How robust is a third family of compact stars against pasta phase effects?

Alexander Ayriyan

Division of Computational Physics
Laboratory of Information Technologies Joint Institute for Nuclear Research

124th session of the Scientific Council JINR, Dubna
21.09.2018

The research was carried out under financial support of the Russian Science Foundation (project \#17-12-01427)

Russian Science Foundation Grant

The research was carried out under financial support of the Russian Science Foundation. Project \#17-12-01427 "Matter under extreme conditions in heavy-ion collisions and in neutron stars".
The group:
David Blaschke (PL) (UW \& BLTP \& MEPhI), Yuri Ivanov (Kurchatov Institute \& BLTP),
Dmitry Voskresensky (MEPhI \& BLTP),
Oleg Rogachevsky (VBLHEP), Hovik Grigorian (LIT \& YSU),
Alexander Ayriyan (LIT),
Alexandra Friesen (BLTP),
Sergey Mets (VBLHEP),
Pavel Batyuk (VBLHEP),
Konstantin Maslov (MEPhI \& BLTP)
Collaborators:
David-Edwin Alvarez-Castillo (JINR), Stefan Typel (GSI), Sanjin Benić (Uni. of Zagreb \& Yukawa Inst. for Theor. Phys.), Nobutoshi Yasutake (Chiba Institute of Technology), Vahagn

Motivation

What if we have twins

- Does hybrid neutron star exist?
- Does NS twin exist?
- Does CEP exist on QCD phase diagram?
- etc.

Neutron star mass and radius

The structure and global properties of compact stars are obtained by solving the Tolman-Oppenheimer-Volkoff (TOV) equations ${ }^{1,2, *}$:

$$
\left\{\begin{array}{l}
\frac{d P(r)}{d r}=-\frac{G M(r) \varepsilon(r)}{r^{2}} \frac{\left(1+\frac{P(r)}{\varepsilon(r)}\right)\left(1+\frac{4 \pi r^{3} P(r)}{M(r)}\right)}{\left(1-\frac{2 G M(r)}{r}\right)} \\
\frac{d M(r)}{d r}=4 \pi r^{2} \varepsilon(r)
\end{array}\right.
$$

${ }^{1}$ R. C. Tolman, Phys. Rev. 55, 364 (1939).
${ }^{2}$ J. R. Oppenheimer and G. M. Volkoff, Phys. Rev. 55, 374 (1939).
*Valid for static neutron stars.

Neutron star mass-radius relation

Finite-size effects

Coulomb interaction
 Surface tension
 Requires minimization of the surface smaller ones

slab

The surface tension σ is unknown and used as free parameter.

Yasutake, Maruyama, Tatsumi, Phys. Rev. D80 (2009) 123009

Finite-size effects

It looks like yummy Italian pasta

Credit: N. Yasutake

Mimicking the Pasta phase. The idea

Baryonic chemical potential
Schematic representation of the interpolation function $P_{M}(\mu)$, it has to go though three points: $P_{H}\left(\mu_{H}\right), P_{c}+\Delta P$ and $P_{Q}\left(\mu_{Q}\right)$.

The Replacement Interpolation Method (RIM)

$$
P_{M}(\mu)=\sum_{q=1}^{N} \alpha_{q}\left(\mu-\mu_{c}\right)^{q}+\left(1+\Delta_{P}\right) P_{c}
$$

where Δ_{P} is a free parameter representing additional pressure of the mixed phase at μ_{c}.

$$
\begin{array}{cc}
P_{H}\left(\mu_{H}\right)=P_{M}\left(\mu_{H}\right) & P_{Q}\left(\mu_{Q}\right)=P_{M}\left(\mu_{Q}\right) \\
\frac{\partial^{q}}{\partial \mu^{q}} P_{H}\left(\mu_{H}\right)=\frac{\partial^{q}}{\partial \mu^{q}} P_{M}\left(\mu_{H}\right) & \frac{\partial^{q}}{\partial \mu^{q}} P_{Q}\left(\mu_{Q}\right)=\frac{\partial^{q}}{\partial \mu^{q}} P_{M}\left(\mu_{Q}\right)
\end{array}
$$

where $q=1,2, \ldots, k$. All $N+2$ parameters $\left(\mu_{H}, \mu_{Q}\right.$ and α_{q}, for $q=1, \ldots, N)$ can be found by solving the above system of equations, leaving one parameter (ΔP) as a free one.
A. Ayriyan and H. Grigorian, EPJ Web Conf. 2018, 173, 03003
A. Ayriyan et al. Phys. Rev. C 2018, 97(4), 045802

The Replacement Interpolation Method (RIM)

The squared speed vs chemical potential for the RIM construction with $k=1$ (upper left) $k=2$ (upper right) and $k=3$ (right).

Abgaryan, Alvarez-Castillo, Ayriyan, Blaschke and Grigorian.
Universe 4(9) (2018), 94

The Mixing Interpolation Method (MIM)

$$
\begin{aligned}
& f_{>, L}=\alpha_{L}\left(\frac{\mu-\mu_{H}}{\mu_{Q}-\mu_{H}}\right)^{2}+\beta_{L}\left(\frac{\mu-\mu_{H}}{\mu_{Q}-\mu_{H}}\right)^{3} \\
& f_{<, R}=\alpha_{R}\left(\frac{\mu_{Q}-\mu}{\mu_{Q}-\mu_{H}}\right)^{2}+\beta_{R}\left(\frac{\mu_{Q}-\mu}{\mu_{Q}-\mu_{H}}\right)^{3}
\end{aligned}
$$

D. Alvarez-Castillo and D. Blaschke, EPJA (submitted), arXiv:1807.03258
V. Abgaryan, D. Alvarez-Castillo, A. Ayriyan, D. Blaschke, H. Grigorian, Universe (submitted), arXiv:1807.08034

The Mixing Interpolation Method (MIM)

$$
\begin{gathered}
\Delta(\mu)= \begin{cases}0 & \mu<\mu_{H} \\
g_{L}(\mu) & \mu_{H} \leq \mu \leq \mu_{C} \\
g_{R}(\mu) & \mu_{C} \leq \mu \leq \mu_{Q} \\
0 & \mu>\mu_{Q}\end{cases} \\
g_{L}=\delta_{L}\left(\frac{\mu-\mu_{H}}{\mu_{C}-\mu_{H}}\right)^{2}+\gamma_{L}\left(\frac{\mu-\mu_{H}}{\mu_{C}-\mu_{H}}\right)^{3} \\
g_{R}=\delta_{R}\left(\frac{\mu_{Q}-\mu}{\mu_{Q}-\mu_{C}}\right)^{2}+\gamma_{R}\left(\frac{\mu_{Q}-\mu}{\mu_{Q}-\mu_{C}}\right)^{3}
\end{gathered}
$$

D. Alvarez-Castillo and D. Blaschke, EPJA (submitted), arXiv:1807.03258
V. Abgaryan, D. Alvarez-Castillo, A. Ayriyan, D. Blaschke, H. Grigorian, Universe (submitted), arXiv:1807.08034

The Mixing Interpolation Method (MIM)

$$
\begin{aligned}
\left.f_{\lessgtr, L}(\mu)\right|_{\mu=\mu_{c}} & =\left.f_{\lessgtr, R}(\mu)\right|_{\mu=\mu_{c}}=1 / 2 \\
\left.\frac{\partial f_{S, L}(\mu)}{\partial \mu}\right|_{\mu=\mu_{c}} & =\left.\frac{\partial f_{S, R(\mu)}}{\partial \mu}\right|_{\mu=\mu_{c}} \\
\left.\frac{\partial^{2} f_{S, L}(\mu)}{\partial \mu^{2}}\right|_{\mu=\mu_{c}} & =\left.\frac{\partial^{2} f_{\S, R(\mu)}}{\partial \mu^{2}}\right|_{\mu=\mu_{c}} \\
\left.g_{L}(\mu)\right|_{\mu=\mu_{C}} & =\left.g_{R}(\mu)\right|_{\mu=\mu_{C}}=1 \\
\left.\frac{\partial g_{L}(\mu)}{\partial \mu}\right|_{\mu=\mu_{C}} & =\left.\frac{\partial g_{R}(\mu)}{\partial \mu}\right|_{\mu=\mu_{C}}=0 . \\
\left.\frac{\partial^{2} P}{\partial \mu^{2}}\right|_{\mu=\mu_{H}} & =\left.\frac{\partial^{2} P_{H}}{\partial \mu^{2}}\right|_{\mu=\mu_{H}} \\
\left.\frac{\partial^{2} P}{\partial \mu^{2}}\right|_{\mu=\mu_{Q}} & =\left.\frac{\partial^{2} P_{Q}}{\partial \mu^{2}}\right|_{\mu=\mu_{Q}} .
\end{aligned}
$$

The results of pasta mimicking

The results of pasta effects

Third family robust against additional pressure up to around $\Delta_{P}=5 \%$!

The realistic hadron and quark matter models

The hadron EoS model KVOR with modification of stiffness

Maslov, Kolomeitsev, Voskresensky, Nucl.Phys. A950 (2016)
Kolomeitsev \& Voskresensky, Nuc.
Phys. A 759 (2005)

The quark EoS model SFM with available volume fraction parameter

Kaltenborn, Bastian, Blaschke, Phys. Rev. D 96, 056024 (2017)

Results of mimicking pasta phase

Results of mimicking pasta phase

Comparison with the real pasta

Thank you for your attention!

K. Maslov, N. Yasutake, A. Ayriyan, D. Blaschke, H. Grigorian,
T. Maruyama, T. Tatsumi, D. N. Voskresensky. Hybrid Equation of State with Pasta Phases and Third Family of Compact Stars. In preparation (2018)
V. Abgaryan, D. Alvarez-Castillo, A. Ayriyan, D. Blaschke and
H. Grigorian. Two Novel Approaches to the Hadron-Quark Mixed Phase in Compact Stars. Universe 4(9) (2018), 94
doi 10.3390/universe4090094
A. Ayriyan, N.-U. Bastian, D. Blaschke, H. Grigorian, K. Maslov, and D. N. Vosk- resensky. Robustness of third family solutions for hybrid stars against mixed phase effects. Physical Review C 97 (2018), 045802 doi 10.1103/PhysRevC.97.045802 doi 10.1103/PhysRevC. 97.045802
A. Ayriyan and H. Grigorian. Model of the Phase Transition Mimicking the Pasta Phase in Cold and Dense Quark-Hadron Matter. European Physical Journal WoC (2018), vol. 173, 03003
doi 10.1051/epjconf/201817303003

