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and Correction in Storage Rings
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Closed Orbit

The “minimalist” (linear or circular) accelerator is build with bending magnets (uniform

magnetic field) which guide the particles and define the nominal trajectory
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The nominal trajectory in a storage ring is of course closed, ie

{X,Y, Z}(C)={X,Y, Z}(0) (coordinates wrt the fixed laboratory frame).
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But a particle entering with a starting offset/angle follows a different trajectory

-25

-20

-15

-10

-5

 0

 5

 10

-10  0  10  20  30  40

http://www.mechanik.tu-darmstadt.de


4/115 P�i?�	�≫≪><

Quadrupole magnets are added for bending back

those particles towards the closed orbit (focusing).

The field in a quadrupole depends linearly on trans-

verse position. For a normal quad used for focusing:

Bx = gy By = gx

A particle with a horizontal offset, x, wrt the mag-

net axis is bent horizontally, vertically if the offset is

vertical.

The quadrupoles must be aligned to the trajectory defined by the bending dipoles not

to affect the nominal trajectory.

http://www.mechanik.tu-darmstadt.de
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It is convenient to describe the particle mo-

tion in a right-handed rectangular system

(τ̂ , êx, êy) which moves along the nominal

trajectory. In such a frame and using the

path length s rather than the time t the

motion is described by Hill’s equations.

Logical steps to get there:

• Use of the local coordinate system attached to the reference orbit (assumed here

for simplicity lying in the horizontal plane):
τ̂ tangent to the orbit pointing in the velocity direction

êy perpendicular to the plane of the orbit (constant)

êx ≡ êy × τ̂

http://www.mechanik.tu-darmstadt.de
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• Start with the equations of motion under Lorentz force in the laboratory coordinates

system
d

dt

[
m
d~r

dt

]
= e

d~r

dt
× ~B

• Express position of particle in terms of the reference particle position vector ~r0

~r(s, x, y) = ~r0(s) + x(s)êx + y(s)êy

• Use Frenet formulas  d
ds
êx = τ̂ 1

ρ

d
ds
τ̂ = −êx 1

ρ

http://www.mechanik.tu-darmstadt.de


7/115 P�i?�	�≫≪><

• Use s (the distance along the reference trajectory) as parameter instead of time

d

dt
=
d`

dt

d

d`
= v

ds

d`

d

ds

~r(s+ ds) = ~r(s) + d~̀

d`

ds
' 1 + x/ρ

• Expand fields in the local frame {τ̂ , êx, êy} and keep the linear components.

http://www.mechanik.tu-darmstadt.de
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Using above ingredients the equations of motion for the generic particle in the local

frame attached to the reference trajectory write

x′′ +
( 1

ρ2
+K

)
x+Ny + 2Hy′ = −

e

p
∆By ≡ Fx

y′′ −Ky +Nx− 2Hx′ =
e

p
∆Bx ≡ Fy

with

K(s) ≡
e

p

(∂By

∂x

)
x=y=0

and N ≡
1

2

e

p

(∂Bx

∂x
−
∂By

∂y

)
x=y=0

↑ ↑
normal quad skew quad

H ≡
1

2

e

p
Bτ ← solenoid ∆Bz ← dipolar errors
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In general skew quadrupoles are introduced for correction purposes and treated in per-

turbation theory.

Solenoids are usually present in the experiment detectors and their effect is often com-

pensated by anti-solenoids. For machines with polarized beams, they may be also ma-

chine components for rotating the particle spin direction.

SettingN=H=0 the two equations are uncoupled and may be re-written in a symmetric

form

z′′ +Kzz = Fz(s)

with

Kx ≡
( 1

ρ2
+K

)
and Ky ≡ −K

and, with our choice of the reference frame, Fx(s) ≡ − e
p
∆By in horizontal plane

and Fy(s) ≡ e
p
∆Bx in the vertical one. In the following the subscript will be omitted

when not needed.

http://www.mechanik.tu-darmstadt.de
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By using the periodic solutiona, β(s), of

1

2
ββ′′ −

1

4
β′2 + β2K = 1

we may define the new variables η and φ

η ≡
z
√
β

and φ(s) ≡
1

Q

∫ s ds̄

β

The parameter Q is chosen so that

φ(C) =
1

Q

∮
ds

β
= 2π

In the new variables the Hill’s equation transforms in the equation of a harmonic oscillator

d2η

dφ2
+Q2η = 0

afor an open line the solution is determined by the starting conditions

http://www.mechanik.tu-darmstadt.de
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To get there one must write z as
√
βη and express the derivatives in terms of the new

parameter φ:

d

ds
=

1

Qβ0

d

dφ

d2

ds2
=

1

(Qβ0)2
d2

dφ2
+
d

ds

( 1

Qβ0

) d
dφ

=
1

(Qβ0)2
d2

dφ2
−

1

Q2β3
0

dβ0

dφ

d

dφ
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The general solution may be written as the sum of a cosinus and sinus

η(φ) = A cosQφ+B sinQφ

The tune Q is then the number of free oscillations per turn and Q/Trev is the betatron

frequency .

As Q can’t be integer (see later), in general the trajectories do not close after one turn.

It is

η(φ+ n2π) = A cosQ(φ+ n2π) +B sinQ(φ+ n2π)

In presence of dipolar error fields it is

d2η

dφ2
+Q2η = Q2β3/2F (s(φ))

which is a forced oscillator.

http://www.mechanik.tu-darmstadt.de
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The general solution is the sum of the general solution of the homogeneous part and a

particular solution of the inhomogeneous equation.

Using the method of Lagrange we find the solution, v, of the in-homogeneous equation

with starting conditions v(0)=v′(0)=0 as

v(φ) =

∫ φ

0

dσf(σ)
[
cosQφ sinQσ − sinQφ cosQσ

]
with f(φ) ≡ β3/2F (s(φ)). For a closed ring we would like to describe the motion

wrt a new periodic trajectory (closed orbit).

To do so we use the general solution and impose periodicity. The result is

η(φ)co =
Q

2 sinπQ

∫ φ+2π

φ

dφ̄f(φ̄) cos [Q(π + φ− φ̄)] =

Q

2 sinπQ

∫ 2π

0

dφ̄f(φ̄) cos [Q(π − |φ− φ̄|)]

which becomes a sum for a finite number of localized errors

η(φ)co ='
Q

2 sinπQ

∑
j

f(φ̄j)∆φ̄j cos [Q(π − |φ− φ̄j|)]

http://www.mechanik.tu-darmstadt.de
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The actual motion of any particle is then described by

z = zβ + zco =
√
βη + zco =

√
β
[
A cosQφ+B sinQφ

]
+ zco

with

zco(s) =
1

2 sinπQ

√
β(s)

∑
j

√
βjΘj cos [Q(π − |φ(s)− φ(s̄j)|)]

Θj ≡ F∆s̄j = F [Qβ∆φ̄] ← from the definition of φ it is: dφ =
ds

Qβ

• We see why the optics must be designed so that Q is not an integer number!

• In the linear approximation a closed orbit always exists, it may be out of the vacuum

chamber though...

• The effect of errors at large β-values location is particularly strong.

nb: For correcting the orbit small dipole correctors are inserted in the lattice. Their

effect on the closed orbit is of course described by the same expression.

http://www.mechanik.tu-darmstadt.de
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The magnet positioning precision is finite, although today sophisticated methods allow

to align the machine components with a precision in the order of some hundred microns.

The expectation value of the rms closed orbit can be estimated under the assumption

that the number of magnets is large enough

< zrms >=
1

2
√

2| sinπQ|

√
< β >

√
Σi βi Ψ2

i

where Ψi depends on the kind of error considered. For quadrupole transverse misalign-

ments it is Ψi = (k`)iδz
Q
rms and

< zrms >=
1

2
√

2| sinπQ|

√
< β >

√√√√NQ∑
i=1

βi(k`)
2
i δz

Q
rms

'

&

$

%
↖

amplification factor
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Example: Future Circular Collider e+e− ring

FCC-ee IP (β∗y=2 mm)

K. Oide et al,

PRAB 19, 111005 (2016)

Optics amplification factor

45 GeV all quads 665

(Jan.2018) w/o IRs quads 124

• The few IRs quadrupoles have an huge effect on the closed orbit.

• It is crucial to have near-by BPMs and correctors to compensate their effects locally.

http://www.mechanik.tu-darmstadt.de
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There are some more things to learn from having changed the variables from (z, s) to

(η, φ).

For a closed ring, owing to the periodicity, we can expand zco/
√
β ≡ ηco and f(φ) ≡

β3/2F (s(φ)) in Fourier series

η(φ)co = u0 +

+∞∑
p=1

up cos pφ+ vp sin pφ

f(φ) = a0 +

+∞∑
p=1

ap cos pφ+ bp sin pφ

and inserting back into the equation for η we find the relationship between the coeffi-

cients of errors and orbit expansions
u0 = a0

up =
Q2

Q2 − p2
ap

vp =
Q2

Q2 − p2
bp

http://www.mechanik.tu-darmstadt.de
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Under the reasonable assumption that the errors have a white spectrum

• The orbit is most sensitive to the harmonics close to the betatron frequency Q.

• The Fourier expansion of an un-corrected closed orbit will have large values of the

harmonics close to Q.

Beam Position Monitors are used for measuring the beam transverse position. The

average over many turns gives the closed orbit. Having used φ we see that what

matters is the phase advance, Qφ (≡ µ), rather than the position s:

• The BPMs (and correctors) should be distributed uniformly around the ring wrt to φ

• In order to compute all harmonic compo-

nents we would need an infinite number

of sampling points. At least 4 sampling

point per wavelength ie one BPM each

Q∆φ=90o is recommended. -1
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As z=
√
βη, locations with large β are preferred.
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The “rule” of the 4 BPMs per wavelength concerns the regular arc of a storage ring

(very often FODO cells).

Additional BPMs must be inserted in special locations as

• Injection/extraction region.

• for colliders, in the collision region in order to

– monitor the beam position

– measure the machine optics

– perform Beam Based Alignment

http://www.mechanik.tu-darmstadt.de
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In writing the analytical expression of the closed orbit we have considered only dipolar

errors. They come from:

• Bending magnets

– field error

– rolla, pitchb , yawc

– longitudinal mis-alignment (very important when the bending angle is large!).

• Quadrupoles

– quads transverse offset

– pitch, yaw

Longitudinal displacement of quads affects instead the optics.

Quadrupole rolls introduce betatron coupling, but if xco and yco are non zero at the

quad location they introduce also dipolar errors and couple the closed orbit equations.

arotation around τ̂
brotation around êx
crotation around êy

http://www.mechanik.tu-darmstadt.de
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In practice, how is the closed orbit computed? There are computer codes which may

handle many kind of mis-alignments. Many of them use the following approach.

Consider for instance a short corrector. Using a 2×2 matrix formalism it is

~z =

1 0

0 1

 ~z0 +

 0

Θz


That is only z′ is changed. We can modify the transport matrix for including the kick

(the inhomogeneity)

~z =


1 0 0

0 1 Θz

0 0 1



z0

z′0

1


The machine element transport matrices are modified for taking into account the errors.

Applying the 7×7 (for the most general case) one turn transport matrix to the starting

vector ~h=0 we construct the particular solution found by the Lagrange method.

http://www.mechanik.tu-darmstadt.de
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~z(L) = M(L)~z(0)︸ ︷︷ ︸
gen.sol.hom.

+ ~h(L)︸ ︷︷ ︸
part.sol.inhom.

and imposing that ~z is the periodic solution

~z(L) = M(L)~z(0) + ~h(L) = ~z(0) → (I −M)−1~h(L) = ~z(0)

with M unperturbed transport matrix and ~h(L) transported by the enlarged matrix.

For taking into account the effect of non linear elements the procedure must be iterated.

For instance, normal sextupole (used for chromaticity correction):

Bx = Sxy = S(x0 + xβ)(y0 + yβ) = Sx0y0 + Sx0 yβ + Sy0xβ + Sxβyβ

By = 1
2
S(x2 − y2) = ..... = 1

2
S(x2

0 − y2
0) + 1

2
Sx0xβ − Sy0yβ + 1

2
S(x2

β − y2
β)

• First one finds the closed orbit without sextupoles.

• Knowing x0 and y0 at the location of the sextupoles their extra kicks are evaluated

and the closed orbit recomputed. In general x0 and y0, and therefore the sextupole

contribution, will be different.

• Repeat as long as it (hopefully) converges.

http://www.mechanik.tu-darmstadt.de
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The particle motion in the storage ring is described by

z = zco + zβ︸︷︷︸
free oscillation

It is important to keep zco as small as possible for

• making good use of the available aperture

• staying clear of unwanted non-linearities

This is done by using small dipole correctors. We recall that change of the closed orbit

measured at the ith BPM due to an unitary kick of the ith corrector is

∆xi = Tij =

√
βmi β

c
j

2 sinπQ
cos [Q(π − |φmi − φ

c
j|)]

which in principle can be computed from the nominal optics functions and do not

depend from the particular orbit. For a very distorted machine the response matrix can

be measured and used for correcting the orbit.

http://www.mechanik.tu-darmstadt.de
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For the computation of the needed strength for a global orbit correction there are many

approaches:

• Harmonic method: it consists in extracting the closed orbit harmonics from the

BPM measurement and introducing equal and opposite harmonics by exciting dipole

correctors.

• MICADO method (implemented for instance in MADX): it consists in finding the

best corrector, namely the corrector which minimizes
∑M
i=1(z

m
i + zci )

2. Within

the remaining correctors a second one is added which together with the previously

found one minimizes
∑M
i=1(z

m
i + zc1i + zc2i )2 and so on.

http://www.mechanik.tu-darmstadt.de
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• Least Square Fit

The response of the orbit at the ith BPM i due to the jth corrector is given by

zi = Ti,jΘ
c
j =

Q

2 sinπQ

√
βmi β

c
j cos (πQ− |µmi − µ

c
j|)Θ

c
j

Unless the number of monitors, M , and the number of correctors, N , are equal, the

system of eqs.

zmi +
N∑
j=1

TijΘ
c
j = 0

can’t be inverted.

ForN > M there are infinite solutions: one can use the method of Lagrange multipliers

for selecting the solution which minimizes
∑N
j=1(Θ

c
j)

2.

http://www.mechanik.tu-darmstadt.de
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For M > N there are too many constraints, we can find a least square solution by

minimizing

S =
M∑
i=1

(zmi + zci )
2 with zci =

N∑
j=1

TijΘ
c
j

M ≡ #of BPMs

N ≡ #of correctors

If S(Θc
1, ...,Θ

c
N) is a minimum it must be ∂S/∂Θc

k = 0 ∀k = 1, ...N ie

M∑
i=1

(zmi +
N∑
j=1

Θc
j)Tik = 0 ∀ k = 1, ...N

or in matrix notation

T T~zm + T TT ~Θc = 0

T TT is a N ×N matrix which can be, if not singular, inverted. The solution is than

~Θc = −
(
T TT

)−1

T T~zm

One may add a term w
∑N
j=1(Θ

c
j)

2 to S for limiting the values of Θc
j (the length of

~Θc). w would be a factor to be determined empirically.

http://www.mechanik.tu-darmstadt.de
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There is a way for short cutting the problem of assessing whether a matrix has an inverse,

that is the Singular Value Decomposition (SVD).

Any M ×N matrix A may be written as

A = UΣV T

with

U M ×M orthogonal matrix ie (UTU)ij = δij i, j ≤M
V N ×N orthogonal matrix

Σ M ×N diagonal matrix

For instance

M = 2

N = 3
Σ =

σ1 0 0

0 σ2 0

 M = 3

N = 2
Σ =


σ1 0

0 σ2

0 0


The diagonal elements of Σ are called singular values.

http://www.mechanik.tu-darmstadt.de
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• The M columns of U are orthonormal eigenvectors of AAT .

• The N columns of V are orthonormal eigenvectors of ATA.

• The singular values are the square root of the eigenvalues of ATA (or AAT , they

share the same non-zero eigenvalues).

If M = N then we can write

A−1 = (V T )−1Σ−1U−1 = V Σ−1UT

Therefore if A is ill defined some of the elements of Σ are vanishing (or small). In

general when N 6= M , V Σ−1UT is the pseudo-inverse (or generalized inverse) which

• for M > N gives the least square solution,

• for M < N gives the minimum length solution, ie the minimum of
∑N
j=1(Θ

c
j)

2.

The ratio σ̌/σ̂ (condition number) determines the accuracy of the inversion and it

should be as much as possible close to one: the small singular values must be zeroed

until a reasonable solution is found.

There are routines for performing a SVD. The decomposition is not unique though!

MATLAB and LAPACK dgesvd subroutine use the above definitions.

http://www.mechanik.tu-darmstadt.de
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Since T TT is a squared matrix one can also solve the eigenvalues problem. Find the

eigenvalues for the matrix A ≡ T TT :

A = UΣU−1

with Σ diagonal matrix of the eigenvalues of A and and the N column of U are the

eigenvectors of A. As A is real and symmetric U is orthogonal and U−1=UT

A−1 = UΣ−1UT

As for the SVD, the singularities are confined in the diagonal matrix Σ. One should

replace by zero the smallest eigenvalues to get a reasonable solution.

The SVD uses all correctors and BPMs. Ignoring the small singular values doesn’t mean

that we are eliminating correctors and/or monitors responsible for the bad condition

number.

http://www.mechanik.tu-darmstadt.de
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Is there a way for eliminating redundant BPMs and correctors a priori?

The case of Advanced Photon Source (Argonne National Lab): 360 BPMs and 320

correctors.

Singular values

from Y. Chung et al.,

PAC 1993

There is a step at 240.

The condition number is 8e-5. Eliminating from the analysis the 80 correctors with the

smaller value of
E(j) ≡

∑
n

σnVjn

the condition number increases to 7e-4.

http://www.mechanik.tu-darmstadt.de
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An example from the LHC

J. Wenninger, JUAS 2019.

http://www.mechanik.tu-darmstadt.de
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Dispersion correction

The dispersion, Dz(s), describes the dependence of the particle trajectory upon its

momentum. It originates from the bending magnets.
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In a closed ring, the periodic dispersion is the closed orbit of a particle with a relative

momentum offset ∆p/p0=1 wrt the nominal one: the equation of the periodic disper-

sion has the same form as the equation for the closed orbit, the in-homogeneity being

1/ρ

z′′ +Kzz =
1

ρ

http://www.mechanik.tu-darmstadt.de
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• Quadrupoles do not generate dispersion, they modified it.

• If the closed orbit is not vanishing at their locations, quadrupoles introduces extra

dipolar fields and become source of extra (spurious) dispersion, ∆Dz:

d2∆Dz

ds2
+Kz(s)∆Dz = Fz(s)

with Fz(s)=Kzz
q
co

The solution has the same form of the closed orbit:

∆Dz(s) =

√
βz(s)

2 sinπQz

√
βqz(K`)y

q
co cos (πQz − |µz(s)− µqz|)��
��
↖

closed orbit at the quad

Contributions from many quads trivially add up.

http://www.mechanik.tu-darmstadt.de
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Because ∆D depends on the closed orbit which larger harmonics are around Q, the

spectrum of the disturbance is not white. The harmonics of D/
√
β relates to those of

the dipolar errors originating the non-vanishing closed orbit as Q4/(Q2 − p2)2.

In general if the closed orbit is well corrected the spurious dispersion should result

well corrected too. However, especially for e± machines where a very low vertical

emittance is required, it may be necessary to implement a dispersion correction or

a “dispersion free correction” which consists in trying to minimize closed orbit and

dispersion simultaneously.

By its definition, the dispersion can be measured by measuring the closed orbit corre-

sponding to different energies. The beam energy may be varied by changing the RF

frequency at fixed dipole field:

dp

p
=

γ2γ2
T

γ2
T − γ2

df

f

http://www.mechanik.tu-darmstadt.de
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The measurement of a difference orbit doesn’t suffer from possible BPMs offsets and

therefore correction of the dispersion instead of the closed orbit can be a good way for

correcting both at oncea. This is done again using the small dipole correctors.

Effect of the jth corrector on dispersion at the ith BPM is (neglecting the sextupoles)

Nij = TijΘ
c
j +

↙ dipole contribution (small)

↙�
�
�
�

quadrupole contribution√
βmi β

c
j

2 sinπQ

NQ∑
n=1

βqn(K`)n

2 sinπQ
cos (πQ− |µmi − µ

q
n|) cos (πQ− |µqn − µ

c
j|)Θ

c
j

adispersion distortions may also originate from the roll angle of dipoles and quadrupoles around

the longitudinal axis. In the second case the correction of dispersion is not equivalent to the

correction of the closed orbit.

http://www.mechanik.tu-darmstadt.de
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Local steering: orbit bumps

Orbit bumps may be used for correcting local orbit distortions or more in general for

locally changing the closed orbit:

• beam steering at injection/extraction;

• avoiding obstacles;

• diagnostic purposes.

The simplest one is a 3-correctors bump:

• first corrector kicks the beam away from the closed orbit;

• second one steers it back towards the closed orbit at the location of the third

corrector;

• third one closes the orbit bump with a kick Θ3 = −z′(s3).

http://www.mechanik.tu-darmstadt.de
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The analytical expressions for the needed Θ2 and Θ3 can be found by imposing

T (s̄)1Θ1 + T (s̄)2Θ2 + T (s̄)3Θ3 = 0 with s̄ < s1 and s̄ > s3

or imposing
3∑
i=1

Ti(s3)Θi =
3∑
i=1

T ′i (s3)Θi = 0

A fourth corrector is needed for controlling both transverse position and slope at a given

point.

Closed bumps are a simple way for detecting optics errors: if a quadrupole involved in

the bump is faulty the bump will be not closed!
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Beam Based Alignment

• Accelerator components are aligned with respect to an ideal orbit. Magnet mis-

alignments are specified and field are expanded with respect to this design orbit.

• In general orbit correction algorithms try to minimize the beam offset with respect

to the design orbit.

It may be convenient to steer the beam through the center of the quadrupoles. If close

to each quadrupole there is a BPM perfectly centered with the quadrupole axis this is

accomplished by the usual orbit correction.

However BPMs may have offsets, mechanical and electronic: the aim of BBA is deter-

mining such offset.

The quantity to be minimized by the orbit correction application is xbpm+δbpm,q where

xbpm is the BPM reading and δbpm,q is the position of the BPM center wrt quadrupole.
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For measuring δbpm,q we use the fact that if the beam is centered in the quadrupole a

change of the field will not change the closed orbit. For finding the center we move the

beam across the quadrupole.

The procedure for measuring δbpm,q would look like

• Skew quadrupoles and sextupoles inside the bump are switched-off.

• A reference orbit is acquired.

• A orbit bump with maximum at the BPM is excited; the difference orbit outside

the bump region wrt the reference orbit (w/o bump) is minimized by empirically

tweaking the last bump corrector. This gives an empirically corrected coefficient for

that corrector.

• The quadrupole strength is changed by a “reasonable” amount.

• The bump size is varied and the rms orbit difference outside the bump and the

BPM reading recorded.

• These rms values are fitted for finding the minimum ie δbpm,q.
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This procedure has been tested for instance at DESY HERA-e.

M. Böge et al., IWAA95.
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Summary

• We have introduced the concept of closed orbit in a storage ring using the co-moving

frame

– Sources, equation of motion and solution.

– Correction algorithms.

– Spurious dispersion.

• Some orbit manipulations (orbit bumps) have been described.

– The use of orbit bumps for BBA has been described
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