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Mixings and phases: CKMà PMNS (Pontecorvo-Maki-Nakagawa-Sakata) 

Extra CPV phases 
     [if Majorana] 

not tested in oscillat. 

Mass [squared] spectrum             (E ~ p + m2/2E + “interaction energy” ) 
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3ν	paradigm:	parameters	



ν flavor oscillation experiments: α à β in vacuum and matter 
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eàe        (KamLAND), 
θ12 )  

eàe                  (Solar) θ12 )  

µàµ   (Atmospheric) ( Δm2 , θ23 )  

µàµ        (LBL Accel) Δm2 , θ23 )  

eàe         (SBL Reac.) θ 

µàe         (LBL Accel)  θ  

µàτ      (OPERA, SK)θ  
Data from various types of  neutrino experiments: (a) solar, (b) long-baseline  
reactor,  (c) atmospheric, (d) long-baseline LBL accelerator, (e) short-baseline 
SBL reactor, (f,g) long baseline accelerator (and, in part, atmospheric). 
 
(a) KamLAND [plot]; (b) Borexino [plot], Homestake, Super-K, SAGE, GALLEX/
GNO, SNO; (c) Super-K atmosph. [plot], DeepCore, MACRO, MINOS etc.; (d) T2K 
(plot), NOvA, MINOS, K2K; (e) Daya Bay [plot], RENO, Double Chooz; (f) T2K [plot], 
MINOS, NOvA; (g) OPERA [plot], Super-K atmospheric.  



Leading sensitivities to 3ν oscillation parameters: 
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...	+	subleading	sensi4vi4es	to	CPV	and	
NO	vs	IO	difference,	essen4ally	via	µàe 
channel	in	LBL	accel.	and	atmosph.	expts			



“Broad-brush” 3ν picture (with 1-digit accuracy)         
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δm2      ~ 7 x 10-5 eV2 

Δm2      ~ 2 x 10-3 eV2 

sin2θ12 ~ 0.3  
sin2θ23 ~ 0.5  
sin2θ13 ~ 0.02  

δ = Dirac CPV phase 

sign(Δm2) = ordering 

octant(θ23)  
absolute mass scale 
Dirac/Majorana nature 

Knowns:	 Unknowns:	

Normal Ordering (NO) Inverted Ordering (IO) 



Hi-res, larger picture  à   Global analysis of  ν oscillation data  

  Analysis includes increasingly rich oscillation data sets: 
 

 LBL Accel + Solar + KL (KamLand) 

 LBL Accel + Solar + KL + SBL Reactor 
 LBL Accel + Solar + KL + SBL Reactor + Atmosph. 

Global fit results: 1804.09678	by	F.	Capozzi,	E.	Lisi,	A.	Marrone,	A.	Palazzo,	PPNP	102,	48	(2018)	   

χ2 metric adopted. Parameters not shown are marginalized away: 
 

C.L.’s refer to Nσ = √ Δχ2 = 1, 2, 3, ... 
  

à	à	



LBL	accelerators	(T2K	and	NOvA)	are	dominantly	sensi4ve	to	( Δm2 , θ13 , θ23 )  
but	also	probe	δ and	NO	vs	IO,	provided	that	( δm2 , θ12 ) are	fixed	by	solar+KL. 
	

SBL	reactors	(Daya	Bay,	RENO,	Double	Chooz)	are	dominantly	sensi4ve	to	( Δm2 , θ13 )  
and	shrink	the	θ13	range	drama4cally,	with	correlated	effects	on	the	other	parameters		

Atmospheric	ν	searches	(mainly	Super-Kamiokande)	also	contribute	to	probe	and	to	
constrain ( Δm2 , θ13 , θ23  , δ  ) as	well	as	tes4ng	NO	vs	IO.		

Relevant	new	result	(2017-2018):	Hints	for	CPV	and	Normal	Ordering	(NO)	

[	Hereaeer:				Δm2 =  (Δm2
31 + Δm2

32)/2 ]     
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Nσ

Parameter	value

In	the	following	figures:	Typical	bounds	would	be	~linear	and	symmetric		
for	~gaussian	errors	around	the	separate	best	fits	for	both	NO	and	IO.	
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However,	bounds	for	IO	move	upwards	if	one	takes	into	account	that		
currently	NO	gives	the	absolute	best	fit.	Recall:		Nσ = √ Δχ2 = 1, 2, 3...	

Results	from	real	data	à	



The	2	mass2	parameters	and	the	3	mixing	angles	bound	at	>4σ	level.	
Largest	mixing	angle	θ23	close	to	π/4,	but	octant	undetermined	at	1σ.
CP	phase	favored	around	3π/2	(max	CPV	with	sinδ	∼	-1).	
IO	slightly	disfavored	with	respect	to	NO	at	∼1σ	level.	
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Range	of	smallest	mixing	angle	θ13	drama4cally	reduced	
Largest	mixing	angle	θ23	close	to	π/4,	but	octant	undetermined	at	2σ.
Max	CPV	at	∼3π/2	favored	,	CP	conserva4on	disfavored	at	∼2σ in	NO.	
IO	disfavored	with	respect	to	NO	at	∼2σ	level.	
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Further	improvements	for	various	parameters:	1σ	bounds	at	few	%	level	
Largest	mixing	angle	(2-3)	close	to	π/4,	but	octant	undetermined	at	2σ.
CPV:	sinδ	∼ -1	favored,	∼ 0		disfav.,	∼ 	+1	exclud.		Meaningful	bounds	at	~3σ. 	
IO	significantly	disfavored	with	respect	to	NO,	at	~3σ	level	(but:	cau4on!)	
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Understanding	the	accelerator	+	reactor	(+atm.)	impact	on	NO	preference	

NO	

IO	

An4correla4on	due	to	leading	term	
in	appearance	channel	at	accelerators		

BeIer	agreement	with	
reactors	on	y-axis	for	NO	
	

Atmosph.	data	also	
contribute	(but	in	a		
less	intui4ve	way)	

Running	experiments	can	further	corroborate	this	picture	(if	true)		
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Understanding	the	accelerator	+	reactor	(+atm.)	impact	on	CPV	preference	

NO	

IO	

CPV	tested	by	sub	leading	terms	
at	accelerators	(nu-an4nu	difference)		

Reactors	not	sensi4ve	
to	CPV,	but	sharpen	range	

Atmosph.	contribute		
to	test	CPV	(but	in	a		
less	intui4ve	way)	

Running	experiments	can	further	corroborate	this	picture	(if	true)		
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Known	parameters	constrained	at	few	%	level	–	Precision	era!	
“Unknown”	CP	phase	maybe	already	“known”	at	O(10%)	-	if	trend	confirmed	
Drama?c	progress	in	the	last	two	decades	on	the	PMNS	paradigm...	
but	s4ll	a	long	way	to	go	to	reach	CKM-level	accuracy	and	redundance!	
	
Hints	for	nearly	maximal	CPV	and	NO	will	be	at	center	stage	in	next	years	

3ν	oscilla?on	parameters,	circa	2018	



(	mβ	,	mββ	,	Σ	)	

		β	decay,	sensi4ve	to	the	“effec4ve	electron	neutrino	mass”:	

					0νββ	decay:	only	if	Majorana.	“Effec4ve	Majorana	mass”:	

				Cosmology:	Dominantly	sensi4ve	to	sum	of	neutrino	masses:	

Note 1: These observables may provide handles to distinguish NO/IO. 
Note 2: Majorana case gives a new source of  CPV (unconstrained) 
Note 2: The three observables are correlated by oscillation dataà 

3ν paradigm status via non-oscillation searches:  
absolute ν masses and observables 
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Constraints on nonoscillation observables from oscillation data 

mββ	spread due to  

Majorana CP phase(s): 

accessible in principle 

NO								
	IO								

~degenerate for 
  relatively large  
  neutrino masses 
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β	 	:	Mainz+Troitsk 

Σ : CMB+LSS 
0νββ	:	KL-Zen, GERDA, EXO, Cuore... 

Upper limits on mβ,	mββ,	Σ	(up to some syst.) + osc. constraints  

Cosmo data already contribute to put IO “under pressure”. 
     Major improvements expected in the next decade à  

NO								
	IO								
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β	 	:	KATRIN 

Σ : Precision Cosmology 
0νββ	:	Upgraded/New expt. (+ NME) 

Upper limits on mβ,	mββ,	Σ	 in ~10 years ?   

NO								
	IO								

Large phase space for discoveries about ν mass and nature 
(and for possible surprises! E.g., 4ν ?) 



Thank	you	for	your	aben?on.	

EPILOGUE	
	

We	are	s?ll	in	the	middle	of	a	transi?on	from	“unknown”	to	“known”	in ν physics	
Neutrino	CPV,	masses	and	nature	are	at	the	focus	of	worldwide	expt+theo	research						
	Global	analyses	of	oscilla?on	(+	nonoscilla?on)	data	will	con?nue	to	play	a	role	in	
deepening	our	understanding	of	the	3ν	paradigm	or...	hin?ng	at	physics	beyond	it	

	

Neutrinos	will	not	cease	to	amaze	us!		
	


