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Introduction

Introduction

Emittance growth is one of important issues in accelerator physics.
Incoherent emittance growth due to resonance and chaos is subject of
nonlinear beam dynamics. We discuss nonlinear dynamics in circular
accelerator,

1 Hamitonian and Lie formalism

2 Resonances and chaos

3 Applications to lepton and hadron colliders, and high intensity proton
ring.
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Hamiltonian in Accelerator/Beam Physics

Hamiltonian in Accelerator/Beam Physics

Time variable is “s”. 3rd dynamical variable z = s − ct, z = s − vt,
z = v(t0 − t), or several choices. Any case 3rd variable is related to arrival
time advance of partciles at “s”.

H =
E (δ)

P0v0
−
(

1 +
x

ρ

)√
(1 + δ)2 − p2x − p2y −

(
1 +

x

ρ

)
Âs (1)

Magnets and RF field are expressed by Âs = eAs/P0.
Beam-beam force and space charge charge force are added as electric
potential effectively.
In Circular accelerator, Hamiltonian is periodic for the circumference C .

H(x , px , y , py , z , δ; s + C ) = H(x , px , y , py , z , δ; s) (2)

“s” dependent three degree of freedom
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Hamiltonian in Accelerator/Beam Physics

Symplectic transformation

Hamiltonian generates sympletic transformation.
Simplectic transformation of x = (x , px , y , py , z , δ)

x̄ = x̄(x) (3)

satisfies

[x̄i , x̄j ] ≡
6∑

k,l=1

∂x̄i
∂xk

Skl
∂x̄j
∂xl

= Sij (4)

where [, ] is the Poisson bracket.

S =

 S2 0 0
0 S2 0
0 0 S2

 S2 =

(
0 1
−1 0

)
When phase space is ellipse, the area of ellipse is kept a constant.
Emittance growth should be studied under keeping symplectic condition
exactly.
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Hamiltonian in Accelerator/Beam Physics

Lie transform

Lie operator, Poisson bracket

: f : g = [f , g ] =
6∑

i ,j=1

∂f

∂xi
Sij
∂g

∂xj
=

3∑
a=1

(
∂f

∂xa

∂g

∂pa
− ∂f

∂pa

∂g

∂xa

)
(5)

Useful Formula
e :f :g(x) = g(e :f :x) (6)

e :f :e :g :e−:f : = exp(: e :f :g :) (7)

exp(: A :) is symplectic, because [e :A:x , e :A:px ] = e :A:[x , px ] = 1....

Equation of motion and its solution are represented by Lie operator,

dx
ds

= − : H : x x̄ = e−:H:sx (8)
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Hamiltonian in Accelerator/Beam Physics

Examples for Lie operator

1 Quadrupole magnet with the length `, H = (p2x + k1x
2)/2,

x̄ = cos(
√

k1`) + sin(
√
k1`)/

√
k1

p̄x = −
√
k1 sin(

√
k1`) + cos(

√
k1`)

2 Thin sextpole, H = K2x
3/6

e−Hpx = px−
K2

6
[x3, px ]+K 2

2 [x3, [x3, px ]]... = px−
K2

2
x2 e−Hx = x

When Lie operator expansion is represenetd by finite series or is replaced
by an analytic function, the map is symplectic.
Accelerator lattice ordered H1, H2...,

e−:H1(x ):e−:H2(x ):e−:H3(x ):e−:H4(x ):... (9)

This is opposite order against matrix form

x̄ = ...M4M3M2M1x
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Hamiltonian in Accelerator/Beam Physics

Generating function

Another way to integrate Hamiltonian with keeping symplecticity, when Lie
operator expansion is infinite series.
For H(x , p), use 2nd canonical transformation

F2(x , p̄) = xap̄a + H(x , p̄) (10)

pa =
∂F2
∂xa

= p̄a +
∂H

∂xa
(11)

Implicit relation for p = p(p̄) has to be solved as p̄ = p̄(p). It is
possible.for only limited cases.

1 H(x , p) = H1(x) + H2(p)

2 H is linear for p.

3 Numerical solution for example, Newton-Raphson.

4 ....
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Hamiltonian in Accelerator/Beam Physics

More advanced examples

1 Crab waist scheme, exp(∓ : Hcw :) is operated before and after
beam-beam collision.

Hcw =
1

4θc
x∗p∗2y (12)

p̄∗x = p∗x − [x∗p∗2x /(4θc , p
∗
x ] = p∗x − p∗2y /(4θc)

ȳ∗ = y∗ − [x∗p∗2x /(4θc , y∗] = y∗ + x∗p∗y/(2θc)

2nd transformation shifts vertial waist proportional to x∗, x∗/(2θc).

2 Crab crossing, exp(∓ : Hcc :) is operated,

Hcc = θcp
∗
xz
∗ (13)

x̄∗ = x − θc [p∗xz , x
∗] = x∗ + θcz

∗

δ̄∗ = δ∗ − θc [p∗xz
∗, δ∗] = δ∗ − θcp∗x

First transformation gives a tilt θc in x − z plane.
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Hamiltonian in Accelerator/Beam Physics

Examples (how to realize)

1 Crab waist scheme

Hcw =
1

4θc
x∗p∗2y (14)

T (s∗ → s)e−:Hsext(x∗)T (s → s∗) = e−:Hsext(T (s∗→s)x∗): = e−:Hcw (x∗):

1/(4θc) = K2T11T
2
34/2 T12 = T33 = 0

Choosing the phase difference nπ in horizontal and π/2 + n′π for
vertical from IP

2 Crab crossing with a half crossing angle θc .

Hcc = θcp
∗
xz
∗ (15)

Using crab cavity induces Hccv = V ′xz

θc = V ′T12 T11 = 0

The horizontal phase difference is chosen π/2 + nπ
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Hamiltonian in Accelerator/Beam Physics

Collision with crossing angle

Crossing collision is transferred to head-on collision by

Hcc = θcp
∗
xz
∗ (16)

where Lorentz contraction (1/ cos θc) in P0 and z is neglected here. This
transformation is compensated by crab cavities.

Figure: Schemetic view for crossing collision (K. Oide,PRA40,315(1989), K.
Hirata, PRL74, 2228 (1995)).
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Hamiltonian in Accelerator/Beam Physics

One turn map

Transformation after one turn, one turn map, is expressed by

M = T0→1e
−:H1:T1→2e

−:H2:...e−:HN−1:TN−1→Ne
−:HN :TN→0

= T0

N∏
i=1

exp(− : Hi (T0→ix) :) (17)

where T0 is the revolution matrix at the position s = 0 + (nC ).

M = T0e
−:H:

H can be trancated power series using or

H ≈
∮

H(T0→sx , s)ds
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Nonlinear Dynamics

Linearized theory

H(s) =
δ2

2γ2
− xδ

ρ(s)
+

p2x + p2y
2

+
x2

2ρ(s)2
+

K1(s)

2
(x2 − y2)− V ′

E0
z2 (18)

For region with constant ρ and K1, transfer matrix is obtained easily. 6× 6
revolution matrix, which is symplectic.
Three eigenvalue with e±iµj and conjugate pair of eigenvectors (v j , v∗j ) are
obtained. Real and imaginary part of vX gives X ,PX ,

X =
x√
βx

PX =
βxpx + αxx√

βx
JX =

X 2 + P2
X

2
φx = − tan−1

PX

X

φ is betatron phase. (JX , φx)are canonical pair.
Y ,Z are also expressed in the same way.
X ,PX rotate µx in the phase space after one revolution.(

X̄
P̄X

)
=

(
cosµx sinµx

− sinµx cosµx

)(
X
PX

)
Hamiltonian for one turn linear map is H0 = µxJx + µyJy − µzJz
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Nonlinear Dynamics

Nonlinear system

Hamiltonian generating one turn map.for Linear system with small
nonlinear perturbation,

H(J ,φ) = H0(J) + U(J ,φ)

φ is synchro-betatron phase at initial position s0. Average over the
synchro-betatron phase φ = (φx , φy , φz)

Ū(J) =
1

2π

∮
U(J ,φ)dφ

Hamiltonian is epressed by averaged part which depends only on J and
oscillation part,

H(J, φ) = H̄(J) + Û(J, φ)
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Nonlinear Dynamics

Tune

Synchro-betatron phase advance after one turn

∆φj = µi =
∂H̄

∂Ji
(19)

Tune νi = µj/(2π) depends on the amplitude J in nonlinear system.

Source of nonlinear

1 Nonlinear magnets, sextupoles, octupoles....

2 Beam-beam force

3 Space charge force

4 Electron or ion cloud

How to calculate

1 Integrate nonlinear element in a ring.

2 Use computer pakkage, Taylar expansion, Differential Algebra...
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Nonlinear Dynamics

Differential Algebra to evaluate nonlinear transformation of
lattice magnets

Transformation of a magnet is represented by polynomial,

x1 = f1(x0)

x2 = f2(x1) = f2(f1(x0)) ≡ f2 ◦ f1(x0)

....

.xn = fn ◦ ... ◦ f1(x0)..

Coefficient of the polynomial are calculated by computer. The polynomial
is trancated by a certain order, for exmple 10, 15.... The transfer map
expressed by the trancated polynomial is not symplectic.
We can have Lie operator expression for trancated polynomial,

xn = exp(− : H(x0) :)x0

Taking invariant part in H = H(J), tune shift is evaluated.,
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Nonlinear Dynamics

Nonlinearity of lattice magnets

Differential Algbra (SAD+) is executed for J-PARC MR.

H00 = −4.5114× 1013J6x + 5.12293× 1016J5x Jy + 5.4158× 1012J5x

−1.04751× 1016J4x J
2
y + 5.1184× 1012J4x Jy + 1.01007× 109J4x

−1.31809× 1016J3x J
3
y + 6.64815× 1012J3x J

2
y + 2.52657× 109J3x Jy

+4.71257× 106J3x + 5.93598× 1015J2x J
4
y − 2.2846× 1012J2x J

3
y

−2.07724× 108J2x J
2
y − 5.02669× 106J2x Jy + 979.228J2x

−2.37342× 1015JxJ
5
y − 5.60636× 1011JxJ

4
y − 1.00837× 109JxJ

3
y

−3.71806× 106JxJ
2
y + 1578.47JxJy + 5.75634× 1014J6y

+3.76351× 1011J5y − 1.93481× 108J4y + 2.72899× 106J3y

+722.764J2y

Resonance driving terms of H, which are function of φ, are also obtained.
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Nonlinear Dynamics

Tune dependence

ν(J) = ν0 +
1

2π

∂H00

∂J
(20)

Tune shift is ∆ν ∼ 0.0005 for J-PARC MR, where the aperture is 65
mm.mrad. The tune shift of space charge force is O(0.1).

Figure: Amplitude dependent tune shift due to lattice nonlinear magnets in
J-PARC MR.

Kazuhito Ohmi (KEK) Nonlinear Dynamics Oct. 28 - Nov. 7, 2019 18 / 51



Nonlinear Dynamics

Tune slope

2π
dν(J)

dJ
=
∂2H00

∂J∂J
(21)

The second derivative, tune slope, is ∼ 2000 for J-PARC MR. The value is
compared with that of space charge force.

Figure: Tune slope due to lattice nonlinear magnets in J-PARC MR. (left)
∂2H/∂J2x , (center) ∂2H/∂Jx∂Jy , (right) ∂2H/∂J2y .
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Nonlinear Dynamics

Potential induced by Transverse Gaussian charge
distribution

Electric potential induced by Gaussian charge distribution,

Φ(x , y , z) =
e

4πε0

∫ ∞
0

exp
(
− x2

2σ2
x+u
− y2

2σ2
y+u
− z2

2σ2
z+u

)
− 1√

(2σ2x + u)(2σ2y + u)(2σ2z + u)
du (22)

A relativistic particle interacting with charge dirtribution with transverse
Gaussian (unit charge)

UG (x , y) =
rp
γ

∫ ∞
0

1− exp
(
− x2

2σ2
x+u
− y2

2σ2
y+u

)
√

(2σ2x + u)(2σ2y + u)
du (23)
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Nonlinear Dynamics

Beam-beam force

Collision with a half crossing angle θc .

Ubb =
rp
γ

∫
λp(z ′)UG [x − θc(z − z ′), y ]ds (24)

Particles are in betatron oscillation even during small area of collision, (s ∼ s∗)

x(s) =
√

2βx(s)Jx cos(ϕx(s) + φx) y(s) =
√

2βy (s)Jy cos(ϕy (s) + φy ).

where ϕx,y (s) is the betatron phase difference fom the interaction point s∗

ϕx,y (s) = tan−1
(

s

β∗x,y

)
. (25)

φx,y , which is the betatron phase at the interaction point, increases 2πνx,y
turn-by-turn. λp is line density of colliding beam at s. The density is function of
the relative position from the beam center z ′

λp(z ′) =
Np√
2π

exp

(
− z ′2

2σ2
z

)
(26)

where z ′ is related to s and z with s = (z − z ′)/2.
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Resonances

Fourier expansion of the beam-beam potential

Um =
1

(2π)2

∫
dφxdφyUbbe

imφ (27)

=
1

(2π)2
rp
γ

∫
λpds

∫
dφe imφ

∫ ∞
0

1− exp
(
− (x(s)−2s sin θc )2

2σ2
x+u − y(s)2

2σ2
y+u

)
√

2σ2
x + u

√
2σ2

y + u
du

=
rp
γ

∫
ds

∫ ∞
0

λp(z ′)dt√
2 + t

√
2ryx + t

exp(−wxθ − wy )

∞∑
l=−∞

(−1)(mx+l+my )/2I(mx−l)/2(wx)Il(vx)Imy/2(wy )e−imxϕx−imyϕy .

where mx − l and my are even numbers.

Kazuhito Ohmi (KEK) Nonlinear Dynamics Oct. 28 - Nov. 7, 2019 22 / 51



Resonances

Tune spread in the amplitude space

∂U00

∂Jx
=

1

(2π)2
Nrp
γ

∫∫
λp(z ′)dsdφ

√
βx
2Jx

cos(ϕx + φx)Fx(x − 2s sin θc , y)

∂U00

∂Jy
=

1

(2π)2
Nrp
γ

∫∫
λp(z ′)dsdφ

√
βy
2Jy

cos(ϕy + φy )Fy (x − 2s sin θc , y) (28)

Fx is wellknown formula represented by complex error function, w , [M. Bassetti,
G. Erskine, CERN-ISR TH/80-06 (1980)]

Fy (x , y) + iFx(x , y) =

√
π

Σ

[
w

(
x + iy

Σ

)
− exp

(
− x2

2σ2
x
− y 2

2σ2
y

)
w

(
rx + iy/r

Σ

)]
(29)

where Σ =
√

2(σ2
x − σ2

y ) and r = σy/σx .
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Resonances

Tune slope in the amplitude space

∂2U00

∂J2x
=

1

(2π)2
Nrp
γ

∫∫
λp(z ′)dsdφ (30)[

−1

2

√
βx
2J3x

cos(ϕx + φx)Fx(x − 2s sin θc , y) +
βx
2Jx

cos2(ϕx + φx)
∂Fx

∂x

]

∂2U00

∂J2y
=

1

(2π)2
Nrp
γ

∫∫
λp(z ′)dsdφ (31)[

−1

2

√
βy
2J3y

cos(ϕy + φy )Fy (x − 2s sin θc , y) +
βy
2Jy

cos2(ϕy + φy )
∂Fy

∂y

]

∂2U00

∂Jx∂Jy
=

1

(2π)2
Nrp
γ

∫∫
λp(z ′)dsdφ

√
βxβy
4JxJy

cos(ϕx + φx) cos(ϕy + φy )
∂Fx

∂y

(32)
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Resonances

Tune spead in KEKB, SuperKEKB and LHC

1 KEKB(left) : conventional type of e+e− collider based on flat beam
collision.

2 SuprKEKB(center) : new type of e+e− collider based on large
crossing (Piwinski) angle collision. ∆νx � ∆νy

3 LHC-head-on (right) : Hadron collider based on round beam collision.
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Figure: Tune spread due to the beam-beam interaction in KEKB, SuperKEKB
and LHC.
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Resonances

Tune slope in SuperKEKB (βy = 3 mm)
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Figure: Tune spread and slope in SuperKEKB (detuned βy = 3 mm).
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Resonances

Tune slope in SuperKEKB (βy = 0.3 mm)
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Figure: Tune spread and slope in SuperKEKB (design).
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Resonances

Space charge force

Assuming Gaussian distribution in the transverse phase space,

U(x , y , z) =
Npλp(z)rp
β2γ3

∫ ∞
0

1− exp
(
− x2

2σ2
x+u
− y2

2σ2
y+u

)
√

2σ2x + u
√

2σ2y + u
du (33)

Dispersion should be taken into account

x(s) =
√

2βx(s)Jx cos(ϕx(s) + φx) + η(s)δ

U(J ,φ, z , s) =

∮
s
ds ′U(x , y , z ; s ′) (34)

=
λp(z)rp
β2γ3

∮
s
ds ′
∫ ∞
0

1− exp
(
− x2(s′,s)

2σ2
x+u
− y2(s′,s)

2σ2
y+u

)
√

2σ2x + u
√

2σ2x + u
du
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Resonances

Tune spead in J-PARC MR

Space charge force for approximately round beam ∆νx ∼ ∆νy . Tune
spread is very large ∆ν > 0.1. The space charge force distribute in whole
ring, while beam-beam force is localized at IP.
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Figure: Tune spread due to space charge force in J-PARC MR.
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Resonances

Tune slope
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Figure: Tune slope due to space charge force in J-PARC MR.

Typical values are 105 near the beam position, and 104 outside of the
beam area. Lattice magnets gave < 5000.
Space charge is dominant for the tune slope.
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Resonances

Resonance

Hamiltonian is expanded by Fourier series,

H = µJ + U00(J) +
∑

mx ,my 6=0

Umx ,my (J) exp(−imxφx − imyφy ) (35)

First and second terms in RHS characterize shift, spread and slope of tune.

µ̃i =
∂H

∂Ji
= µi +

∂U00

∂Ji
(36)

Third term is averaged out for the tune shift due to the betatron phase
variation. Resonance condition is expressed by (µ = 2πν)

mx ν̃x(J) + my ν̃y (J) = n. (37)

where n is an integer. The resonance condition Eq.(38) gives a line in
(Jx , Jy ) space. J satisfying Eq.(38) is expressed by JR .
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Resonances

Resonance location

We calculte what amplitude a resonance occurs. Solve

mx µ̃x(J) + my µ̃y (J) = 2πn. (38)

for several resonances for a pp collider as an example.
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Figure: Tune spread area and resonance in the amplitude space for a hadron
collider, SPPC (x-crossing), long range collisions are included.
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Resonances

Behavior near resonance

Hamiltonian is expanded near JR as

U00(J) = U00(JR) +
∂U00

∂J

∣∣∣∣
JR

(J − JR)

+(J − JR)t
1

2

∂2U00

∂J∂J

∣∣∣∣
JR

(J − JR) (39)

Third term in RHS is characterized by the tune slope

2π
∂νi
∂Jj

= 2π
∂νj
∂Ji

=
∂2U00

∂Ji∂Jj
(40)
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Resonances

Behavior near resonance

Canonical transformation for new variable P and ψ is considered

F2(P,φ) = (Jx ,R + mxP1 + mx ,2P2)φx + (Jy ,R + myP1 + my ,2P2)φy

Choosing mx ,2 = 0,my ,2 = 1 independent of (mx ,my ).

P1 =
Jx − Jx ,R

mx
ψ1 = mxφx + myφy (41)

P2 = (Jy − Jy ,R)− my

mx
(Jx − Jx ,R) ψ2 = φy

Hamiltonian for J dependent terms is now given by

H00 = U00 ≈
Λ

2
P2
1 , (42)

where

Λ ≡ m2
x

∂2U00

∂J2x
+ mxmy

∂2U00

∂Jx∂Jy
+ m2

y

∂2U00

∂J2y
. (43)
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Resonances

Resonance width

The resonance term, which is third term of RHS in Eq.(35), drives
resonances. The resonance strengths Um as function of J are
approximated to be those at JR

Um(J) ≈ Um(JR) m = (mx ,my ). (44)

Hamiltonian for the standard model is given as

H =
Λ

2
P2
1 + Um(JR) cosψ1. (45)

Phase space structure near resonances are characterized by the resonance
width. The resonance width is given by

∆P1 = 4

√
Um

Λ
∆Jx = 4mx

√
Um

Λ
. (46)
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Resonances

Schemetic view of Resonance

Particle oscillates harmonic motion in the vicinity of the resonance point.
Detuning from the resonance condition, separatrix is seen.

Figure: Resonance with base of (Jx , φx) and (P1, ψ1).

Resonances causes emittance growth, but week growth.
Coupling to synchrotron motion is important as shown later.
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Resonances

Calulation of resonance width

Resonance driving term, tune slope and resonance width depend on the
amplitude in which the resonance condition is satisfied. The stochasitisity
parameter is lower than 1. Weak chaos.
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Figure: Resonance driving term, stochasticity parameter and resonance width.
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Figure: Resonance width in the amplitude space and FMA result.
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Synchrotron motion

Resonance with finte z

For finite z , tune spread area decreases.

-0.01

-0.005

 0

 0.005

-0.01 -0.005  0  0.005

∆
ν

y

∆νx

Np=1.5x10
11

z/σz=0.5
1.0
1.5
2.0
2.5
3.0

Figure: Tune spread for finte synchrotron amplitudes.

Beam-beam and Space charge forces are symmetric for x and y. Only even
resonances are induced. Odd resonances are induced for finite z .
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Figure: Resonance width in the transverse amplitude space for zero and finite
synchrotron amplitude.
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Synchrotron motion

Synchrotron motion

Synchrotron motion is very sow compre with betatron motion.

z =
√

2βzJz cosφz δ =
√

2Jz/βz sinφz . (47)

φz = µz t increase as turn number t.
Resonance driving term, tune slope are modulated by the synchrotron
motion. Fourier component for te synchrotron tune is calculated as

Ubb = Uo ,0 +
∑
mz 6=0

Uo ,mz e
−imzφz +

∑
m 6=0,mz

Um,mz e
−im·φ−imzφz (48)

Um,mz (J , Jz) =
1

2π

∫
Um(J , z)e imzφzdφz (49)

The synchrotron tune is slow and can be comparable with the motion near
the resonance. Uo ,mz term should be considered regardless of the
resonance condition.
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Synchrotron motion

Synchrotron side band

The resonance condition of J for a particle with Jz is

mxνx(J , Jz) + myνy (J , Jz) + mzνz = n (50)

Ū(J , Jz) = Uo ,0(J , Jz) +
∑
m 6=0

Um,mz (J , Jz)e−im·φ−imzφz (51)

Focusing the resonance, Hamiltonian is expressed by

H̄ = Ū =
Λm

2
P2
1 + Um,0(JR , Jz) cosψ1 (52)

Λm ≡ m2
x

∂2Uo ,0
∂J2x

+ 2mxmy
∂2Uo ,0
∂Jx∂Jy

+ m2
y

∂2Uo ,0
∂J2y

. (53)

∆νz = ∂U/∂Jz is neglected. Synchrotron oscillation is treated as external
oscillation.
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Synchrotron motion

Modulation due to synchrotron motion

Synchrotron frequency component,

Uo ≡ Uo ,0 +
∑
mz 6=0

Uo ,mz e
−imzφz (54)

The potential is expand around JR as follows,

Uo(J , Jz , t) = Uo(JR) +
∂Uo
∂J

∣∣∣∣
JR

· (J − JR) (55)

=
∑
mz 6=0

∂Uo ,mz

∂J
· (J − JR)e−imzµz t =

∑
mz 6=0

∂Uo ,mz

∂J
·mP1e

−imzµz t

where U and its derivatives are evaluated at JR . Linear term for P2, which
gives an oscillation of P2, is neglected.
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Synchrotron motion

Resonance overlap between synchrotron side bands

The standardized transfer map for H = H̄ + Û is given by

It+1 = It +
∑
mz

Kmz sin θt cos(mzµz t) (56)

θt+1 = θt + It+1 +
∑
mz 6=0

∂Uo ,mz

∂J
·m cos(mzµz t).

where I = ΛmP1, θ = ψ1 and Kmz = ΛmUm,mz .
Resonance overlaps conditions

1 The resonance width of each sideband (with even mz) is larger than
the resonance spacing µz between sidebands,

3
√

Kmz = 3
√

ΛmUm,mz > 2µz (57)

2 Chaotic area due to the mudulation is larger than the resonance width
or separation

∆P1 = Maxmz

(
1

Λ

∂Uo ,mz

∂J
·m
)

(58)
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Synchrotron motion

Example of overlap between synchrotron side bands

SPPC (China) is hadron collider which is competitor of FCC-hh.

1 7-th order resonance

2 Resonances mz=0 and 2 canoverlap.

3 STochstic area due to modulation is narrower thanthe resonance
width, but contributes the overlap.

Figure: Resonance with crab waist.

Resonance overlap enhances emittance growth remarkably.
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Applications

Resonance suppression in Crab Waist

Crab waist scheme

Hcw =
1

4θc
x∗p∗2y (59)

Treve
−:Hcw (x∗):e−:Ubb(x∗):e :Hcw (x∗): = Treve

−:Ubb(e
−:Hcw (x∗):x∗) (60)

Particles with x

Ubb =

∫
λ(z ′)UG (x + θc(z − z ′), y + py s; s)ds s = (z − z ′)/2. (61)

Large contribution x ≈ −2θcs.

Ubb ≈
∫
λ(z ′)UG (x + 2θcs, y − xpy/(2θc); s)ds (62)

The second argument y + xpy/(2θc) induces resonances on x − y
coupling. The resonances are compensated by the crab waist
transformation, y → y + xpy/(2θc)
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Applications

Resonance width for νx + 4νy = 3 w/wo crab waist
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Figure: Resonance without crab waist.
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Figure: Resonance with crab waist.

The resonance width with crab waist is one order lower than that without
crab waist.
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Applications

Super-periodicity and structure resonance

J-PARC MR ring has superperiodicity of three. It is sufficient to consider
1/3 ring, mxνx/3 + myνy/3 = n. Namely, only structure resonances
mxνx + myνy = 3n exist under the perfect superperidicity. Nonstructure
resonances , mxνx + myνy = n′( 6= 3n) do not exist.

Figure: .Tune diagram near (νx/3, νy/3) = (7.13, 7.143), where total tune is
(21.35,21.4).
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Applications

Breaking of Superperiodicity and nonstructure resonance

In real accelerator, superperiodicity is broken by various errors.
Non-structure resonances appear.

M = exp
(
−H(3)

00 − H
(3)
m
)

exp
(
−H(2)

00 − H
(2)
m
)

exp
(
−H(1)

00 − H
(1)
m
)

(63)

H
(2,3)
00 + H

(2,3)
m = H

(1)
00 + H

(1)
m + ∆H

(2,3)
00 + ∆H

(2,3)
m (64)

Figure: .Tune diagram near (νx , νy ) = (21.39, 21.43)
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Applications

How to evaluate nonstructure resonances

Error sources can

1 Deviations of beta function, phase and other Twiss parameters at
nonlinear elements.

2 Deviations of strangth of nonlinear elements is more reliable than
Twiss.

Nonstructure resonances can be evaluated by measured Twiss parameters.
Integrate space charge potential using the measured Twiss parameters.
[K.Ohmi, HB2014, ICAP15, IPAC16,17]
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Summary

Summary

1 Hamiltonian formalism and Lie operator approach have been used to
study nonlinear dynamics in accelerators.

2 Most of works to study emitance growth has relied numerical
simulations.

3 Theory for resonances and chaos is important to understand physics
of the emittance growth.

4 Stocasticity parameter of accelerators is not large (K ∼ 0.01) as
chaotic system.

5 Resonance overlap between synchrotron side bands andmudulationdue
to synchrotron oscillation enhance emittance growth.

6 Theory is also helpful to understand new technique using crab cavity
and crab waist.

7 Breaking of Superperiodicity and nonstructure resonance may be
interesting in the future.
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Summary
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Summary

The End
Thank you for your attention
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