Overview of Electron-Ion Collider Projects

Petr Shatunov, BINP, Novosibrsk

Joint US-CERN-Japan-Russia Accelerator School on Ion Colliders Dubna, 29.10.2019

Why do we need EIC?

«Towards nuclear physics in electron-radioactive ion collisions» L. Grigorenko 30.10.2019

What is important?

- High Luminosity
- Ability to work with different lons from H to U
- Wide energy range up to and over 150GeV
- Maximum angle of detection
- High level polarization of particles

What do we need to create a Collider #1 ?

What do we need to create a Collider #2 ?

What do we need to create a Collider #3 ?

What do we need to create a Collider #4 ?

What do we need to create a Collider #5 ?

What do we need to create a Collider #6?

What do we need to create a Collider?

- Two rings
- Multiple bunches
- RF-system
- Final focusing & Beam separation
- Particle detectors and spectrometers
- Beam production system
- Cooling system

Dubna, 29.10.2019

Final focusing

Structure Funtions

Dubna, 29.10.2019

Luminosity considerations

Luminosity considerations

Energy (max): 300 MeV/u Circumference CR: 222.9 m β_i (max): 0.654 Circumference ER: 56.8 m (68.7) Bunches rate: 1*6 (1*5) A/Z: 2.7 Rigidity: 7.55 T·m

Status: In Development Goal: 2030

«Scientific programof DERICA –prospective acceleratorand storage ring facilityfor radioactive ion beam research» L. Grigorenko et al. UFN2019

Derica Project Layout

260 m

Dubna, 29.10.2019

Luminosity comparison

	¹¹ Be ⁴⁺	^{248.4} U ⁹²⁺	Circumference	Energy MeV/u	Bunches
ELISE	2.1·10 ¹⁰	4·10 ⁸	222.9 m	740.0	8×40
MESR	2.1.1010	4·10 ⁸	173.56 m	485.35	8×40
DERICA	1.5·10 ¹⁰	-	222.9 m	300.0	11×55

Electron Spectrometer Alternative

Disadvantages

- Complicated design
- Increased cost
- Supercoductivity

Advantages

- Angle 10° , 75°
- Tight integration with Final Focusing
- Increased luminocity by factor of 3 ÷ 5
- Increased $F_i n_i$
- Supercoductivity

1991-2007 ~1 fb⁻¹

Desy/Hamburg

Parameter	Units	Electron ring	Proton ring		
Nominal energy	GeV	30	820		
Circumference	m	6335.83	6335.83		
Revolution frequency	s ⁻¹	47317	47317		
No. of bunches		210	210		
No. of particles per bunch		3.65×10^{10}	1011		
Average current	mA	58	163		
Transverse beam emittances $\epsilon_{-}/\epsilon_{-}$	10 ⁻⁹ m	41/5.1	8/3.4		
Betafunctions at IP β_{*}/β_{*}	m	2/0.7	10/1		
Beam size at IP $\sigma_r/\sigma_r = \sqrt{\epsilon\beta}$	mm	0.286/0.06	0.28/0.058		
Luminosity	cm ⁻² s ⁻¹	1.6 × 1	031		
Tune shift $\Delta Qx/\Delta Qz$		0.02/0.02	$10^{-3}/5 \times 10^{-4}$		
Synchr. radiation loss per turn	MeV	125	6×10^{-6}		
Synchr. radiation power	MW	7.2	10-6		
rf voltage	MV	200	2.4		
rf frequency	MHz	500	208/52		
Synchrotron tune		0.07	1.6×10^{-3}		
Relative energy spread $\Delta E/E$		10 - 3	10-4		
Bunch length (1σ)	cm	0.85	19		
Length of beam-beam interaction (1σ)	cm	9.5			
Free space for detectors	m	± 5.5			
Polarization time	min	35			
Bending magnet length	m	9.185	8.824		
Bending radius in the arcs	m	608.1	584		
Bending field	Т	0.165	4.68		
Bending magnet aperture	mm	154 × 51	75 Ø		
Vacuum chamber aperture	mm	80×40	56 Ø		
Length of FODO cell	m	23.5	47		
Horizontal and vertical betatron tune		47.2/48.35	31.3/32.3		

HERA Footprint

Dubna, 29.10.2019

23

HERA IP Region

Electron-Ion Collider Project, USA

LONG RANGE PLAN for NUCLEAR SCIENCE

The EIC is designed to meet the requirements set forth in the Community White Paper and re-emphasized in 2015 NSAC Long Range Plan and the NAS report:

- Highly polarized (~70%) electron and nucleon beams
- Ion beams from deuterons to the heaviest nuclei (uranium or lead)
- Variable center of mass energies from ~20 ~100 GeV, upgradable to ~140 GeV
- High collision luminosity ~10³³ 10³⁴ cm⁻²s⁻¹
- Possibilities of having more than one interaction region

«EIC accelerator overview» Vadim Ptitsyn, Workshop on Physics and Detector Requirements at Zero-Degree of Colliders, Stony Brook 2019

JLEIC Scheme

- Full-energy top-up injection of highly polarized electrons from CEBAF \Rightarrow High electron current and polarization
- Full-size high-energy booster \Rightarrow • Quick replacement of colliding ion beam \Rightarrow High average luminosity
- High-rate collisions of strongly-focused short low-charge low-emittance bunches similarly to record-luminosity lepton colliders \Rightarrow **High luminosity**
- Multi-stage electron cooling using demonstrated magnetized cooling mechanism \Rightarrow Small ion emittance \Rightarrow **High luminosity**
- Ion collider ring 150 MeV Ion linac Interaction point Low energy 8.9 GeV/c Booster 3-12 GeV/c 100m Electron collider ring Electron source 12 GeV CEBAF

Interaction

point

200 GeV/c

- Figure-8 ring design \Rightarrow • High electron and ion polarizations, polarization manipulation and spin flip
- Integrated full acceptance detector with far-forward detection sections being parts of both machine and detector ٠
- Upgradable to 140 GeV CM by replacing the ion collider bending dipoles only with 12 T magnets

13 GeV/c

High energy

Booster

«THE US ELECTRON-ION COLLIDER ACCELERATOR DESIGNS» A. Servi et al. Proceedings of NAPAC2019.

Dubna. 29.10.2019

26

eRHIC Scheme

Electron Polorimeters 41 GeV Arc Source Hadrons up to 275 GeV Injector eRHIC is using the existing RHIC complex. Possible Detector Location Ion Transfer Possible Detector Storage ring (Yellow Ring), injectors, ion-Electron Storage Line Location sources, infrastructure, Electron Ion Ring Need only few modifications for eRHIC Injector (RCS) IR6 Todays RHIC beam parameters are close (Polarized) to what is required for eRHIC Ion Source 100 meters AGS

Electrons up to 18 GeV

- Electron beams with a variable spin pattern accelerated in the on-energy, spin transparent injector: Rapid Cycling Synchrotron with 1-2 Hz cycle frequency in the RHIC tunnel
- Polarized electron source and 400 MeV s-band injector linac in existing tunnel
- Design meets the high luminosity goal of $L = 10^{34} \text{ cm}^{-2} \text{ s}^{-1}$

Electron Cooler

Polarized

EIC Interection regions

Crossing angle is necessary to avoid parasitic collisions due to short bunch spacing, make space for machine elements, improve detection and reduce detector background, $\theta_c = 50$ mrad (JLEIC), 25mrad (eRHIC)

JLEIC

eRHIC

JLEIC Polarization

Dubna, 29.10.2019

٠

EIC Parameters and Luminosity

Center of Mass Energy [GeV]

design	eRHIC		JLEIC		eRHIC-opt.		JLEIC-upgrade		
parameter	proton	electron	proton	electron	proton	electron	proton	electron	
center-of-mass energy [GeV]	enter-of-mass energy [GeV] 104.9		44.7		63.3		105.8		
energy [GeV]	275	10	100	5	100	10	400	7	
number of bunches	1160		3456		2320		864		
particles per bunch [10 ¹⁰]	6.9	17.2	1.06	4.72	3.4	8.6	4.2	19.3	
beam current [A]	1.0	2.5	0.75	3.35	1.0	2.5	0.75	3.4	
beam polarization [%]	80	80	85	85	80	80	85	85	
total crossing angle [mrad]	25		50		50		50		
ion forward acceptances [mrac	1] ±20/±4.5		$\pm 50/\pm 10$		$\pm 35/\pm 8$		$\pm 50/\pm 5.6$		
h./v. norm. emittance [µm]	2.8/0.45	391/24	0.65/0.13	83/16.6	1.5/0.15	391/24	3/0.5	228/45.6	
bunch length [cm]	6	2	2.5	1	4	2	3.5	1	
β_x^* / β_y^* [cm]	90 / 4.0	43 / 5.0	8/1.3	5.72/0.93	18/2	13/2.4	40 / 2.25	16.9 / 0.8	
hor./vert. beam-beam param.	.014/.007	.073/.1	.015/.0135	.049/.044	.012/.013	.036/.062	.014/.008	.076/.037	
peak lumi. $[10^{34} \text{cm}^{-2} \text{s}^{-1}]$	1.0	1.01		1.46		1.24		1.78	
average lumi. $[10^{34} \text{cm}^{-2} \text{s}^{-1}]$	0.93*		1.4		0.95*		1.47^{*}		

LHeC CERN

ISSN 0954-3899

Journal of Physics G Nuclear and Particle Physics

Volume 39 Number 7 July 2012 Article 075001

A Large Hadron Electron Collider at CERN Report on the Physics and Design Concepts for Machine and Detector LHeC Study Group

Prevessin Site Preves

Status: Published 600 pages conceptual design report (CDR) written by 200 authors from 60 Institutes in 2012 Goal: 2040?

«The Case for the LHeC» Max Klein, Contribution to a Panel on Future DIS, 17.4.2018, Kobe

LHeC on One Page

 $E_e = 10-60 \text{ GeV}, E_p = 1-7 \text{ TeV}: \sqrt{s} = 200 - 1300 \text{ GeV}.$ Kinematics: $0 < Q^2 < s, 1 > x \ge 10^{-6}$ (DIS) Electron Polarisation P=±80%. Positrons: significantly lower intensity, unpolarised Luminosity: $O(10^{34}) \text{ cm}^{-2} \text{ s}^{-1}$. integrated $O(1) \text{ ab}^{-1}$ for HL LHC and 2 ab $^{-1}$ for HE LHC/FCCeh e-ions 6 $10^{32} \text{ cm}^{-2} \text{ s}^{-1} O(10) \text{ fb}^{-1}$ in ePb . $O(1) \text{ fb}^{-1}$ for ep F_L measurements

Physics: QCD: develop+break? The worlds best microscope. BSM (H, top, v, SUSY..) Transformations: Searches at LHC, LHC as Higgs Precision Facility, QCD of Nuclear Dynamics The LHeC has a deep, unique QCD, H and BSM precision and discovery physics programme.

Time: Determined by the Large Hadron Collider (HL LHC needs till ~2040 for 3 ab⁻¹) LHeC: Detector Installation in 2 years, earliest in LS4 (2030/31). HE LHC: re-use ERL. In between HL-HE, 10 years time of ERL Physics (laser, γγ..) Very long term: FCC-eh

Challenges: Development of ERL Technology (high electron current, multi-turn) Design 3-beam IR for concurrent ep+pp operation, New Detector with Taggers - in 10 years.

The LHeC is a great opportunity to sustain deep inelastic physics within future HEP. The cost of an ep Higgs event is O(1/10) of that at any of the 4 e⁺e⁻ machines under consideration It can be done: the Linac is shorter than 2 miles and the time we have longer than HERA had.

CERN and world HEP: Vital to make the High Luminosity LHC programme a success. Max Klein Kobe 17.4.18

Thank You!