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Design Orbit

Desired shape of the Closed Orbit (CO) is determined by appropriate
placement of the bending magnets. In the present lecture we assume CO to
be a planar closed curve combined from circular arcs.
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The equilibrium particle with charge e, rest mass m , and momentum p
(with appropriate initial conditions!)
will perform periodical rotation along the design orbit.
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Sector Bending Magnet

In the cylindrical coordinates,
the particle’s position is

r = (z , r , θ)

and its velocity is
v = (ż , ṙ , r θ̇)

In a sector magnet the magnetic field configuration B is identical in each
plane θ = const

B = (Bz(z , r),Br (z , r), 0)

Vector potential A of the magnetic field, B = rotA, can be written as a
single component:

A = (0, 0,Aθ(z , r))
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Derivation of Equations of Motion in Cylindrical Coordinates

From the Lagrangian: L = −mc2

√
1− v2

c2 − eϕ+
e

c
vA

we find the canonical momenta by differentiation:

P =
∂L
∂v

= γmv +
e

c
A

here γ =
1√

1− v2

c2

is the particle’s Lorentz-factor.

Lagrangian equations of motion dP
dt = ∂L

∂r can be expressed in the
conventional form with the Lorentz force in their R.H.S.:

d

dt
(γmv) = eE +

e

c
[v × B]

when the fields are expressed via potentials

E = −1
c
Ȧ−∇ϕ , B = rotA
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Equations of Motion in a Sector Magnet

From the Lagrangian written in the cylindrical coordinates,

L = −mc2

√
1− 1

c2 (ż2 + ṙ2 + r2θ̇2)− eϕ+
e

c
r θ̇Aθ

we obtain a set of equations of motion:

z)
d

dt

(∂L
∂ż

)
=

d

dt
(γmż) = −e ∂ϕ

∂z
+

e

c
r θ̇
∂Aθ
∂z

= eEz −
e

c
r θ̇Br

r)
d

dt

(∂L
∂ ṙ

)
=

d

dt
(γmṙ)=γmr θ̇2−e ∂ϕ

∂r
+
e

c
r θ̇·1

r

∂(rAθ)

∂r
=γmr θ̇2+eEr+

e

c
r θ̇Bz

θ)
d

dt

(∂L
∂θ̇

)
=

d

dt
(γmr2θ̇ +

e

c
rAθ) = −er · 1

r

∂ϕ

∂θ
+

e

c
r
∂Aθ
∂θ

(= 0)

An extra term γmr θ̇2 in the radial equation is due to the curvilinear
coordinates, its physical meaning is “inertial centrifugal force”.
In what follows we leave out the potential electric fields, putting ϕ = 0;
meanwhile, the induction electric field Eθ is still here in the θ)-equation,
when Ȧ 6= 0.
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Positions of Eqiulibrium in z and r

The equilibrium conditions follow from vanishing forces on the R.H.S.:

z) Br

∣∣
z=0 = 0

This condition holds for the guide fields symmetric w.r.t. z = 0 plane,
where the design orbit belongs to. In the case of such a symmetry the plane
z = 0 is called the median plane.

r) γmvθ +
e

c
rBz

∣∣
z=0 = 0

With a given law Bz(0, r) in the median plane,
we can find the orbit radius r0 that corresponds to the equilibrium particle
with momentum p0.
Using notation B0 = Bz(0, r0) and relation γmvθ = p0 which assumes no
transverse velocities of the equilibrium particle, we rewrite:

r) p0c = −eB0r0 or: (p0c/e)eV = 300(B0r0)Gauss · cm
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Longitudinal Motion

Considering the longitudinal motion of equilibrium particle,
we put: z = 0, r = r0, p = p0, then in θ)-equation we have: γmr2θ̇ = p0r0.
In an azimuthally-symmetric example, magnetic flux Φ enclosed by the
equilibrium orbit is readily expressed via the vector potential using the
Stokes theorem:

Φ =

∫
BdS =

∫
rotAdS =

∮
Ad l = 2πr0Aθ

∣∣
r=r0,z=0

Schematic cross-sectional view of a “classical” betatron:
1 — magnet yoke, 2 — vacuum pipe, 3 — beam, 4 — windings.
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2 : 1 Condition for Induction Acceleration

Then:
θ)

d

dt
(p0r0 +

e

c

Φ

2π
) =

d

dt
(−e

c
r2
0B0 +

e

c

Φ

2π
) = 0

Finally, putting r0 = const(t), we obtain a connection between the guide
field growth rate on the orbit and the growth rate of average field enclosed
by the orbit. The latter generates the electromotive force that accelerates
the equilibrium particle.

Ḃz

∣∣∣
orbit

=
Φ̇

2πr2
0

=
1
2
Ḃz

∣∣∣
average enclosed

This relation should be kept in the induction accelerator (betatron) for the
constant position and curvature radius of the orbit. It was discovered by
Wideröe and is also known as the 2 : 1 condition.

In what follows we will solely focus on the transverse motion.
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From Equations of Motion to Equations of Trajectories

Change of the independent variable in equations, t → s,
where ds = r0dθ = r0θ̇dt is the arc element along the equilibrium orbit,
yields:

d

dt
= r0θ̇

d

ds
=

r0
r

(r θ̇)
d

ds
, let's denote d

ds (...) = (...)′

We have to know ds
dt , and we use the invariance of the particle’s velocity in

a static magnetic field, |v| = v = const.
In the cylindrical coordinates the exact ds

dt is available, however a paraxial
approximation, |z ′|, |r ′| � 1 gives a sufficient accuracy, in view of
linearization as our next step,

v =

√
r2θ̇2 + ż2 + ẋ2 =

ds

dt

√
r2

r2
0

+ z ′2 + r ′2 ≈ r

r0

ds

dt
+ O(p2

⊥)

Thus, in the paraxial approximation we get:
ds

dt
≈ r0

r
v
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Paraxial Approximation

Use this change of variable in the horizontal equation of motion:

ds

dt

d

ds
(γm

ds

dt

dr

ds
) = γm

mr

r2
0

ds

dt

2
+

e

c

r

r0

ds

dt
Bz

(γmv
r0
r
r ′)′ =

γmv

r0
+

e

c

r

r0
Bz

Finally: r) (
r ′

r
)′ =

1
r2
0

+
eBz

pc

r

r2
0

Similar transformations in the vertical equation of motion give:

z) (
z ′

r
)′ = −eBr

pc

r

r2
0
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Linear Approximation of the Guide Field

Trajectories in the neighborhood of the equilibrium orbit are called stable if
their deviations from CO remain limited in course of motion. Above found
positions of equilibrium correspond to motion along the equilibrium orbit.

Stability analysis requires that our equations of trajectories be replaced by
their linear approximations. We have to expand the equations w.r.t. small
displacements from the equilibrium position, to 1st order in z , x ,∆p,
defined by:

r = r0 + x ; p = p0 + ∆p ,

and approximate the guide field with its power series in small displacements:

Bz = Bz(0, r0) +
∂Bz

∂r

∣∣∣
CO

x + · · ·+ ∆Bz ≈ B0 + Gx + ∆Bz

Here ∆Bz denotes small corrections to the linear terms
(e.g. those due to small azimuthal variations in a realistic sector magnet).
Factor G is commonly called “guide field gradient”.
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Linearization in Equation of Horizontal Displacements

The term linear in the vertical displacement z was discarded because the
symmetry w.r.t. the median plane requires:

∂Bz

∂z

∣∣∣
CO

= 0

Limiting ourselves with the linear approximation and using the relation
p0c = −eB0r0, we obtain:

x)
1
r0

d2x

ds2 ≈
1
r2
0

+
e

p0c
(1− ∆p

p0
)(B0 + Gx + ∆Bz)

r0 + x

r2
0
≈ 1

r2
0

+
eB0

p0cr0
+

+
eB0x

p0cr2
0

+
eGx

p0cr0
− eB0

p0cr0

∆p

p0
+

eB0

p0cr0

∆Bz

B0
= −(

1
r2
0
− eG

p0c
)x+

1
r0

(
∆p

p0
−∆Bz

B0
)

Thus we arrive at the linearized equation of horizontal motion:

x)
d2x

ds2 + (
1
r2
0

+
G

B0r0
)x =

1
r0

∆p

p0
− ∆Bz

B0r0
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Linearization in Equation of Horizontal Displacements:
Results

The homogeneous equation above results in the stability condition:
horizontal displacements are stable (and the solution is oscillatory) if the
rigidity Kx of this oscillator is positive.

x) Kx =
1
r2
0

+
G

B0r0
> 0

We remind that r0,B0,G = const. Besides, very slow longitudinal motion
allows a rather accurate assumption ∆p ≈ const.
Amplitude and phase being available from the initial condition, we can
write the solution as oscillation around the equilibrium orbit:

x) x(s) = Ax cos(
√
Kxs +φx) + partial solution of inhomogeneous equation

Under an unstable condition, Kx < 0, displacements grow exponentially.
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Linearization in Equation of Vertical Displacements

Now we implement similar transformations in the equation of vertical
displacements:

Br = Br (0, r0) +
∂Br

∂z

∣∣∣
CO

z + · · ·+ ∆Br ≈ 0 + Gz + ∆Br

Use has been made of (rotB)θ = 0, in a current-free domain, that results in
the following relation:

∂Br

∂z

∣∣∣
CO

=
∂Bz

∂r

∣∣∣
CO

= G

Field symmetry w.r.t. the median plane yields Br ≡ 0 in the orbit plane,
z = 0, and allows to discard the x − z coupling term in the field expansion,

∂Br

∂r

∣∣∣
CO

x = 0 .

Thus we obtain for vertical displacements from the equilibrium orbit:

z)
d2z

ds2 ≈ −
e

p0c

∂Br

∂z

∣∣∣
CO

z − e∆Br

p0c
= − eG

p0c
z − e∆Br

p0c
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Linearization in Equation of Vertical Displacements: Results

or:

z)
d2z

ds2 −
eG

B0r0
z =

∆Br

B0r0

Stability of vertical displacements (and oscillatory solution) requires a
positive rigidity Kz of the vertical oscillator:

z) Kz = − G

B0r0
> 0

Similarly to horizontal motion, we can find the vertical oscillation amplitude
and phase from the initial condition, then write the stable solution as
oscillation around the equilibrium orbit:

z) z(s) = Az cos(
√
Kzs + φz) + partial solution of inhomogeneous equation

Evgeny Perevedentsev and Dmitry Shwartz, Budker INP NovosibirskRecap of Transverse Particle Dynamics October 29, 2019 16 / 21



Betatron Oscillations. Weak Focusing.

Transverse oscillations around CO are called betatron oscillations.
Guide fields that provide simultaneous stability of both transverse degrees
of freedom are of special practical interest,

(Kx > 0 & Kz > 0) =⇒ − 1
r2
0
<

G

B0r0
< 0

These conditions for transverse displacements are conventionally called
weak focusing.

Traditionally, for weak focusing the field gradient is characterized by a
dimensionless “field index” n:

n = − r

Bz

∂Bz

∂r

∣∣∣
CO
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Weak Focusing

Being a logarithmic derivative of the bending field, the field index is
independent of r when the bending field in the median plane obeys the
power law:

Bz(0, r) = B0(
r0
r

)n

We can express the gradient in terms of n:

G = − n

r2
0
B0r0

and write the equations for displacements in an azimuthally-symmetric
magnet structure (consisting from a single full-turn sector magnet, i.e. with
a 360o bending angle):

x) x ′′ +
1− n

r2
0

x =
1
r0

∆p

p0
stability for n < 1

z) z ′′ +
n

r2
0
z = 0 stability for n > 0
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Limitations of Weak Focusing

Then, simultaneous stability of both transverse degrees of freedom is
reached for 0 < n < 1.
Solutions in an azimuthally-symmetric magnet structure take a simple form:

x) x(s) = Ax cos(
√
1− n

s

r0
+ φx) z) z(s) = Az cos(

√
n
s

r0
+ φz)

We define a dimensionless frequency of betatron oscillations ν,
conventionally called the betatron tune, as a number of trajectory
oscillations over the full turn around CO, s → s + C , where C is the CO
circumference. In an azimuthally-symmetric magnet structure, C = 2πr0.
Evaluating the oscillation phase advance over the full turn around CO and
dividing it by 2π, we find the horizontal and vertical betatron tunes:

νx =
√
1− n, νz =

√
n, 0 < νx ,z < 1

Be aware that expression of Kx ,z in terms of n is meaningless in an
important special case of sector magnet with B0 = 0, i.e. in a magnetic
quadrupole lens where the equilibrium orbit is straight, r0 =∞.
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Limitations of Weak Focusing and
the Idea of Strong Focusing

From the above solutions we can evaluate the trajectory slope:

z ′ = −Azνz
r0

sin(. . .)

Hence, the spread of transverse momenta accepted in a vacuum tube of
limited size Ax ,z is proportional to νx ,z .
A machine with νx ,z � 1, will thus have an advantage of greater accepted
transverse momenta and therefore potentially higher beam intensities.
However, in weak-focusing magnet structures betatron tunes are limited,

ν2
x + ν2

z ' 1 .

Magnet structures with an alternating-sign gradient of a high absolute
value (that corresponds to |n| � 1) are needed for strong focusing regime
where the betatron tunes are much greater than unity.
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Hill’s Equation and Transport Matrix

Figure: G. W. Hill ( 1838–1914)

Consider a linear oscillator
with a periodic variable rigidity
(G.W.Hill, 1886):

x ′′ + K (s)x = 0,

here K (s) is an arbitrary periodic function
with a period C : K (s + C ) = K (s).

Select two linearly independent solutions of this linear equation C(s),S(s),

with a cosine-like, C(s0) = 1, C′(s0) = 0;

and a sine-like, S(s0) = 0,S ′(s0) = 1,

initial conditions, respectively.
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Transfer Matrix

2× 2-matrix of transfer T (s|s0), combined from these functions (and their
derivatives)

T (s|s0) =
(
C(s) S(s)
C′(s) S ′(s)

)
gives a convenient expression of general solutions of a linear differential
equation via the initial conditions: the matrix transforms a column-vector
of initial values specified at the initial azimuth s = s0, into the current
solution x(s):(

x
x ′

)
s
= T (s|s0)

(
x
x ′

)
s0

=

(
C(s) S(s)
C′(s) S ′(s)

)(
x
x ′

)
s0

The resulting vector may serve as an initial condition for transport through
the next element: multiplying by its matrix yields continuation of the
current solution through the following element providing the continuity of x
and x ′ at the boundary of the elements.
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Properties of Transport Matrices

Therefore, a sequence of element-by-element transformations is represented
by successive multiplication of elements’ transfer matrices. Notice that the
matrices are ordered from right to left:

T (sn|s0) = T (sn|sn−1) · · ·T (s2|s1)T (s1|s0)

The transfer matrix T (s|s0) is also called transport matrix of solutions of
our equation where the force is independent of x ′. Indeed, we ignore any
dissipation, moreover the charged particle motion in a static magnetic field
is Hamiltonian. This results in invariance of the Wronskian, specifically,
detT :

d

ds
(detT ) =

∣∣∣∣ C′ S ′C′ S ′
∣∣∣∣+ ∣∣∣∣ C S

C′′ S ′′
∣∣∣∣ = 0+

∣∣∣∣ C S
−KC −KS

∣∣∣∣ = 0

Consequently, detT (s|s0) = const(s).
Obviously, detT (s0|s0) ≡ 1, hence: ∀s : detT (s|s0) ≡ 1.
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Properties of Transport Matrices

Thus follows a physically important consequence:
transformation of the phase plane x , x ′ performed by a transport matrix T
is area-preserving.
Areas are 2-dimensional phase-space volumes,
here we have a particular case of the Liouville theorem.
A proof is easy for area (x1x

′
2 − x2x

′
1) of a parallelogram element

spanning vectors (x1, x
′
1), (x2, x

′
2) of any two solutions,

then we can generalize for an area of arbitrary figure being divided
in such elements.
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Examples of Transport Matrices: Constant Focusing

Consider first the simple special case of K = const. For K > 0, we can
take the cosine trajectory, and the sine trajectory,

C(s) = cos
√
Ks ,

{
C(0) = 1
C′(0) = 0

S(s) = 1√
K

sin
√
Ks ,

{
S(0) = 0
S ′(0) = 1

as a complete set of two linearly independent particular solutions of Hill’s
equation, which yields simple harmonic oscillations in this special case.

Two found solutions thus form a “focusing” transport matrix:

T (s|0) =

(
cos
√
Ks 1√

K
sin
√
Ks

−
√
K sin

√
Ks cos

√
Ks

)
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Examples of Transport Matrices: Constant Focusing

For K < 0, we should replace the above solutions by the respective
hyperbolic functions,

C(s) = cosh
√
−Ks,

{
C(0) = 1
C′(0) = 0

S(s) = 1√
−K

sinh
√
−Ks,

{
S(0) = 0
S ′(0) = 1

,

and this motion is locally unstable, the deviations from the design orbit
grow exponentially.

These two found solutions form a “defocusing” transport matrix:

T (s|0) =

(
cosh

√
−Ks 1√

−K sinh
√
−Ks√

−K sinh
√
−Ks cosh

√
−Ks

)
For a field-free element, K = 0, we obtain a transport matrix of a drift
space:

T (s|0) =
(

1 s
0 1

)
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Alternating-Gradient Focusing

Aiming at simultaneous stability of horizontal and vertical displacements,
we must envisage the focusing function K (s) of both signs.

K(s)

K

s ss1 2 s

Figure: Approximation ofK (s) by step functions.

With a stepwise-constant approximation, the transport matrix at each step
is available from previous examples. The total transport is found by their
multiplication.
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One-Period Matrix and Stability

s0

s0

s
T(s|   )

s0M(   )

design orbit

Figure: Transformation by a one-period matrix M(s0).

Introduce a one-period transfer matrix M(s),

M(s) = T (s + C |s),

For stable motion, we should have limited values of x and x ′ when applying
M repeatedly to any initial condition.
Transport over N periods is given by MN , therefore stability requires that
eigenvalues λ of M must be limited, |λ| ≤ 1.
Otherwise, with |λ| > 1, λN means a possibility of unlimited growth of
displacements.
Condition detM = 1 means λ1λ2 = 1
hence the stability condition is reduced to |λ1,2| = 1.
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One-Period Matrix and Stability

Rewriting M via its matrix elements,

M =

(
m11 m12
m21 m22

)
,

we find the eigenvalues of M from the characteristic equation

det(M − λI ) = 0,

or, explicitly,∣∣∣∣ m11 − λ m12
m21 m22 − λ

∣∣∣∣ = λ2 − (m11 +m22)λ+ detM = 0.

Using detM = 1 and denoting the trace of M, m11 +m22 = trM, we solve
this equation for λ,

λ1,2 =
1
2
trM ± i

√
1−

(
1
2
trM

)2

≡ cosµ± i sinµ = e±iµ,

where cosµ = 1
2trM determines the phase advance µ.
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Stability Condition of Hill’s Equation

Finally, the stability condition |cosµ| ≤ 1 requires that complex eigenvalues
of M belong to the circle of unity radius.
The stability condition can be expressed in terms of matrix M,

−2 ≤ trM ≤ 2 .

Stable solutions of Hill’s equation are called betatron oscillations, and the
meaning of parameter µ is the phase advance of these oscillations over one
period of the focusing structure.
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Twiss Parameters

The one-period matrix M may be rewritten via Twiss parameters,

M = I cosµ+ J sinµ =

(
cosµ+ α sinµ β sinµ
−γ sinµ cosµ− α sinµ

)
.

Among the matrix elements of J,

J =

(
α β
−γ −α

)
,

there are only two independent parameters, since the relation detM = 1
bounds these matrix elements, γβ − α2 = 1, or det J = 1. Hence,
J2 = −I , and the matrix exponent form of M follows, M = exp(µJ).
The matrix elements of M(s) are apparently periodic functions of s,
M(s + C ) = M(s), and so are the Twiss functions β(s), α(s) and γ(s).
Provided M(s0) is known, transformation to another point s is given by the
transfer matrix T (s|s0),

M(s) = T M(s0)T
−1.
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Twiss Parameters

To derive differential equations for the Twiss parameters, we rewrite Hill’s
equation as a set of 1st-order equations

X ′ =
d

ds

(
x
x ′

)
=

(
0 1
−K 0

)(
x
x ′

)
= DX whereD =

(
0 1
−K 0

)
.

The differential equation for the transfer matrix T has the same form.

d

ds
T =

(
C′ S ′
C′′ S ′′

)
=

(
C′ S ′
−KC −KS

)
=

(
0 1
−K 0

)(
C S
C′ S ′

)
,

or T ′ = D T .

The differential equation for a one-period matrix M(s) = T (s + C |s)
is quite different. We start from

M = M(s) = T M0T
−1, and rewrite it as M T = T M0 ,

then differentiate with respect to s,

M ′ T +M T ′ = T ′M0 .
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Differential Equations for Twiss Parameters

Using T ′ = D T we arrive at

M ′ = DM −MD .

Substituting here the Twiss form of M, we find a set of differential
equations for the Twiss functions,

β′ = −2α , α′ = Kβ − γ , γ′ = 2Kα .

Elimination of α and substitution of γ = (1+ α2)/β yields a rather
cumbersome equation for the β-function alone,

1
2
ββ′′ − 1

4
β′2 + Kβ2 = 1 .

These equations should be solved with periodic boundary conditions, since
the Twiss functions are periodic.
For w(s) =

√
β(s), we get a nice equation,

w ′′ + Kw =
1
w3 , again with periodic boundary conditions.
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Eigenvectors of M(s)

Now we find a pair of eigenvectors FT = (f , f ′) of the one-period matrix
M(s), using its Twiss form and knowing its eigenvalues λ1,2 = e±iµ.
From MF = e±iµF ,(

cosµ+ α sinµ β sinµ
−γ sinµ cosµ− α sinµ

)(
f±
f ′±

)
= e±iµ

(
f±
f ′±

)
,

we have
f ′±
f±

=
±i − α
β

.

Using α = −β′/2 we come to a differential equation
f ′±
f±

=
β′

2β
± i

β
.

Integration yields a fundamental relation of the eigenvector to the
β-function,

f±(s) = f0
√
β(s) exp

[
±i
∫ s ds ′

β(s ′)

]
,

where f0 is the integration constant. Using freedom of normalization, we
choose f0 = 1.
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Eigenvectors of M(s). The Floquet Theorem

We get the complex-conjugate pair of eigenvectors,(
β

±i − α

)
e±iψ√
β
, ψ =

∫ s ds ′

β(s ′)
.

We can also write this complex-conjugate pair of normalized eigenvectors
F , F ∗ in terms of w and w ′,

F =

(
f
f ′

)
=

(
w

w ′ + i/w

)
e iψ, ψ′ =

1
w2 .

The above derivation provides for the proof of the Floquet Theorem:
For Hill’s equation

x ′′ + K (s) x = 0 K (s + C ) = K (s),

there exist normal solutions f (s), f ′′ + K (s) f = 0 , for which advance by
one period means multiplication by a phase factor,

f (s + C ) = e iµf (s) .
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Eigenvectors of M(s) and the Floquet Theorem

Indeed, the above constructed eigenvectors of M, with f (s) = w(s)e iψ(s),
whose absolute value is a periodic function, are transformed by M when
advanced by one period, and this transformation is reduced to
multiplication by the eigenvalue e iµ of M,(

f
f ′

)
s+C

= M

(
f
f ′

)
s

= e iµ
(

f
f ′

)
s

.

Moreover, the phase advance is related to the amplitude function w ,

ψ(s + C )− ψ(s) = µ =

∮
dψ =

∮
ds

w2 .

The normal solutions f (s) = w(s)e iψ(s) are often called Floquet functions.
Any solution of Hill’s equation can be decomposed in this basis,(

x
x ′

)
=

A

2

(
f
f ′

)
+

A∗

2

(
f ∗

f ∗′

)
= Re[AF ] .
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Eigenvectors of M(s) and Courant-Snyder Invariant

“Orthonormality” of this special basis is expressed in Wronskian form, it is
suited for the phase-space geometry,∣∣∣∣ f f ∗

f ′ f ∗′

∣∣∣∣ = e iψe−iψ
∣∣∣∣ w w
w ′ + i/w w ′ − i/w

∣∣∣∣ = −2i ,
These relations help to find the decomposition constant A

A = −ie−iψ
∣∣∣∣ w x
w ′ − i/w x ′

∣∣∣∣ .
The Courant-Snyder invariant then follows from the fact that A is a
constant determined by the initial conditions of the trajectory, and
independent of s,

|A|2 = (wx ′ − w ′x)2 +
x2

w2 = γx2 + 2αxx ′ + βx ′2 ≡ ε. (1)

When the solution x(s) is propagated in an AG focusing lattice, the
quadratic form remains constant because of appropriate variation of the
Twiss functions. The physical meaning of this invariant is that it is
proportional to the action variable in the particle motion.
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Pseudo-Harmonic Oscillations

Using expression for the displacement x(s) via the eigenvectors of M(s) we
arrive at the pseudo-harmonic form of the solutions to Hill’s equation,

x(s) =
√
εβ(s) cosψ(s) , x ′(s) = −

√
ε

β(s)

(
sinψ(s) + α(s) cosψ(s)

)
.

εβ

ε/β
εγ

x

x’

πεArea =

1

23

4

Figure: Elliptic phase-space trajectory of the betatron oscillation.

Evgeny Perevedentsev and Dmitry Shwartz, Budker INP NovosibirskGeneral Theory of Linear Betatron Oscillations in Periodic Focusing LatticesOctober 29, 2019 20 / 22



Pseudo-Harmonic Oscillations

The Courant-Snyder quadratic form defines the ellipse with area πε. The
phase-space ellipse illustrates the meaning of the Twiss parameters. Being
a locus of points 1, 2, ... representing one-period mapping, the ellipse is
often called a phase-space trajectory of the betatron oscillation. We can
see that w(s) =

√
β(s) is the envelope function enclosing all betatron

trajectories with given |A|.
The pseudo-harmonic oscillation is related to the simple harmonic
oscillation by a linear transformation:(

x
x ′

)
=

( √
β 0

−α/
√
β 1/

√
β

)( √
ε cosψ

−
√
ε sinψ

)
.

and by the change of independent variable from s to ψ. The new variables
are called the normalized variables.
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Conclusion and References

A versatile formalism is available (in different forms)
to fully support linear lattice analysis and
to simplify the formulation of nonlinear dynamics problems.
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