}\right) \\
& \sum_{l=-\infty}^{\infty}(-1)^{\left(m_{x}+l+m_{y}\right) / 2} I_{\left(m_{x}-I\right) / 2}\left(w_{x}\right) I_{l}\left(v_{x}\right) I_{m_{y} / 2}\left(w_{y}\right) e^{-i m_{x} \varphi_{x}-i m_{y} \varphi_{y}} .
\end{aligned}
$$

where $m_{x}-I$ and m_{y} are even numbers.

Tune spread in the amplitude space

$$
\begin{gather*}
\frac{\partial U_{00}}{\partial J_{x}}=\frac{1}{(2 \pi)^{2}} \frac{N r_{p}}{\gamma} \iint \lambda_{p}\left(z^{\prime}\right) d s d \phi \sqrt{\frac{\beta_{x}}{2 J_{x}}} \cos \left(\varphi_{x}+\phi_{x}\right) F_{x}\left(x-2 s \sin \theta_{c}, y\right) \\
\frac{\partial U_{00}}{\partial J_{y}}=\frac{1}{(2 \pi)^{2}} \frac{N r_{p}}{\gamma} \iint \lambda_{p}\left(z^{\prime}\right) d s d \phi \sqrt{\frac{\beta_{y}}{2 J_{y}}} \cos \left(\varphi_{y}+\phi_{y}\right) F_{y}\left(x-2 s \sin \theta_{c}, y\right) \tag{28}
\end{gather*}
$$

F_{x} is wellknown formula represented by complex error function, $w,[M$. Bassetti, G. Erskine, CERN-ISR TH/80-06 (1980)]

$$
\begin{equation*}
F_{y}(x, y)+i F_{x}(x, y)=\frac{\sqrt{\pi}}{\Sigma}\left[w\left(\frac{x+i y}{\Sigma}\right)-\exp \left(-\frac{x^{2}}{2 \sigma_{x}^{2}}-\frac{y^{2}}{2 \sigma_{y}^{2}}\right) w\left(\frac{r x+i y / r}{\Sigma}\right)\right] \tag{29}
\end{equation*}
$$

where $\Sigma=\sqrt{2\left(\sigma_{x}^{2}-\sigma_{y}^{2}\right)}$ and $r=\sigma_{y} / \sigma_{x}$.

Tune slope in the amplitude space

$$
\begin{align*}
& \frac{\partial^{2} U_{00}}{\partial J_{x}^{2}}=\frac{1}{(2 \pi)^{2}} \frac{N r_{p}}{\gamma} \iint \lambda_{p}\left(z^{\prime}\right) d s d \phi \\
& {\left[-\frac{1}{2} \sqrt{\frac{\beta_{x}}{2 J_{x}^{3}}} \cos \left(\varphi_{x}+\phi_{x}\right) F_{x}\left(x-2 s \sin \theta_{c}, y\right)+\frac{\beta_{x}}{2 J_{x}} \cos ^{2}\left(\varphi_{x}+\phi_{x}\right) \frac{\partial F_{x}}{\partial x}\right] } \\
& \frac{\partial^{2} U_{00}}{\partial J_{y}^{2}}=\frac{1}{(2 \pi)^{2}} \frac{N r_{p}}{\gamma} \iint \lambda_{p}\left(z^{\prime}\right) d s d \phi \tag{31}\\
& {\left[-\frac{1}{2} \sqrt{\frac{\beta_{y}}{2 J_{y}^{3}}} \cos \left(\varphi_{y}+\phi_{y}\right) F_{y}\left(x-2 s \sin \theta_{c}, y\right)+\frac{\beta_{y}}{2 J_{y}} \cos ^{2}\left(\varphi_{y}+\phi_{y}\right) \frac{\partial F_{y}}{\partial y}\right] } \\
& \frac{\partial^{2} U_{00}}{\partial J_{x} \partial J_{y}}=\frac{1}{(2 \pi)^{2}} \frac{N r_{p}}{\gamma} \iint \lambda_{p}\left(z^{\prime}\right) d s d \phi \sqrt{\frac{\beta_{x} \beta_{y}}{4 J_{x} J_{y}}} \cos \left(\varphi_{x}+\phi_{x}\right) \cos \left(\varphi_{y}+\phi_{y}\right) \frac{\partial F_{x}}{\partial y} \tag{32}
\end{align*}
$$

Tune spead in KEKB, SuperKEKB and LHC

(1) $\mathrm{KEKB}\left(\right.$ left) : conventional type of $\mathrm{e}^{+} \mathrm{e}^{-}$collider based on flat beam collision.
(2) SuprKEKB (center) : new type of $\mathrm{e}^{+} \mathrm{e}^{-}$collider based on large crossing (Piwinski) angle collision. $\Delta \nu_{x} \ll \Delta \nu_{y}$
(3) LHC-head-on (right) : Hadron collider based on round beam collision.

Figure: Tune spread due to the beam-beam interaction in KEKB, SuperKEKB and LHC.

Tune slope in SuperKEKB $\left(\beta_{y}=3 \mathrm{~mm}\right)$

Figure: Tune spread and slope in SuperKEKB (detuned $\beta_{y}=3 \mathrm{~mm}$).

Tune slope in SuperKEKB $\left(\beta_{y}=0.3 \mathrm{~mm}\right)$

Figure: Tune spread and slope in SuperKEKB (design).

Space charge force

Assuming Gaussian distribution in the transverse phase space,

$$
\begin{equation*}
U(x, y, z)=\frac{N_{p} \lambda_{p}(z) r_{p}}{\beta^{2} \gamma^{3}} \int_{0}^{\infty} \frac{1-\exp \left(-\frac{x^{2}}{2 \sigma_{x}^{2}+u}-\frac{y^{2}}{2 \sigma_{y}^{2}+u}\right)}{\sqrt{2 \sigma_{x}^{2}+u} \sqrt{2 \sigma_{y}^{2}+u}} d u \tag{33}
\end{equation*}
$$

Dispersion should be taken into account

$$
\begin{gather*}
x(s)=\sqrt{2 \beta_{x}(s) J_{x}} \cos \left(\varphi_{x}(s)+\phi_{x}\right)+\eta(s) \delta \\
U(J, \phi, z, s)=\oint_{s} d s^{\prime} U\left(x, y, z ; s^{\prime}\right) \tag{34}\\
=\frac{\lambda_{p}(z) r_{p}}{\beta^{2} \gamma^{3}} \oint_{s} d s^{\prime} \int_{0}^{\infty} \frac{1-\exp \left(-\frac{x^{2}\left(s^{\prime}, s\right)}{2 \sigma_{x}^{2}+u}-\frac{y^{2}\left(s^{\prime}, s\right)}{2 \sigma_{y}^{2}+u}\right)}{\sqrt{2 \sigma_{x}^{2}+u} \sqrt{2 \sigma_{x}^{2}+u}} d u
\end{gather*}
$$

Tune spead in J-PARC MR

Space charge force for approximately round beam $\Delta \nu_{x} \sim \Delta \nu_{y}$. Tune spread is very large $\Delta \nu>0.1$. The space charge force distribute in whole ring, while beam-beam force is localized at IP.

Tune slope

Figure: Tune slope due to space charge force in J-PARC MR.

Typical values are 10^{5} near the beam position, and 10^{4} outside of the beam area. Lattice magnets gave <5000. Space charge is dominant for the tune slope.

Resonance

Hamiltonian is expanded by Fourier series,

$$
\begin{equation*}
H=\mu J+U_{00}(J)+\sum_{m_{x}, m_{y} \neq 0} U_{m_{x}, m_{y}}(J) \exp \left(-i m_{x} \phi_{x}-i m_{y} \phi_{y}\right) \tag{35}
\end{equation*}
$$

First and second terms in RHS characterize shift, spread and slope of tune.

$$
\begin{equation*}
\tilde{\mu}_{i}=\frac{\partial H}{\partial J_{i}}=\mu_{i}+\frac{\partial U_{00}}{\partial J_{i}} \tag{36}
\end{equation*}
$$

Third term is averaged out for the tune shift due to the betatron phase variation. Resonance condition is expressed by ($\mu=2 \pi \nu$)

$$
\begin{equation*}
m_{x} \tilde{\nu}_{x}(\boldsymbol{J})+m_{y} \tilde{\nu}_{y}(\boldsymbol{J})=n . \tag{37}
\end{equation*}
$$

where n is an integer. The resonance condition Eq.(38) gives a line in $\left(J_{x}, J_{y}\right)$ space. \boldsymbol{J} satisfying Eq. (38) is expressed by \boldsymbol{J}_{R}.

Resonance location

We calculte what amplitude a resonance occurs. Solve

$$
\begin{equation*}
m_{x} \tilde{\mu}_{x}(\boldsymbol{J})+m_{y} \tilde{\mu}_{y}(\boldsymbol{J})=2 \pi n \tag{38}
\end{equation*}
$$

for several resonances for a pp collider as an example.

Figure: Tune spread area and resonance in the amplitude space for a hadron collider, SPPC (x-crossing), long range collisions are included.

Behavior near resonance

Hamiltonian is expanded near \boldsymbol{J}_{R} as

$$
\begin{align*}
& U_{00}(\boldsymbol{J})=U_{00}\left(\boldsymbol{J}_{R}\right)+\left.\frac{\partial U_{00}}{\partial \boldsymbol{J}}\right|_{\boldsymbol{J}_{R}}\left(\boldsymbol{J}-\boldsymbol{J}_{R}\right) \\
& \quad+\left.\left(\boldsymbol{J}-\boldsymbol{J}_{R}\right)^{t} \frac{1}{2} \frac{\partial^{2} U_{00}}{\partial \boldsymbol{J} \partial \boldsymbol{J}}\right|_{\boldsymbol{J}_{R}}\left(\boldsymbol{J}-\boldsymbol{J}_{R}\right) \tag{39}
\end{align*}
$$

Third term in RHS is characterized by the tune slope

$$
\begin{equation*}
2 \pi \frac{\partial \nu_{i}}{\partial J_{j}}=2 \pi \frac{\partial \nu_{j}}{\partial J_{i}}=\frac{\partial^{2} U_{00}}{\partial J_{i} \partial J_{j}} \tag{40}
\end{equation*}
$$

Behavior near resonance

Canonical transformation for new variable \boldsymbol{P} and $\boldsymbol{\psi}$ is considered

$$
F_{2}(\boldsymbol{P}, \phi)=\left(J_{x, R}+m_{x} P_{1}+m_{x, 2} P_{2}\right) \phi_{x}+\left(J_{y, R}+m_{y} P_{1}+m_{y, 2} P_{2}\right) \phi_{y}
$$

Choosing $m_{x, 2}=0, m_{y, 2}=1$ independent of $\left(m_{x}, m_{y}\right)$.

$$
\begin{gather*}
P_{1}=\frac{J_{x}-J_{x, R}}{m_{x}} \quad \psi_{1}=m_{x} \phi_{x}+m_{y} \phi_{y} \tag{41}\\
P_{2}=\left(J_{y}-J_{y, R}\right)-\frac{m_{y}}{m_{x}}\left(J_{x}-J_{x, R}\right) \quad \psi_{2}=\phi_{y}
\end{gather*}
$$

Hamiltonian for \boldsymbol{J} dependent terms is now given by

$$
\begin{equation*}
H_{00}=U_{00} \approx \frac{\Lambda}{2} P_{1}^{2} \tag{42}
\end{equation*}
$$

where

$$
\begin{equation*}
\Lambda \equiv m_{x}^{2} \frac{\partial^{2} U_{00}}{\partial J_{x}^{2}}+m_{x} m_{y} \frac{\partial^{2} U_{00}}{\partial J_{x} \partial J_{y}}+m_{y}^{2} \frac{\partial^{2} U_{00}}{\partial J_{y}^{2}} \tag{43}
\end{equation*}
$$

Resonance width

The resonance term, which is third term of RHS in Eq.(35), drives resonances. The resonance strengths $U_{\boldsymbol{m}}$ as function of \boldsymbol{J} are approximated to be those at J_{R}

$$
\begin{equation*}
U_{\boldsymbol{m}}(\boldsymbol{J}) \approx U_{\boldsymbol{m}}\left(\boldsymbol{J}_{R}\right) \quad \boldsymbol{m}=\left(m_{x}, m_{y}\right) \tag{44}
\end{equation*}
$$

Hamiltonian for the standard model is given as

$$
\begin{equation*}
H=\frac{\Lambda}{2} P_{1}^{2}+U_{\boldsymbol{m}}\left(\boldsymbol{J}_{R}\right) \cos \psi_{1} . \tag{45}
\end{equation*}
$$

Phase space structure near resonances are characterized by the resonance width. The resonance width is given by

$$
\begin{equation*}
\Delta P_{1}=4 \sqrt{\frac{U_{\boldsymbol{m}}}{\Lambda}} \quad \Delta J_{x}=4 m_{x} \sqrt{\frac{U_{\boldsymbol{m}}}{\Lambda}} \tag{46}
\end{equation*}
$$

Schemetic view of Resonance

Particle oscillates harmonic motion in the vicinity of the resonance point. Detuning from the resonance condition, separatrix is seen.

Figure: Resonance with base of $\left(J_{x}, \phi_{x}\right)$ and $\left(P_{1}, \psi_{1}\right)$.
Resonances causes emittance growth, but week growth.
Coupling to synchrotron motion is important as shown later.

Calulation of resonance width

Resonance driving term, tune slope and resonance width depend on the amplitude in which the resonance condition is satisfied. The stochasitisity parameter is lower than 1 . Weak chaos.

Figure: Resonance driving term, stochasticity parameter and resonance width.

Figure: Resonance width in the amplitude space and FMA resûlt.

Resonance with finte z

For finite z, tune spread area decreases.

Figure: Tune spread for finte synchrotron amplitudes.
Beam-beam and Space charge forces are symmetric for x and y. Only even resonances are induced. Odd resonances are induced for finite z.

Figure: Resonance width in the transverse amplitude space for zero and finite synchrotron amplitude.

Synchrotron motion

Synchrotron motion is very sow compre with betatron motion.

$$
\begin{equation*}
z=\sqrt{2 \beta_{z} J_{z}} \cos \phi_{z} \quad \delta=\sqrt{2 J_{z} / \beta_{z}} \sin \phi_{z} \tag{47}
\end{equation*}
$$

$\phi_{z}=\mu_{z} t$ increase as turn number t.
Resonance driving term, tune slope are modulated by the synchrotron motion. Fourier component for te synchrotron tune is calculated as

$$
\begin{align*}
U_{b b}=U_{\boldsymbol{O}, 0} & +\sum_{m_{z} \neq 0} U_{\boldsymbol{O}, m_{z}} e^{-i m_{z} \phi_{z}}+\sum_{\boldsymbol{m} \neq 0, m_{z}} U_{\boldsymbol{m}, m_{z}} e^{-i \boldsymbol{m} \cdot \phi_{-i m_{z} \phi_{z}}} \tag{48}\\
& U_{\boldsymbol{m}, m_{z}}\left(J, J_{z}\right)=\frac{1}{2 \pi} \int U_{\boldsymbol{m}}(J, z) e^{i m_{z} \phi_{z}} d \phi_{z} \tag{49}
\end{align*}
$$

The synchrotron tune is slow and can be comparable with the motion near the resonance. $\cup_{\boldsymbol{o}, m_{z}}$ term should be considered regardless of the resonance condition.

Synchrotron side band

The resonance condition of \boldsymbol{J} for a particle with J_{z} is

$$
\begin{gather*}
m_{x} \nu_{x}\left(\boldsymbol{J}, J_{z}\right)+m_{y} \nu_{y}\left(\boldsymbol{J}, J_{z}\right)+m_{z} \nu_{z}=n \tag{50}\\
\bar{U}\left(\boldsymbol{J}, J_{z}\right)=U_{\boldsymbol{o}, 0}\left(\boldsymbol{J}, J_{z}\right)+\sum_{\boldsymbol{m} \neq 0} U_{\boldsymbol{m}, m_{z}}\left(\boldsymbol{J}, J_{z}\right) e^{-i \boldsymbol{m} \cdot \boldsymbol{\phi}-i m_{z} \phi_{z}} \tag{51}
\end{gather*}
$$

Focusing the resonance, Hamiltonian is expressed by

$$
\begin{gather*}
\bar{H}=\bar{U}=\frac{\Lambda_{\boldsymbol{m}}}{2} P_{1}^{2}+U_{\boldsymbol{m}, 0}\left(J_{R}, J_{z}\right) \cos \psi_{1} \tag{52}\\
\Lambda_{\boldsymbol{m}} \equiv m_{x}^{2} \frac{\partial^{2} U_{\boldsymbol{o}, 0}}{\partial J_{x}^{2}}+2 m_{x} m_{y} \frac{\partial^{2} U_{\boldsymbol{o}, 0}}{\partial J_{x} \partial J_{y}}+m_{y}^{2} \frac{\partial^{2} U_{\boldsymbol{o}, 0}}{\partial J_{y}^{2}} \tag{53}
\end{gather*}
$$

$\Delta \nu_{z}=\partial U / \partial J_{z}$ is neglected. Synchrotron oscillation is treated as external oscillation.

Modulation due to synchrotron motion

Synchrotron frequency component,

$$
\begin{equation*}
U_{\boldsymbol{o}} \equiv U_{\boldsymbol{O}, 0}+\sum_{m_{z} \neq 0} U_{\boldsymbol{o}, m_{z}} e^{-i m_{z} \phi_{z}} \tag{54}
\end{equation*}
$$

The potential is expand around \boldsymbol{J}_{R} as follows,

$$
\begin{align*}
& U_{\boldsymbol{o}}\left(\boldsymbol{J}, J_{z}, t\right)=U_{\boldsymbol{o}}\left(\boldsymbol{J}_{R}\right)+\left.\frac{\partial U_{\boldsymbol{o}}}{\partial \boldsymbol{J}}\right|_{\boldsymbol{J}_{R}} \cdot\left(\boldsymbol{J}-\boldsymbol{J}_{R}\right) \tag{55}\\
& \quad=\sum_{m_{z} \neq 0} \frac{\partial U_{\boldsymbol{o}, m_{z}}}{\partial \boldsymbol{J}} \cdot\left(\boldsymbol{J}-\boldsymbol{J}_{R}\right) e^{-i m_{z} \mu_{z} t}=\sum_{m_{z} \neq 0} \frac{\partial U_{\boldsymbol{o}, m_{z}}}{\partial \boldsymbol{J}} \cdot \boldsymbol{m} P_{1} e^{-i m_{z} \mu_{z} t}
\end{align*}
$$

where U and its derivatives are evaluated at J_{R}. Linear term for P_{2}, which gives an oscillation of P_{2}, is neglected.

Resonance overlap between synchrotron side bands

The standardized transfer map for $H=\bar{H}+\hat{U}$ is given by

$$
\begin{align*}
I_{t+1} & =I_{t}+\sum_{m_{z}} K_{m_{z}} \sin \theta_{t} \cos \left(m_{z} \mu_{z} t\right) \tag{56}\\
\theta_{t+1} & =\theta_{t}+I_{t+1}+\sum_{m_{z} \neq 0} \frac{\partial U_{\boldsymbol{O}, m_{z}}}{\partial \boldsymbol{J}} \cdot \boldsymbol{m} \cos \left(m_{z} \mu_{z} t\right)
\end{align*}
$$

where $I=\Lambda_{\boldsymbol{m}} P_{1}, \theta=\psi_{1}$ and $K_{m_{z}}=\Lambda_{\boldsymbol{m}} U_{\boldsymbol{m}, m_{z}}$.
Resonance overlaps conditions
(1) The resonance width of each sideband (with even m_{z}) is larger than the resonance spacing μ_{z} between sidebands,

$$
\begin{equation*}
3 \sqrt{K_{m_{z}}}=3 \sqrt{\Lambda_{\boldsymbol{m}} U_{\boldsymbol{m}, m_{z}}}>2 \mu_{z} \tag{57}
\end{equation*}
$$

(2) Chaotic area due to the mudulation is larger than the resonance width or separation

$$
\begin{equation*}
\Delta P_{1}=\operatorname{Max}_{m_{z}}\left(\frac{1}{\Lambda} \frac{\partial U_{\boldsymbol{o}, m_{z}}}{\partial \boldsymbol{J}} \cdot \boldsymbol{m}\right) \tag{58}
\end{equation*}
$$

Example of overlap between synchrotron side bands

SPPC (China) is hadron collider which is competitor of FCC-hh.
(1) 7-th order resonance
(2) Resonances $m_{z}=0$ and 2 canoverlap.
(3) STochstic area due to modulation is narrower thanthe resonance width, but contributes the overlap.

Figure: Resonance with crab waist.
Resonance overlap enhances emittance growth remarkably.

Resonance suppression in Crab Waist

Crab waist scheme

$$
\begin{equation*}
H_{c w}=\frac{1}{4 \theta_{c}} x^{*} p_{y}^{* 2} \tag{59}
\end{equation*}
$$

$$
\begin{equation*}
T_{r e v} e^{-: H_{c w}\left(\boldsymbol{X}^{*}\right)}: e^{-: U_{b b}\left(\boldsymbol{x}^{*}\right)}: e^{: H_{c w}\left(\boldsymbol{X}^{*}\right)}:=T_{r e v} e^{-: U_{b b}\left(e^{-: H_{c w}\left(\boldsymbol{X}^{*}\right):} \boldsymbol{X}^{*}\right)} \tag{60}
\end{equation*}
$$

Particles with x

$$
\begin{equation*}
U_{b b}=\int \lambda\left(z^{\prime}\right) U_{G}\left(x+\theta_{c}\left(z-z^{\prime}\right), y+p_{y} s ; s\right) d s \quad s=\left(z-z^{\prime}\right) / 2 \tag{61}
\end{equation*}
$$

Large contribution $x \approx-2 \theta_{c} s$.

$$
\begin{equation*}
U_{b b} \approx \int \lambda\left(z^{\prime}\right) U_{G}\left(x+2 \theta_{c} s, y-x p_{y} /\left(2 \theta_{c}\right) ; s\right) d s \tag{62}
\end{equation*}
$$

The second argument $y+x p_{y} /\left(2 \theta_{c}\right)$ induces resonances on $x-y$ coupling. The resonances are compensated by the crab waist transformation, $y \rightarrow y+x p_{y} /\left(2 \theta_{c}\right)$

Resonance width for $\nu_{x}+4 \nu_{y}=3 \mathrm{w} / \mathrm{wo}$ crab waist

Figure: Resonance without crab waist.

Figure: Resonance with crab waist.
The resonance width with crab waist is one order lower than that without crab waist.

Super-periodicity and structure resonance

J-PARC MR ring has superperiodicity of three. It is sufficient to consider $1 / 3$ ring, $m_{x} \nu_{x} / 3+m_{y} \nu_{y} / 3=n$. Namely, only structure resonances $m_{x} \nu_{x}+m_{y} \nu_{y}=3 n$ exist under the perfect superperidicity. Nonstructure resonances, $m_{x} \nu_{x}+m_{y} \nu_{y}=n^{\prime}(\neq 3 n)$ do not exist.

Figure: .Tune diagram near $\left(\nu_{x} / 3, \nu_{y} / 3\right)=(7.13,7.143)$, where total tune is (21.35,21.4).

Breaking of Superperiodicity and nonstructure resonance

In real accelerator, superperiodicity is broken by various errors.
Non-structure resonances appear.

$$
\begin{gather*}
\mathcal{M}=\exp \left(-H_{00}^{(3)}-H_{\boldsymbol{m}}^{(3)}\right) \exp \left(-H_{00}^{(2)}-H_{\boldsymbol{m}}^{(2)}\right) \exp \left(-H_{00}^{(1)}-H_{\boldsymbol{m}}^{(1)}\right) \tag{63}\\
H_{00}^{(2,3)}+H_{\boldsymbol{m}}^{(2,3)}=H_{00}^{(1)}+H_{\boldsymbol{m}}^{(1)}+\Delta H_{00}^{(2,3)}+\Delta H_{\boldsymbol{m}}^{(2,3)} \tag{64}
\end{gather*}
$$

Figure: .Tune diagram near ${ }^{v_{x}}\left(\nu_{x}, \nu_{y}\right)=(21.39,21.43)$

How to evaluate nonstructure resonances

Error sources can
(1) Deviations of beta function, phase and other Twiss parameters at nonlinear elements.
(2) Deviations of strangth of nonlinear elements is more reliable than Twiss.
Nonstructure resonances can be evaluated by measured Twiss parameters. Integrate space charge potential using the measured Twiss parameters. [K.Ohmi, HB2014, ICAP15, IPAC16,17]

Summary

(1) Hamiltonian formalism and Lie operator approach have been used to study nonlinear dynamics in accelerators.
(2) Most of works to study emitance growth has relied numerical simulations.
(3) Theory for resonances and chaos is important to understand physics of the emittance growth.
(4) Stocasticity parameter of accelerators is not large $(K \sim 0.01)$ as chaotic system.
(5) Resonance overlap between synchrotron side bands andmudulationdue to synchrotron oscillation enhance emittance growth.
(6) Theory is also helpful to understand new technique using crab cavity and crab waist.
(7) Breaking of Superperiodicity and nonstructure resonance may be interesting in the future.

References

H. Goldstein, Classical Mechanics

Addison-Wesley Publishing Company, Inc.

A.J. Dragt, Lecture on Nonlinear Orbit Dynamics

AIP Conf. Proc. 87, 147 - 313 (1982).
B.V. Chirikov, A Universal Instability of Many-Dimensional Oscillator System Physics Report 52, 263-379 (1979).

J. L. Tennyson, The dynamics of the beam-beam interaction AIP Conf. Proc. 87, 345 - 394 (1982).
T
A.J. Lichtenberg, M.A. Lieberman, Regular and Chaotic Dynamics Applied Mathematical Sciences Vol. 38, 1992 Springer-Verlag New York, Inc.

The End
 Thank you for your attention

