Nonlinear Dynamics Resonances, Chaos and Emittance growth in Circular Accelerators

Kazuhito Ohmi

KEK, Accelerator Lab

Joint US-CERN-Japan-Russia International Accelerator School 2019 Ion Colliders JAS2019, Dubna, Russia

Oct. 28 - Nov. 7, 2019

Kazuhito Ohmi (KEK)

Nonlinear Dynamics

Oct. 28 - Nov. 7, 2019 1 / 51

3

Sac

(4) (E) (A) (E) (A)

Overview

1 Introduction

- 2 Hamiltonian in Accelerator/Beam Physics
- 3 Nonlinear Dynamics
- 4 Resonances
- 5 Synchrotron motion
- 6 Applications

Summary

Ξ

900

イロト イポト イヨト イヨト

Introduction

Emittance growth is one of important issues in accelerator physics. Incoherent emittance growth due to resonance and chaos is subject of nonlinear beam dynamics. We discuss nonlinear dynamics in circular accelerator,

- Hamitonian and Lie formalism
- 2 Resonances and chaos
- 3 Applications to lepton and hadron colliders, and high intensity proton ring.

- 4 同 1 - 4 回 1 - 4 回 1

Hamiltonian in Accelerator/Beam Physics

Time variable is "s". 3rd dynamical variable z = s - ct, z = s - vt, $z = v(t_0 - t)$, or several choices. Any case 3rd variable is related to arrival time advance of partciles at "s".

$$H = \frac{E(\delta)}{P_0 v_0} - \left(1 + \frac{x}{\rho}\right) \sqrt{(1+\delta)^2 - p_x^2 - p_y^2} - \left(1 + \frac{x}{\rho}\right) \hat{A}_s \qquad (1)$$

Magnets and RF field are expressed by $\hat{A}_s = eA_s/P_0$.

Beam-beam force and space charge charge force are added as electric potential effectively.

In Circular accelerator, Hamiltonian is periodic for the circumference C.

$$H(x, p_x, y, p_y, z, \delta; s + C) = H(x, p_x, y, p_y, z, \delta; s)$$
(2)

"s" dependent three degree of freedom

Kazuhito Ohmi (KEK)

イロト 不得下 イヨト イヨト 二日

Symplectic transformation

Hamiltonian generates sympletic transformation. Simplectic transformation of $\mathbf{x} = (x, p_x, y, p_y, z, \delta)$

$$\bar{\mathbf{x}} = \bar{\mathbf{x}}(\mathbf{x}) \tag{3}$$

satisfies

$$[\bar{x}_i, \bar{x}_j] \equiv \sum_{k,l=1}^6 \frac{\partial \bar{x}_i}{\partial x_k} S_{kl} \frac{\partial \bar{x}_j}{\partial x_l} = S_{ij}$$
 (4)

where [,] is the Poisson bracket.

$$S = \begin{pmatrix} S_2 & 0 & 0 \\ 0 & S_2 & 0 \\ 0 & 0 & S_2 \end{pmatrix} \qquad S_2 = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$$

When phase space is ellipse, the area of ellipse is kept a constant. Emittance growth should be studied under keeping symplectic condition exactly.

Kazuhito Ohmi (KEK)

Lie transform

Lie operator, Poisson bracket

$$: f:g = [f,g] = \sum_{i,j=1}^{6} \frac{\partial f}{\partial x_i} S_{ij} \frac{\partial g}{\partial x_j} = \sum_{a=1}^{3} \left(\frac{\partial f}{\partial x_a} \frac{\partial g}{\partial p_a} - \frac{\partial f}{\partial p_a} \frac{\partial g}{\partial x_a} \right)$$
(5)

Useful Formula

$$e^{f}g(x) = g(e^{f}x)$$
 (6)

$$e^{:f:}e^{:g:}e^{-:f:} = exp(:e^{:f:}g:)$$
 (7)

exp(: A:) is symplectic, because $[e^{:A:}x, e^{:A:}p_x] = e^{:A:}[x, p_x] = 1....$

Equation of motion and its solution are represented by Lie operator,

$$\frac{d\mathbf{x}}{ds} = -: H: \mathbf{x} \qquad \bar{\mathbf{x}} = e^{-:H:s}\mathbf{x}$$
(8)

Kazuhito Ohmi (KEK)

Oct. 28 - Nov. 7, 2019 6 / 51

◆□▶ ◆□▶ ◆三▶ ◆三▶ ─ 三 ● ○○○

Examples for Lie operator

1 Quadrupole magnet with the length ℓ , $H = (p_x^2 + k_1 x^2)/2$,

$$ar{x} = \cos(\sqrt{k_1}\ell) + \sin(\sqrt{k_1}\ell)/\sqrt{k_1}$$

 $ar{p}_x = -\sqrt{k_1}\sin(\sqrt{k_1}\ell) + \cos(\sqrt{k_1}\ell)$

② Thin sextpole, $H = K_2 x^3/6$

$$e^{-H}p_x = p_x - \frac{K_2}{6}[x^3, p_x] + K_2^2[x^3, [x^3, p_x]] \dots = p_x - \frac{K_2}{2}x^2$$
 $e^{-H}x = x$

When Lie operator expansion is represented by finite series or is replaced by an analytic function, the map is symplectic. Accelerator lattice ordered H_1 , H_2 ...,

$$e^{-:H_1(\boldsymbol{X}):}e^{-:H_2(\boldsymbol{X}):}e^{-:H_3(\boldsymbol{X}):}e^{-:H_4(\boldsymbol{X}):}...$$
(9)

This is opposite order against matrix form

 $\bar{\mathbf{x}} = \dots M_4 M_3 M_2 M_1 \mathbf{x}$

Kazuhito Ohmi (KEK)

Generating function

Another way to integrate Hamiltonian with keeping symplecticity, when Lie operator expansion is infinite series.

For H(x, p), use 2nd canonical transformation

$$F_2(x,\bar{p}) = x_a\bar{p}_a + H(x,\bar{p}) \tag{10}$$

$$p_{a} = \frac{\partial F_{2}}{\partial x_{a}} = \bar{p}_{a} + \frac{\partial H}{\partial x_{a}}$$
(11)

Implicit relation for $p = p(\bar{p})$ has to be solved as $\bar{p} = \bar{p}(p)$. It is possible for only limited cases.

1
$$H(x,p) = H_1(x) + H_2(p)$$

- H is linear for p.
- ③ Numerical solution for example, Newton-Raphson.

4

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ろの⊙

More advanced examples

1 Crab waist scheme, $exp(\mp : H_{cw} :)$ is operated before and after beam-beam collision.

$$H_{cw} = \frac{1}{4\theta_c} x^* p_y^{*2} \tag{12}$$

$$\bar{p}_x^* = p_x^* - [x^* p_x^{*2} / (4\theta_c, p_x^*] = p_x^* - p_y^{*2} / (4\theta_c)$$
$$\bar{y}^* = y^* - [x^* p_x^{*2} / (4\theta_c, y^*] = y^* + x^* p_y^* / (2\theta_c)$$

2nd transformation shifts vertial waist proportional to x^* , $x^*/(2\theta_c)$. 2 Crab crossing, $\exp(\mp : H_{cc} :)$ is operated,

$$H_{cc} = \theta_c p_x^* z^* \tag{13}$$

$$\bar{x}^* = x - \theta_c[p_x^* z, x^*] = x^* + \theta_c z^*$$
$$\bar{\delta}^* = \delta^* - \theta_c[p_x^* z^*, \delta^*] = \delta^* - \theta_c p_x^*$$

First transformation gives a tilt θ_c in x - z plane.

Kazuhito Ohmi (KEK)

500

Examples (how to realize)

Crab waist scheme

$$H_{cw} = \frac{1}{4\theta_c} x^* p_y^{*2} \tag{14}$$

$$T(s^* \to s)e^{-:H_{sext}(\boldsymbol{x}^*)}T(s \to s^*) = e^{-:H_{sext}(T(s^* \to s)\boldsymbol{x}^*):} = e^{-:H_{cw}(\boldsymbol{x}^*):}$$

 $1/(4 heta_c) = K_2T_{11}T_{34}^2/2$ $T_{12} = T_{33} = 0$

Choosing the phase difference $n\pi$ in horizontal and $\pi/2 + n'\pi$ for vertical from IP

2 Crab crossing with a half crossing angle θ_c .

$$H_{cc} = \theta_c p_x^* z^* \tag{15}$$

Using crab cavity induces $H_{ccv} = V'xz$

$$\theta_c = V' T_{12} \qquad T_{11} = 0$$

The horizontal phase difference is chosen $\pi/2 + n\pi$

Kazuhito Ohmi (KEK)

Collision with crossing angle

Crossing collision is transferred to head-on collision by

$$H_{cc} = \theta_c p_{\chi}^* z^* \tag{16}$$

where Lorentz contraction $(1/\cos\theta_c)$ in P_0 and z is neglected here. This transformation is compensated by crab cavities.

Figure: Schemetic view for crossing collision (K. Oide, PRA40, 315(1989), K. Hirata, PRL74, 2228 (1995)).

Kazuhito Ohmi (KEK)

Oct. 28 - Nov. 7, 2019 11 / 51

One turn map

Transformation after one turn, one turn map, is expressed by

$$\mathcal{M} = T_{0 \to 1} e^{-:H_1:} T_{1 \to 2} e^{-:H_2:} \dots e^{-:H_{N-1}:} T_{N-1 \to N} e^{-:H_N:} T_{N \to 0}$$

= $T_0 \prod_{i=1}^{N} exp(-:H_i(T_{0 \to i} \mathbf{x}):)$ (17)

where T_0 is the revolution matrix at the position s = 0 + (nC).

$$\mathcal{M} = T_0 e^{-:H:}$$

H can be trancated power series using or

$$H \approx \oint H(T_{0 \to s} \mathbf{x}, s) ds$$

イロト 不得 トイヨト イヨト 二日

Linearized theory

$$H(s) = \frac{\delta^2}{2\gamma^2} - \frac{x\delta}{\rho(s)} + \frac{p_x^2 + p_y^2}{2} + \frac{x^2}{2\rho(s)^2} + \frac{K_1(s)}{2}(x^2 - y^2) - \frac{V'}{E_0}z^2$$
(18)

For region with constant ρ and K_1 , transfer matrix is obtained easily. 6×6 revolution matrix, which is symplectic.

Three eigenvalue with $e^{\pm i\mu_j}$ and conjugate pair of eigenvectors $(\mathbf{v}_j, \mathbf{v}_j^*)$ are obtained. Real and imaginary part of \mathbf{v}_X gives X, P_X ,

$$X = \frac{x}{\sqrt{\beta_x}} \quad P_X = \frac{\beta_x p_x + \alpha_x x}{\sqrt{\beta_x}} \qquad J_X = \frac{X^2 + P_X^2}{2} \quad \phi_x = -\tan^{-1}\frac{P_X}{X}$$

 ϕ is betatron phase. (J_X, ϕ_x) are canonical pair. Y, Z are also expressed in the same way. X, P_X rotate μ_x in the phase space after one revolution.

$$\left(\begin{array}{c} \bar{X} \\ \bar{P}_X \end{array}\right) = \left(\begin{array}{c} \cos\mu_x & \sin\mu_x \\ -\sin\mu_x & \cos\mu_x \end{array}\right) \left(\begin{array}{c} X \\ P_X \end{array}\right)$$

Hamiltonian for one turn linear map is $H_0 = \mu_x J_x + \mu_y J_y - \mu_z J_z$

Nonlinear system

Hamiltonian generating one turn map.for Linear system with small nonlinear perturbation,

$$H(\boldsymbol{J}, \boldsymbol{\phi}) = H_0(\boldsymbol{J}) + U(\boldsymbol{J}, \boldsymbol{\phi})$$

 ϕ is synchro-betatron phase at initial position s_0 . Average over the synchro-betatron phase $\phi = (\phi_x, \phi_y, \phi_z)$

$$ar{U}(oldsymbol{J}) = rac{1}{2\pi} \oint U(oldsymbol{J},\phi) d\phi$$

Hamiltonian is epressed by averaged part which depends only on \boldsymbol{J} and oscillation part,

$$H(J,\phi) = \bar{H}(J) + \hat{U}(J,\phi)$$

Tune

Synchro-betatron phase advance after one turn

$$\Delta \phi_j = \mu_i = \frac{\partial \bar{H}}{\partial J_i} \tag{19}$$

Tune $\nu_i = \mu_j/(2\pi)$ depends on the amplitude **J** in nonlinear system.

Source of nonlinear

- Nonlinear magnets, sextupoles, octupoles....
- 2 Beam-beam force
- ③ Space charge force
- ④ Electron or ion cloud

How to calculate

- Integrate nonlinear element in a ring.
- ② Use computer pakkage, Taylar expansion, Differential Algebra...

Kazuhito Ohmi (KEK)

Differential Algebra to evaluate nonlinear transformation of lattice magnets

Transformation of a magnet is represented by polynomial,

$$m{x}_1 = f_1(m{x}_0)$$

 $m{x}_2 = f_2(m{x}_1) = f_2(f_1(m{x}_0)) \equiv f_2 \circ f_1(m{x}_0)$

$$.\boldsymbol{x}_n = f_n \circ \ldots \circ f_1(\boldsymbol{x}_0)..$$

Coefficient of the polynomial are calculated by computer. The polynomial is trancated by a certain order, for exmple 10, 15.... The transfer map expressed by the trancated polynomial is not symplectic.

We can have Lie operator expression for trancated polynomial,

$$\boldsymbol{x}_n = exp(-: H(\boldsymbol{x}_0):)\boldsymbol{x}_0$$

Taking invariant part in $H = H(\mathbf{J})$, tune shift is evaluated.,

Kazuhito Ohmi	(KEK)
---------------	-------

Nonlinearity of lattice magnets

Differential Algbra (SAD+) is executed for J-PARC MR.

 $H_{00} = -4.5114 \times 10^{13} J_{v}^{6} + 5.12293 \times 10^{16} J_{v}^{5} J_{v} + 5.4158 \times 10^{12} J_{v}^{5}$ $-1.04751 \times 10^{16} J_x^4 J_y^2 + 5.1184 \times 10^{12} J_x^4 J_y + 1.01007 \times 10^9 J_x^4$ $-1.31809 \times 10^{16} J_x^3 J_y^3 + 6.64815 \times 10^{12} J_x^3 J_y^2 + 2.52657 \times 10^9 J_x^3 J_y$ $+4.71257 \times 10^{6} J_{x}^{3} + 5.93598 \times 10^{15} J_{x}^{2} J_{v}^{4} - 2.2846 \times 10^{12} J_{x}^{2} J_{v}^{3}$ $-2.07724 \times 10^8 J_x^2 J_y^2 - 5.02669 \times 10^6 J_x^2 J_y + 979.228 J_x^2$ $-2.37342 \times 10^{15} J_x J_v^5 - 5.60636 \times 10^{11} J_x J_v^4 - 1.00837 \times 10^9 J_x J_v^3$ $-3.71806 \times 10^{6} J_{x} J_{y}^{2} + 1578.47 J_{x} J_{y} + 5.75634 \times 10^{14} J_{y}^{6}$ $+3.76351 \times 10^{11} J_{\nu}^{5} - 1.93481 \times 10^{8} J_{\nu}^{4} + 2.72899 \times 10^{6} J_{\nu}^{3}$ $+722.764 J_v^2$

Resonance driving terms of H, which are function of ϕ , are also obtained.

Tune dependence

$$\nu(J) = \nu_0 + \frac{1}{2\pi} \frac{\partial H_{00}}{\partial J}$$
(20)

Tune shift is $\Delta \nu \sim 0.0005$ for J-PARC MR, where the aperture is 65 mm.mrad. The tune shift of space charge force is O(0.1).

Figure: Amplitude dependent tune shift due to lattice nonlinear magnets in J-PARC MR.

Oct. 28 - Nov. 7, 2019 18 / 51

Tune slope

$$2\pi \frac{d\nu(J)}{dJ} = \frac{\partial^2 H_{00}}{\partial J \partial J}$$
(21)

The second derivative, tune slope, is \sim 2000 for J-PARC MR. The value is compared with that of space charge force.

Figure: Tune slope due to lattice nonlinear magnets in J-PARC MR. (left) $\partial^2 H/\partial J_x^2$, (center) $\partial^2 H/\partial J_x \partial J_y$, (right) $\partial^2 H/\partial J_y^2$.

Potential induced by Transverse Gaussian charge distribution

Electric potential induced by Gaussian charge distribution,

$$\Phi(x, y, z) = \frac{e}{4\pi\epsilon_0} \int_0^\infty \frac{\exp\left(-\frac{x^2}{2\sigma_x^2 + u} - \frac{y^2}{2\sigma_y^2 + u} - \frac{z^2}{2\sigma_z^2 + u}\right) - 1}{\sqrt{(2\sigma_x^2 + u)(2\sigma_y^2 + u)(2\sigma_z^2 + u)}} du$$
(22)

A relativistic particle interacting with charge dirtribution with transverse Gaussian (unit charge)

$$U_{G}(x,y) = \frac{r_{p}}{\gamma} \int_{0}^{\infty} \frac{1 - \exp\left(-\frac{x^{2}}{2\sigma_{x}^{2} + u} - \frac{y^{2}}{2\sigma_{y}^{2} + u}\right)}{\sqrt{(2\sigma_{x}^{2} + u)(2\sigma_{y}^{2} + u)}} du$$
(23)

Kazuhito Ohmi (KEK)

Oct. 28 - Nov. 7, 2019 20 / 51

Sac

イロト 不得 トイヨト イヨト 二日

Beam-beam force

Collision with a half crossing angle θ_c .

$$U_{bb} = \frac{r_p}{\gamma} \int \lambda_p(z') U_G[x - \theta_c(z - z'), y] ds$$
⁽²⁴⁾

Particles are in betatron oscillation even during small area of collision, $(s \sim s^*)$

$$x(s) = \sqrt{2\beta_x(s)J_x}\cos(\varphi_x(s) + \phi_x) \qquad y(s) = \sqrt{2\beta_y(s)J_y}\cos(\varphi_y(s) + \phi_y).$$

where $\varphi_{x,y}(s)$ is the betatron phase difference fom the interaction point s^*

$$\varphi_{x,y}(s) = \tan^{-1}\left(\frac{s}{\beta_{x,y}^*}\right).$$
(25)

 $\phi_{x,y}$, which is the betatron phase at the interaction point, increases $2\pi\nu_{x,y}$ turn-by-turn. λ_p is line density of colliding beam at *s*. The density is function of the relative position from the beam center z'

$$\lambda_{\rho}(z') = \frac{N_{\rho}}{\sqrt{2\pi}} \exp\left(-\frac{z'^2}{2\sigma_z^2}\right)$$
(26)

where z' is related to s and z with s = (z - z')/2.

Fourier expansion of the beam-beam potential

$$U_{\boldsymbol{m}} = \frac{1}{(2\pi)^{2}} \int d\phi_{x} d\phi_{y} U_{bb} e^{i\boldsymbol{m}\phi}$$

$$= \frac{1}{(2\pi)^{2}} \frac{r_{p}}{\gamma} \int \lambda_{p} ds \int d\phi e^{i\boldsymbol{m}\phi} \int_{0}^{\infty} \frac{1 - \exp\left(-\frac{(x(s) - 2s\sin\theta_{c})^{2}}{2\sigma_{x}^{2} + u} - \frac{y(s)^{2}}{2\sigma_{y}^{2} + u}\right)}{\sqrt{2\sigma_{x}^{2} + u}\sqrt{2\sigma_{y}^{2} + u}} du$$

$$= \frac{r_{p}}{\gamma} \int ds \int_{0}^{\infty} \frac{\lambda_{p}(z')dt}{\sqrt{2 + t}\sqrt{2r_{yx} + t}} \exp(-w_{x\theta} - w_{y})$$

$$\gamma J \qquad \int_{0}^{\infty} \int_{0}^{\sqrt{2} + t\sqrt{2}r_{yx} + t} I_{(m_x - l)/2}(w_x) I_l(v_x) I_{m_y/2}(w_y) e^{-im_x \varphi_x - im_y \varphi_y}.$$

where $m_x - l$ and m_y are even numbers.

Kazuhito Ohmi (KEK)

< □ > < □ > < 三 > < 三 > < 三 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Tune spread in the amplitude space

$$\frac{\partial U_{00}}{\partial J_x} = \frac{1}{(2\pi)^2} \frac{Nr_p}{\gamma} \iint \lambda_p(z') ds d\phi \sqrt{\frac{\beta_x}{2J_x}} \cos(\varphi_x + \phi_x) F_x(x - 2s \sin \theta_c, y)$$
$$\frac{\partial U_{00}}{\partial J_y} = \frac{1}{(2\pi)^2} \frac{Nr_p}{\gamma} \iint \lambda_p(z') ds d\phi \sqrt{\frac{\beta_y}{2J_y}} \cos(\varphi_y + \phi_y) F_y(x - 2s \sin \theta_c, y) \quad (28)$$

 F_x is wellknown formula represented by complex error function, w, [M. Bassetti, G. Erskine, CERN-ISR TH/80-06 (1980)]

$$F_{y}(x,y) + iF_{x}(x,y) = \frac{\sqrt{\pi}}{\Sigma} \left[w \left(\frac{x+iy}{\Sigma} \right) - \exp\left(-\frac{x^{2}}{2\sigma_{x}^{2}} - \frac{y^{2}}{2\sigma_{y}^{2}} \right) w \left(\frac{rx+iy/r}{\Sigma} \right) \right]$$
(29)

where $\Sigma = \sqrt{2(\sigma_x^2 - \sigma_y^2)}$ and $r = \sigma_y/\sigma_x$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

Tune slope in the amplitude space

$$\frac{\partial^2 U_{00}}{\partial J_x^2} = \frac{1}{(2\pi)^2} \frac{Nr_p}{\gamma} \iint \lambda_p(z') ds d\phi$$

$$\left[-\frac{1}{2} \sqrt{\frac{\beta_x}{2J_x^3}} \cos(\varphi_x + \phi_x) F_x(x - 2s \sin \theta_c, y) + \frac{\beta_x}{2J_x} \cos^2(\varphi_x + \phi_x) \frac{\partial F_x}{\partial x} \right]$$
(30)

$$\frac{\partial^2 U_{00}}{\partial J_y^2} = \frac{1}{(2\pi)^2} \frac{Nr_p}{\gamma} \iint \lambda_p(z') ds d\phi$$

$$\left[-\frac{1}{2} \sqrt{\frac{\beta_y}{2J_y^3}} \cos(\varphi_y + \phi_y) F_y(x - 2s \sin \theta_c, y) + \frac{\beta_y}{2J_y} \cos^2(\varphi_y + \phi_y) \frac{\partial F_y}{\partial y} \right]$$
(31)

$$\frac{\partial^2 U_{00}}{\partial J_x \partial J_y} = \frac{1}{(2\pi)^2} \frac{Nr_p}{\gamma} \iint \lambda_p(z') ds d\phi \sqrt{\frac{\beta_x \beta_y}{4J_x J_y}} \cos(\varphi_x + \phi_x) \cos(\varphi_y + \phi_y) \frac{\partial F_x}{\partial y}$$

$$(32)_{\text{Constraints}} = (32)_{\text{Constraints}} + (32)_{\text{Const$$

Tune spead in KEKB, SuperKEKB and LHC

- KEKB(left) : conventional type of e⁺e⁻ collider based on flat beam collision.
- 2 SuprKEKB(center) : new type of e^+e^- collider based on large crossing (Piwinski) angle collision. $\Delta\nu_x \ll \Delta\nu_y$
- 3 LHC-head-on (right) : Hadron collider based on round beam collision.

Figure: Tune spread due to the beam-beam interaction in KEKB, SuperKEKB and LHC.

* E + < E +</p>

Resonances

Tune slope in SuperKEKB ($\beta_y = 3 \text{ mm}$)

Figure: Tune spread and slope in SuperKEKB (detuned $\beta_v = 3$ mm).

		${}^{<} \square {}^{\rightarrow}$	(十四) ト (三)	≜ <i>∽</i> ९୯
Kazuhito Ohmi (KEK)	Nonlinear Dynamics		Oct. 28 - Nov. 7, 2019	26 / 51

Resonances

Tune slope in SuperKEKB ($\beta_y = 0.3 \text{ mm}$)

Figure: Tune spread and slope in SuperKEKB (design).

Kazuhito Ohmi (KEK)

Nonlinear Dynamics

Oct. 28 - Nov. 7, 2019 27 / 51

ヨト

990

Space charge force

Assuming Gaussian distribution in the transverse phase space,

$$U(x, y, z) = \frac{N_{p}\lambda_{p}(z)r_{p}}{\beta^{2}\gamma^{3}} \int_{0}^{\infty} \frac{1 - \exp\left(-\frac{x^{2}}{2\sigma_{x}^{2} + u} - \frac{y^{2}}{2\sigma_{y}^{2} + u}\right)}{\sqrt{2\sigma_{x}^{2} + u}\sqrt{2\sigma_{y}^{2} + u}} du$$
(33)

Dispersion should be taken into account

$$x(s) = \sqrt{2\beta_x(s)J_x}\cos(\varphi_x(s) + \phi_x) + \eta(s)\delta$$

$$U(\boldsymbol{J}, \boldsymbol{\phi}, \boldsymbol{z}, \boldsymbol{s}) = \oint_{\boldsymbol{s}} d\boldsymbol{s}' U(\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z}; \boldsymbol{s}')$$

$$= \frac{\lambda_{\boldsymbol{p}}(\boldsymbol{z}) \boldsymbol{r}_{\boldsymbol{p}}}{\beta^{2} \gamma^{3}} \oint_{\boldsymbol{s}} d\boldsymbol{s}' \int_{0}^{\infty} \frac{1 - \exp\left(-\frac{x^{2}(\boldsymbol{s}', \boldsymbol{s})}{2\sigma_{x}^{2} + \boldsymbol{u}} - \frac{y^{2}(\boldsymbol{s}', \boldsymbol{s})}{2\sigma_{y}^{2} + \boldsymbol{u}}\right)}{\sqrt{2\sigma_{x}^{2} + \boldsymbol{u}}\sqrt{2\sigma_{x}^{2} + \boldsymbol{u}}} d\boldsymbol{u}$$
(34)

Kazuhito Ohmi (KEK)

Oct. 28 - Nov. 7, 2019 28 / 51

Sac

イロト イポト イヨト イヨト 二日

Tune spead in J-PARC MR

Space charge force for approximately round beam $\Delta \nu_x \sim \Delta \nu_y$. Tune spread is very large $\Delta \nu > 0.1$. The space charge force distribute in whole ring, while beam-beam force is localized at IP.

Resonances

Tune slope

Figure: Tune slope due to space charge force in J-PARC MR.

Typical values are 10^5 near the beam position, and 10^4 outside of the beam area. Lattice magnets gave < 5000. Space charge is dominant for the tune slope.

Resonance

Hamiltonian is expanded by Fourier series,

$$H = \mu J + U_{00}(\boldsymbol{J}) + \sum_{m_x, m_y \neq 0} U_{m_x, m_y}(\boldsymbol{J}) \exp(-im_x \phi_x - im_y \phi_y)$$
(35)

First and second terms in RHS characterize shift, spread and slope of tune.

$$\tilde{\mu}_i = \frac{\partial H}{\partial J_i} = \mu_i + \frac{\partial U_{00}}{\partial J_i}$$
(36)

Third term is averaged out for the tune shift due to the betatron phase variation. Resonance condition is expressed by $(\mu = 2\pi\nu)$

$$m_{x}\tilde{\nu}_{x}(\boldsymbol{J})+m_{y}\tilde{\nu}_{y}(\boldsymbol{J})=n. \tag{37}$$

where *n* is an integer. The resonance condition Eq.(38) gives a line in (J_x, J_y) space. **J** satisfying Eq.(38) is expressed by J_R .

Resonance location

We calculte what amplitude a resonance occurs. Solve

$$m_{x}\tilde{\mu}_{x}(\boldsymbol{J}) + m_{y}\tilde{\mu}_{y}(\boldsymbol{J}) = 2\pi n.$$
(38)

for several resonances for a pp collider as an example.

Figure: Tune spread area and resonance in the amplitude space for a hadron collider, SPPC (x-crossing), long range collisions are included.

Behavior near resonance

Hamiltonian is expanded near \boldsymbol{J}_R as

$$\mathcal{V}_{00}(\boldsymbol{J}) = \mathcal{U}_{00}(\boldsymbol{J}_R) + \frac{\partial \mathcal{U}_{00}}{\partial \boldsymbol{J}} \Big|_{\boldsymbol{J}_R} (\boldsymbol{J} - \boldsymbol{J}_R) \\ + (\boldsymbol{J} - \boldsymbol{J}_R)^t \frac{1}{2} \left. \frac{\partial^2 \mathcal{U}_{00}}{\partial \boldsymbol{J} \partial \boldsymbol{J}} \right|_{\boldsymbol{J}_R} (\boldsymbol{J} - \boldsymbol{J}_R)$$
(39)

Third term in RHS is characterized by the tune slope

$$2\pi \frac{\partial \nu_i}{\partial J_j} = 2\pi \frac{\partial \nu_j}{\partial J_i} = \frac{\partial^2 U_{00}}{\partial J_i \partial J_j}$$
(40)

Kazuhito Ohmi (KEK)

Sac

<ロト < 回 > < 回 > < 回 > < 回 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Behavior near resonance

Canonical transformation for new variable ${m P}$ and ψ is considered

$$F_2(\mathbf{P},\phi) = (J_{x,R} + m_x P_1 + m_{x,2} P_2)\phi_x + (J_{y,R} + m_y P_1 + m_{y,2} P_2)\phi_y$$

Choosing $m_{x,2} = 0, m_{y,2} = 1$ independent of (m_x, m_y) .

$$P_{1} = \frac{J_{x} - J_{x,R}}{m_{x}} \qquad \psi_{1} = m_{x}\phi_{x} + m_{y}\phi_{y}$$
(41)

$$P_2 = (J_y - J_{y,R}) - \frac{m_y}{m_x}(J_x - J_{x,R})$$
 $\psi_2 = \phi_y$

Hamiltonian for J dependent terms is now given by

$$H_{00} = U_{00} \approx \frac{\Lambda}{2} P_1^2,$$
 (42)

where

$$\Lambda \equiv m_x^2 \frac{\partial^2 U_{00}}{\partial J_x^2} + m_x m_y \frac{\partial^2 U_{00}}{\partial J_x \partial J_y} + m_y^2 \frac{\partial^2 U_{00}}{\partial J_y^2}.$$
(43)

Kazuhito Ohmi

Resonance width

The resonance term, which is third term of RHS in Eq.(35), drives resonances. The resonance strengths U_{m} as function of J are approximated to be those at J_{R}

$$U_{\boldsymbol{m}}(\boldsymbol{J}) \approx U_{\boldsymbol{m}}(\boldsymbol{J}_R) \qquad \boldsymbol{m} = (m_x, m_y).$$
 (44)

Hamiltonian for the standard model is given as

$$H = \frac{\Lambda}{2} P_1^2 + U_{\boldsymbol{m}}(\boldsymbol{J}_R) \cos \psi_1.$$
(45)

Phase space structure near resonances are characterized by the resonance width. The resonance width is given by

$$\Delta P_1 = 4\sqrt{\frac{U\boldsymbol{m}}{\Lambda}} \qquad \Delta J_x = 4m_x\sqrt{\frac{U\boldsymbol{m}}{\Lambda}}.$$
 (46)

Kazuhito Ohmi (KEK)

Oct. 28 - Nov. 7, 2019 35 / 51

イロト 不得 トイヨト イヨト ヨー シタウ

Schemetic view of Resonance

Particle oscillates harmonic motion in the vicinity of the resonance point. Detuning from the resonance condition, separatrix is seen.

Figure: Resonance with base of (J_x, ϕ_x) and (P_1, ψ_1) .

Resonances causes emittance growth, but week growth. Coupling to synchrotron motion is important as shown later.

	4		1 - 1		-	*) Q (*
Kazuhito Ohmi (KEK)	Nonlinear Dynamics	Oct.	28 - Nov	7, 2019		36 / 51

Calulation of resonance width

Resonance driving term, tune slope and resonance width depend on the amplitude in which the resonance condition is satisfied. The stochasitisity parameter is lower than 1. Weak chaos.

Figure: Resonance driving term, stochasticity parameter and resonance width.

Resonance with finte z

For finite z, tune spread area decreases.

Figure: Tune spread for finte synchrotron amplitudes.

Beam-beam and Space charge forces are symmetric for x and y. Only even resonances are induced. Odd resonances are induced for finite z.

 Figure: Resonance width in the transverse amplitude space for zero and finite

 synchrotron amplitude.

 Kazuhito Ohmi (KEK)

Oct. 28 - Nov. 7, 2019

 38 / 51

Synchrotron motion

Synchrotron motion is very sow compre with betatron motion.

$$z = \sqrt{2\beta_z J_z} \cos \phi_z$$
 $\delta = \sqrt{2J_z/\beta_z} \sin \phi_z.$ (47)

 $\phi_z = \mu_z t$ increase as turn number t.

Resonance driving term, tune slope are modulated by the synchrotron motion. Fourier component for te synchrotron tune is calculated as

$$U_{bb} = U_{\boldsymbol{0},0} + \sum_{m_z \neq 0} U_{\boldsymbol{0},m_z} e^{-im_z \phi_z} + \sum_{\boldsymbol{m} \neq 0,m_z} U_{\boldsymbol{m},m_z} e^{-i\boldsymbol{m} \cdot \boldsymbol{\phi} - im_z \phi_z} \quad (48)$$

$$U_{\boldsymbol{m},m_z}(\boldsymbol{J},J_z) = \frac{1}{2\pi} \int U_{\boldsymbol{m}}(\boldsymbol{J},z) e^{im_z\phi_z} d\phi_z$$
(49)

The synchrotron tune is slow and can be comparable with the motion near the resonance. U_{o,m_z} term should be considered regardless of the resonance condition.

Kazuhito Ohmi (KEK)

Oct. 28 - Nov. 7, 2019 39 / 51

Synchrotron side band

The resonance condition of J for a particle with J_z is

$$m_x \nu_x (\boldsymbol{J}, J_z) + m_y \nu_y (\boldsymbol{J}, J_z) + m_z \nu_z = n$$
(50)

$$\bar{U}(\boldsymbol{J}, J_z) = U_{\boldsymbol{o},0}(\boldsymbol{J}, J_z) + \sum_{\boldsymbol{m}\neq 0} U_{\boldsymbol{m},m_z}(\boldsymbol{J}, J_z) e^{-i\boldsymbol{m}\cdot\boldsymbol{\phi} - im_z\phi_z}$$
(51)

Focusing the resonance, Hamiltonian is expressed by

$$\bar{H} = \bar{U} = \frac{\Lambda \boldsymbol{m}}{2} P_1^2 + U \boldsymbol{m}_{,0} (\boldsymbol{J}_R, J_z) \cos \psi_1$$
(52)

$$\Lambda_{\boldsymbol{m}} \equiv m_x^2 \frac{\partial^2 U \boldsymbol{o}_{,0}}{\partial J_x^2} + 2m_x m_y \frac{\partial^2 U \boldsymbol{o}_{,0}}{\partial J_x \partial J_y} + m_y^2 \frac{\partial^2 U \boldsymbol{o}_{,0}}{\partial J_y^2}.$$
 (53)

 $\Delta \nu_z = \partial U / \partial J_z$ is neglected. Synchrotron oscillation is treated as external oscillation.

Oct. 28 - Nov. 7, 2019 40 / 51

200

イロト イボト イヨト イヨト 二日

Modulation due to synchrotron motion

Synchrotron frequency component,

$$U_{\boldsymbol{o}} \equiv U_{\boldsymbol{o},0} + \sum_{m_z \neq 0} U_{\boldsymbol{o},m_z} e^{-im_z \phi_z}$$
 (54)

The potential is expand around J_R as follows,

$$U_{\boldsymbol{o}}(\boldsymbol{J}, J_{z}, t) = U_{\boldsymbol{o}}(\boldsymbol{J}_{R}) + \frac{\partial U_{\boldsymbol{o}}}{\partial \boldsymbol{J}} \Big|_{\boldsymbol{J}_{R}} \cdot (\boldsymbol{J} - \boldsymbol{J}_{R})$$
(55)
$$= \sum_{m_{z} \neq 0} \frac{\partial U_{\boldsymbol{o}, m_{z}}}{\partial \boldsymbol{J}} \cdot (\boldsymbol{J} - \boldsymbol{J}_{R}) e^{-im_{z}\mu_{z}t} = \sum_{m_{z} \neq 0} \frac{\partial U_{\boldsymbol{o}, m_{z}}}{\partial \boldsymbol{J}} \cdot \boldsymbol{m} P_{1} e^{-im_{z}\mu_{z}t}$$

where U and its derivatives are evaluated at J_R . Linear term for P_2 , which gives an oscillation of P_2 , is neglected.

Kazuhito Ohmi (ł	KEK)
------------------	------

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Resonance overlap between synchrotron side bands

The standardized transfer map for $H = \bar{H} + \hat{U}$ is given by

$$I_{t+1} = I_t + \sum_{m_z} K_{m_z} \sin \theta_t \cos(m_z \mu_z t)$$
(56)
$$\theta_{t+1} = \theta_t + I_{t+1} + \sum_{m_z \neq 0} \frac{\partial U_{\boldsymbol{o}, m_z}}{\partial \boldsymbol{J}} \cdot \boldsymbol{m} \cos(m_z \mu_z t).$$

where $I = \Lambda_{\boldsymbol{m}} P_1$, $\theta = \psi_1$ and $K_{m_z} = \Lambda_{\boldsymbol{m}} U_{\boldsymbol{m},m_z}$. Resonance overlaps conditions

1 The resonance width of each sideband (with even m_z) is larger than the resonance spacing μ_z between sidebands,

$$3\sqrt{K_{m_z}} = 3\sqrt{\Lambda_{\boldsymbol{m}} U_{\boldsymbol{m},m_z}} > 2\mu_z \tag{57}$$

② Chaotic area due to the mudulation is larger than the resonance width or separation

$$\Delta P_1 = \mathsf{Max}_{m_z} \left(\frac{1}{\Lambda} \frac{\partial U_{\mathbf{0},m_z}}{\partial \mathbf{J}} \cdot \mathbf{m} \right)$$
(58)

Oct. 28 - Nov. 7, 2019

42 / 51

Kazuhito Ohmi (KEK)

Example of overlap between synchrotron side bands

SPPC (China) is hadron collider which is competitor of FCC-hh.

- 7-th order resonance
- ② Resonances $m_z=0$ and 2 canoverlap.
- ③ STochstic area due to modulation is narrower thanthe resonance width, but contributes the overlap.

Resonance overlap enhances emittance growth remarkably.

Kazuhito Ohmi (KEK)

Oct. 28 - Nov. 7, 2019 43 / 51

Resonance suppression in Crab Waist

Crab waist scheme

$$H_{cw} = \frac{1}{4\theta_c} x^* p_y^{*2} \tag{59}$$

$$T_{rev}e^{-:H_{cw}(\boldsymbol{X}^*):}e^{-:U_{bb}(\boldsymbol{X}^*):}e^{:H_{cw}(\boldsymbol{X}^*):} = T_{rev}e^{-:U_{bb}(e^{-:H_{cw}(\boldsymbol{X}^*):}\boldsymbol{X}^*)}$$
(60)

Particles with x

$$U_{bb} = \int \lambda(z') U_G(x + \theta_c(z - z'), y + p_y s; s) ds \qquad s = (z - z')/2.$$
(61)

Large contribution $x \approx -2\theta_c s$.

$$U_{bb} \approx \int \lambda(z') U_G(x + 2\theta_c s, y - xp_y/(2\theta_c); s) ds$$
 (62)

The second argument $y + xp_y/(2\theta_c)$ induces resonances on x - y coupling. The resonances are compensated by the crab waist transformation, $y \to y + xp_y/(2\theta_c)$

Kazuhito Ohmi (KEK)

Nonlinear Dynamics

Oct. 28 - Nov. 7, 2019 44 / 51

Applications

Resonance width for $\nu_x + 4\nu_y = 3$ w/wo crab waist

Kazuhito Ohmi (KEK)	Nonlinear Dynamics	Oct. 28 - Nov. 7, 2019	45 / 51
---------------------	--------------------	------------------------	---------

Super-periodicity and structure resonance

J-PARC MR ring has superperiodicity of three. It is sufficient to consider 1/3 ring, $m_x \nu_x/3 + m_y \nu_y/3 = n$. Namely, only structure resonances $m_x \nu_x + m_y \nu_y = 3n$ exist under the perfect superperidicity. Nonstructure resonances , $m_x \nu_x + m_y \nu_y = n'(\neq 3n)$ do not exist.

Figure: .Tune diagram near $(\nu_x/3, \nu_y/3) = (7.13, 7.143)$, where total tune is (21.35, 21.4).

Applications

Breaking of Superperiodicity and nonstructure resonance

In real accelerator, superperiodicity is broken by various errors. Non-structure resonances appear.

$$\mathcal{M} = \exp\left(-H_{00}^{(3)} - H_{\boldsymbol{m}}^{(3)}\right) \exp\left(-H_{00}^{(2)} - H_{\boldsymbol{m}}^{(2)}\right) \exp\left(-H_{00}^{(1)} - H_{\boldsymbol{m}}^{(1)}\right)$$
(63)
$$H_{00}^{(2,3)} + H_{\boldsymbol{m}}^{(2,3)} = H_{00}^{(1)} + H_{\boldsymbol{m}}^{(1)} + \Delta H_{00}^{(2,3)} + \Delta H_{\boldsymbol{m}}^{(2,3)}$$
(64)

Kazuhito Ohmi (KEK)

Sar

How to evaluate nonstructure resonances

Error sources can

- Deviations of beta function, phase and other Twiss parameters at nonlinear elements.
- ② Deviations of strangth of nonlinear elements is more reliable than Twiss.

Nonstructure resonances can be evaluated by measured Twiss parameters. Integrate space charge potential using the measured Twiss parameters. [K.Ohmi, HB2014, ICAP15, IPAC16,17]

イロト 不得下 イヨト イヨト 二日

Summary

- Hamiltonian formalism and Lie operator approach have been used to study nonlinear dynamics in accelerators.
- 2 Most of works to study emitance growth has relied numerical simulations.
- 3 Theory for resonances and chaos is important to understand physics of the emittance growth.
- **④** Stocasticity parameter of accelerators is not large ($K \sim 0.01$) as chaotic system.
- Sesonance overlap between synchrotron side bands and mudulation due to synchrotron oscillation enhance emittance growth.
- Theory is also helpful to understand new technique using crab cavity and crab waist.
- O Breaking of Superperiodicity and nonstructure resonance may be interesting in the future.

Kazuhito Ohmi (KEK)

References

- H. Goldstein, Classical Mechanics Addison-Wesley Publishing Company, Inc.
- A.J. Dragt, Lecture on Nonlinear Orbit Dynamics *AIP Conf. Proc.* 87, 147 313 (1982).
- B.V. Chirikov, A Universal Instability of Many-Dimensional Oscillator System Physics Report 52, 263-379 (1979).
- J. L. Tennyson, The dynamics of the beam-beam interaction *AIP Conf. Proc.* 87, 345 394 (1982).
- A.J. Lichtenberg, M.A. Lieberman, Regular and Chaotic Dynamics Applied Mathematical Sciences Vol. 38, 1992 Springer-Verlag New York, Inc.

イロト イポト イヨト イヨト

The End Thank you for your attention

Kazuhito Ohmi (KEK)

Nonlinear Dynamics

Oct. 28 - Nov. 7, 2019 51 / 51

3

Sar

- < E > < E >