
HTC and HPC as a parts of distributed
computing system

Danila Oleynik

HTC AND HPC: WHERE IS DIFFERENCES?
HPC tasks are characterized as needing large amounts of computing power for short periods of time, whereas
HTC tasks also require large amounts of computing, but for much longer times (months and years, rather
than hours and days). HPC environments are often measured in terms of FLOPS.

The HTC community, however, is not concerned about operations per second, but rather operations per month
or per year. Therefore, the HTC field is more interested in how many jobs can be completed over a long period
of time instead of how fast an individual job can complete.

As an alternative definition, the European Grid Infrastructure defines HTC as “a computing paradigm that
focuses on the efficient execution of a large number of loosely-coupled tasks”, while HPC systems tend to
focus on tightly coupled parallel jobs, and as such they must execute within a particular site with low-latency
interconnects. Conversely, HTC systems are independent, sequential jobs that can be individually scheduled
on many different computing resources across multiple administrative boundaries. HTC systems achieve this
using various grid computing technologies and techniques.

HTC: GRID COMPUTING

➤ Grid computing is the collection of computer resources from multiple locations to reach a common
goal. The grid can be thought of as a distributed system with non-interactive workloads that
involve a large number of files. Grid computing is distinguished from conventional high
performance computing systems such as cluster computing in that grid computers have each node set
to perform a different task/application.

Security context grid site 1
CE

SE

grid site 2

CE

grid site N

CE

SE

User Interface
(UI)

Job 1

Job 2

Job 3

Information
system

Broker

Scheduler

Data
Management

GRID SITE

Security context

GRID site
Computing element

Storage element

WN
WN
WN
WN
WN
WN
WN

LRMS /
Butch

system

LAN

User interface Jobs

Storage
system(s)

External
storage

Data

HPC (SUPERCOMPUTERS)
➤ A supercomputer is a computer with a high-

level computational capacity compared to a
general-purpose computer. Performance of a
supercomputer is measured in floating-point
operations per second (FLOPS) instead of
million instructions per second (MIPS).
Supercomputers which can perform up to
(hundreds of) quadrillions of FLOPS already
existed and we are on the way to quintillion of
FLOPS (ExaFLOP).

Common security context (multi layer)

HPC

HPC

Interactive node
(Login node)

Job
scheduler

Shared File system

Multicore CN
Multicore CN
Multicore CN
Multicore CN

High speed internal network

Multicore CN
Multicore CN
Multicore CN

Multicore CN

Multicore CN
Multicore CN
Multicore CN
Multicore CN
Multicore CN

SIMILAR SCHEMAS?
Common security context (multi layer)

HPC

HPC

Interactive node
(Login node)

Job
scheduler

Shared File system

Multicore CN
Multicore CN
Multicore CN
Multicore CN

High speed internal network

Multicore CN
Multicore CN
Multicore CN

Multicore CN

Multicore CN
Multicore CN
Multicore CN
Multicore CN
Multicore CN

Security context

GRID site
Computing element

Storage element

WN
WN
WN
WN
WN
WN
WN

LRMS /
Butch

system

LAN

User interface Jobs

Storage
system(s)

External
storage

Data

But very different policies…
➤ GRID Sites - hetorogenuose architectures, with static size of job slot
➤ HPC - homogenous architecture with dynamic size of job slot

The mission of the WLCG project is to provide global computing resources to store,
distribute and analyse petabytes of data annually generated by the Large Hadron
Collider (LHC) at CERN

WLCG

The Worldwide LHC Computing Grid (WLCG) project is a global collaboration of
more than 170 computing centers in 42 countries, linking up national and
international grid infrastructures.

The Large Hadron Collider (LHC) is the world’s largest and
most powerful particle accelerator. It first started up on 10
September 2008, and remains the latest addition to CERN’s
accelerator complex.

WLCG

42 countries
170 computing centres
2 million tasks run every day
800,000 computer cores
500 petabytes on disk and 400 petabytes on tape

Titan System Configuration
Architecture: Cray XK7

Processor: 16-Core AMD
Cabinets: 200
Nodes: 18,688 AMD Opterons

Cores/node: 16
Total cores: 299,008 Opteron Cores

Memory/node: 32GB + 6GB
Memory/core: 2GB
Interconnect: Gemini

GPUs: 18,688 K20X Keplers
Speed: 27 PF

Square Footage 4,352 sq feet

2018 #7
2017 #4
2016 #3
2015 #2
2014 #2
2013 #2
2012 #1

RMAX (TFLOP/S) RPEAK (TFLOP/S)

17173.2 20132.7

THE ATLAS EXPERIMENT AT THE LHC

The ATLAS Detector

Diameter: 25 m
Length: 46 m

Barrel toroid 26 m
Overall weight: 7000 tonnes
~ 100 million electronic channels

~ 3 000 km of cables

THE ATLAS EXPERIMENT AT THE LHC

3000 scientists

38 countries

174 universities and

GRID production for ATLAS

BIG DATA: OFTEN JUST A BUZZ WORD, BUT NOT WHEN IT COMES TO ATLAS…

Current ATLAS data set,
considering all data

products and replicas

>400 PB

PanDA
The PanDA Production ANd Distributed Analysis system has been developed by ATLAS
since summer 2005 to meet ATLAS requirements for a data-driven workload management
system for production and distributed analysis processing capable of operating at LHC
data processing scale. ATLAS processing and analysis places challenging requirements on
throughput, scalability, robustness, efficient resource utilization, minimal operations
manpower, and tight integration of data management with processing workflow.

PanDA throughput has been rising continuously over the years. In 2009, a typical PanDA
processing rate was 50k jobs/day and 14k CPU wall-time hours/day for production at
100 sites around the world, and 3-5k jobs/day for analysis. In 2017, PanDA processes
about a 1,2M jobs per day, with about 120,000 jobs running at any given time. The
PanDA analysis user community numbers over 1400.

PanDA
PanDA Pilot - the execution environment (effectively a wrapper) for PanDA jobs.
Pilots request and receive job payloads from the dispatcher, perform setup and
cleanup work surrounding the job, and run the jobs themselves, regularly reporting
status to PanDA during execution

The interest in PanDA by other big
data sciences brought the primary
motivation to generalize PanDA,
aka the BigPanDA project,
providing location transparency of
processing and data management,
for High Energy Physics community
and other data-intensive sciences,
and a wider exascale community.

LHC UPGRADE 2019-2021. COMPUTING NEEDS

➤ CPU needs (per event) will grow with
track multiplicity (pileup) and energy

➤ Storage needs are proportional to
accumulated luminosity

➤ Grid resources are limited by funding
and fully utilized

➤ Highly restricted access. One-time password interactive authentication

➤ No portals, gatekeepers. Pilot needs to run on Titan’s interactive nodes

➤ No network connectivity from worker nodes to the outside world

➤ Pilot can not run on worker nodes, needs a new mechanism for batch workload management

➤ Limit on number of submitted jobs in batch queue per user and limit on number of running jobs per user

➤ Sequential submissions of single node jobs is not an option

➤ Have to use MPI in some form!

➤ Specialized OS (SUSE based CNL) and software stack

➤ Highly competitive time allocation. Geared toward leadership class projects and very big jobs

➤ Creates opportunity for backfill

«BACKFILL»
➤ Typical LCF facility is ran on average at ~90% occupancy

➤ Necessary outcome of prioritizing large jobs execution

➤ On a machine of the scale of Titan that translates into ~400M unused core hours per year

➤ Anything that helps to improve this number consistent with LCF mission is very useful

➤ PanDA Pilot was instrumented with capability to collect, in near real time, information about current free
resources on Titan

➤ Both number of free worker nodes and time of their availability

➤ Based on that information Pilot can define job submission parameters when forming PBS script for Titan, thus
tailoring the submission to the available resource.

➤ Takes into account Titan’s scheduling policies

➤ Can also take into account other limitations, such as workload output size, etc

➤ Modular architecture, adaptable to other HPC facilities

PanDA integration with Titan

PanDAClient

Pilot

Job

GRID WN

GRID Behavior
PanDAClient

HPC Behavior

HPC

Pilot

 WNs

Job Job Job

HPC
Interactive node

Job
scheduler

PanDA
Edge service

Shared FS / HPC Scratch

PanDA
Server

Jobs (HTTPS)

DataExternal
Storage

BigPanDA
Monitoring

Multicore WN
Multicore WN
Multicore WN
Multicore WN

SW deployed software

Multicore WN
Multicore WN
Multicore WN

Multicore WN

Multicore WN
Multicore WN
Multicore WN
Multicore WN
Multicore WNTransfers control

APF

PanDA

Jobs (HTTPS)

Data

Storage

WN

ATLAS SW
(CVMFS)

Pilot

Jobs (HTTPS)

Data

WN

ATLAS SW
(CVMFS)

Pilot

PanDA integration with Titan

Oak Ridge LCF Multicore WN
Multicore WNPanDA server

Interactive node

"Pilot's
launcher"

x509

LRMS

PBS/
TORQUE

BigPanDA
Monitoring

Titan queue
Multicore WN
Multicore WN

Shared FS. Luster. (Input - output data)

PanDA
 Jobs

Read-only NFS (HEP SW deployment: ROOT, ATHENA etc.)

MPI Job

Multicore WN
Multicore WN
Multicore WN
Multicore WN
Multicore WN
Multicore WN
Multicore WN
Multicore WN
Multicore WN
Multicore WN

Moab

PilotPilotPilot

runJobTitan

Backfill
info

DataExternal
Storage

Data control

Backfill consumption on Titan
N

od
es

0
400
800

1200
1600
2000
2400
2800
3200
3600
4000
4400
4800
5200
5600
6000
6400
6800
7200
7600
8000
8400
8800
9200
9600

10000
10400
10800
11200
11600
12000
12400
12800
13200
13600
14000

10
.0

5.
20

17
 0

0:
01

:2
6

10
.0

5.
20

17
 0

2:
09

:3
4

10
.0

5.
20

17
 0

4:
22

:2
6

10
.0

5.
20

17
 0

6:
37

:3
6

10
.0

5.
20

17
 0

8:
43

:0
2

10
.0

5.
20

17
 1

0:
48

:3
5

10
.0

5.
20

17
 1

2:
54

:2
6

10
.0

5.
20

17
 1

5:
03

:3
7

10
.0

5.
20

17
 1

7:
24

:2
9

10
.0

5.
20

17
 1

9:
30

:2
1

10
.0

5.
20

17
 2

1:
36

:2
4

10
.0

5.
20

17
 2

3:
44

:5
2

11
.0

5.
20

17
 0

1:
54

:1
9

11
.0

5.
20

17
 0

4:
57

:4
9

11
.0

5.
20

17
 0

7:
00

:3
7

11
.0

5.
20

17
 0

9:
11

:2
0

11
.0

5.
20

17
 1

1:
18

:1
1

11
.0

5.
20

17
 1

3:
21

:2
0

11
.0

5.
20

17
 1

5:
30

:5
7

11
.0

5.
20

17
 1

7:
45

:1
1

11
.0

5.
20

17
 1

9:
43

:2
4

11
.0

5.
20

17
 2

1:
50

:3
4

11
.0

5.
20

17
 2

3:
58

:2
0

12
.0

5.
20

17
 0

1:
59

:4
7

12
.0

5.
20

17
 0

4:
08

:3
3

12
.0

5.
20

17
 0

6:
14

:2
0

12
.0

5.
20

17
 0

8:
20

:5
8

12
.0

5.
20

17
 1

0:
27

:4
7

12
.0

5.
20

17
 1

2:
29

:4
2

12
.0

5.
20

17
 1

4:
33

:4
3

12
.0

5.
20

17
 1

6:
37

:3
2

12
.0

5.
20

17
 1

8:
44

:1
2

12
.0

5.
20

17
 2

0:
46

:4
1

12
.0

5.
20

17
 2

2:
51

:1
1

13
.0

5.
20

17
 0

0:
54

:3
9

13
.0

5.
20

17
 0

3:
03

:0
8

13
.0

5.
20

17
 0

5:
10

:3
8

13
.0

5.
20

17
 0

7:
11

:3
3

13
.0

5.
20

17
 0

9:
21

:2
4

13
.0

5.
20

17
 1

1:
27

:0
9

13
.0

5.
20

17
 1

3:
38

:0
1

13
.0

5.
20

17
 1

5:
47

:5
1

13
.0

5.
20

17
 1

7:
57

:2
6

13
.0

5.
20

17
 2

0:
03

:0
5

13
.0

5.
20

17
 2

2:
10

:1
7

14
.0

5.
20

17
 0

0:
14

:2
0

14
.0

5.
20

17
 0

2:
22

:1
9

14
.0

5.
20

17
 0

4:
27

:2
8

14
.0

5.
20

17
 0

6:
32

:4
7

14
.0

5.
20

17
 0

8:
38

:4
0

14
.0

5.
20

17
 1

0:
47

:4
5

14
.0

5.
20

17
 1

2:
52

:1
8

14
.0

5.
20

17
 1

5:
02

:5
0

14
.0

5.
20

17
 1

7:
39

:4
8

14
.0

5.
20

17
 2

0:
22

:0
9

14
.0

5.
20

17
 2

2:
25

:1
2

15
.0

5.
20

17
 0

1:
09

:3
2

15
.0

5.
20

17
 0

3:
55

:0
3

15
.0

5.
20

17
 0

6:
10

:2
0

15
.0

5.
20

17
 0

8:
18

:1
3

15
.0

5.
20

17
 1

0:
48

:4
2

15
.0

5.
20

17
 1

3:
19

:1
2

15
.0

5.
20

17
 1

5:
42

:4
3

15
.0

5.
20

17
 1

8:
01

:3
6

15
.0

5.
20

17
 2

0:
04

:3
7

15
.0

5.
20

17
 2

2:
31

:2
6

16
.0

5.
20

17
 0

0:
48

:0
4

16
.0

5.
20

17
 0

2:
55

:1
3

16
.0

5.
20

17
 0

5:
04

:3
3

16
.0

5.
20

17
 0

7:
15

:4
6

16
.0

5.
20

17
 0

9:
57

:5
8

16
.0

5.
20

17
 1

2:
19

:3
9

16
.0

5.
20

17
 1

4:
30

:5
7

16
.0

5.
20

17
 1

6:
36

:2
9

16
.0

5.
20

17
 1

8:
42

:0
0

16
.0

5.
20

17
 2

0:
41

:3
5

16
.0

5.
20

17
 2

2:
50

:1
9

17
.0

5.
20

17
 0

0:
49

:4
4

17
.0

5.
20

17
 0

3:
40

:1
4

17
.0

5.
20

17
 0

6:
06

:4
5

17
.0

5.
20

17
 0

8:
15

:0
4

17
.0

5.
20

17
 1

0:
19

:2
4

Used by ATLAS jobs (CSC108) Backfill Unusable due to short period of availability

ISSUES
➤ Why we limit with low maximum number PanDA jobs per chunk?

➤ StageIn and StageOut consecutive operations and for big amount of jobs may
increase loading to data transfers infrastructure. During this operations some
backfill resources will be missed

➤ Architecture of Pilot was not designed to server multiply simultaneous jobs at
nutshell

➤ Design of Pilot core was done at the begging of project and did not had major
changes in decades

ISSUES

N
od

es

0
1400
2800
4200
5600
7000
8400
9800

11200
12600
14000 CSC108 Backfill Unusable

N
um

be
r o

f p
ilo

ts

0
4
8

12
16
20
24
28
32
36
40

25
.1

0.
20

16
 0

0:
12

:5
1

25
.1

0.
20

16
 0

0:
37

:5
9

25
.1

0.
20

16
 0

1:
00

:4
8

25
.1

0.
20

16
 0

1:
23

:4
0

25
.1

0.
20

16
 0

1:
48

:5
5

25
.1

0.
20

16
 0

2:
10

:5
3

25
.1

0.
20

16
 0

2:
35

:2
6

25
.1

0.
20

16
 0

2:
59

:1
4

25
.1

0.
20

16
 0

3:
23

:0
4

25
.1

0.
20

16
 0

3:
46

:5
3

25
.1

0.
20

16
 0

4:
09

:1
7

25
.1

0.
20

16
 0

4:
32

:3
7

25
.1

0.
20

16
 0

4:
55

:3
2

25
.1

0.
20

16
 0

5:
17

:5
2

25
.1

0.
20

16
 0

5:
42

:1
9

25
.1

0.
20

16
 0

6:
05

:3
2

25
.1

0.
20

16
 0

6:
31

:2
3

25
.1

0.
20

16
 0

6:
53

:4
8

25
.1

0.
20

16
 0

7:
15

:5
7

25
.1

0.
20

16
 0

7:
38

:4
2

25
.1

0.
20

16
 0

8:
04

:1
4

25
.1

0.
20

16
 0

8:
27

:0
6

25
.1

0.
20

16
 0

8:
47

:3
3

25
.1

0.
20

16
 0

9:
08

:5
6

25
.1

0.
20

16
 0

9:
32

:5
1

25
.1

0.
20

16
 0

9:
55

:5
3

25
.1

0.
20

16
 1

0:
19

:4
6

25
.1

0.
20

16
 1

0:
43

:3
9

25
.1

0.
20

16
 1

1:
07

:1
5

25
.1

0.
20

16
 1

1:
31

:2
1

25
.1

0.
20

16
 1

1:
54

:2
0

25
.1

0.
20

16
 1

2:
16

:3
7

25
.1

0.
20

16
 1

2:
42

:4
4

25
.1

0.
20

16
 1

3:
03

:2
2

25
.1

0.
20

16
 1

3:
27

:0
1

25
.1

0.
20

16
 1

3:
48

:5
1

25
.1

0.
20

16
 1

4:
10

:3
9

25
.1

0.
20

16
 1

4:
32

:4
5

25
.1

0.
20

16
 1

4:
53

:1
9

25
.1

0.
20

16
 1

5:
17

:0
3

25
.1

0.
20

16
 1

5:
39

:1
7

25
.1

0.
20

16
 1

6:
03

:2
8

25
.1

0.
20

16
 1

6:
29

:4
1

25
.1

0.
20

16
 1

6:
54

:0
5

25
.1

0.
20

16
 1

7:
17

:0
8

25
.1

0.
20

16
 1

7:
41

:1
4

25
.1

0.
20

16
 1

8:
01

:5
6

25
.1

0.
20

16
 1

8:
23

:4
1

25
.1

0.
20

16
 1

8:
45

:3
1

25
.1

0.
20

16
 1

9:
06

:0
6

25
.1

0.
20

16
 1

9:
32

:2
4

25
.1

0.
20

16
 1

9:
55

:3
0

25
.1

0.
20

16
 2

0:
17

:0
2

25
.1

0.
20

16
 2

0:
41

:2
7

25
.1

0.
20

16
 2

1:
02

:0
1

25
.1

0.
20

16
 2

1:
24

:0
7

25
.1

0.
20

16
 2

1:
45

:5
2

25
.1

0.
20

16
 2

2:
12

:4
5

25
.1

0.
20

16
 2

2:
36

:5
8

25
.1

0.
20

16
 2

3:
00

:5
6

25
.1

0.
20

16
 2

3:
25

:1
7

25
.1

0.
20

16
 2

3:
49

:3
4

of active jobs # Stage-out pilots

EVALUATION OF PANDA: PILOT 2.0
➤ Pilot 2.0 Motivation:

➤ Some of the Pilot 1.0 code base is getting a bit too old and is difficult to maintain

➤ Refactoring is a slow process that has already been going on for years and does
not always have highest priority

➤ New features/workflows are often challenging to implement/support

➤ “Complete” rewrite

➤ Getting rid of all legacy code and outdated mechanisms

➤ Rethink of basic pilot flow

➤ New PanDA Pilot Project launched in April 2016

EVALUATION OF PANDA: HARVESTER
➤ Motivation for Harvester

➤ PanDA currently relies on server-pilot paradigm

➤ PanDA server maintains state and manages workflows with various granularities, such as task, job,
and event – Pilots are job-centric and independently run on worker nodes with limited view of local
resource

➤ Works well for the grid with 250k cores 24x7 as underlying resources are not very heterogeneous

➤ But missing capability to dynamically optimize resource allocation among differences of architectures
(limitations by number of cores, amount of RAM per core, limitations of wall time etc.)

➤ Not very well for HPC or large-scale clouds

➤ Each HPC has a different edge service and operational policy, leading to over-stretched pilot
architecture and incoherence in implementation at different HPCs

➤ PanDA itself has no means of managing and monitoring cloud utilization by using native cloud API
which is far more optimal than that of an intermediate service like condor

Harvester and Pilot 2.0 on Titan

HPC Multicore WN
PanDA server

Interactive node

LRMS

Scheduler

BigPanDA
Monitoring

PanDA queue
Multicore WN

Shared FS. Luster. (Input - output data)

PanDA
 Jobs

HEP SW: ROOT, ATHENA (container)

Multicore WN

Multicore WN

Multicore WN

Multicore WN

Multicore WN

Harvester

DataExternal
Storage

Input data control

Worker maker

Submitter

Preparator

Stager

Output data control

Monitor

Sweeper

SQLite
DB

FileMessenger

Pilot 2.0
Payload

Pilot 2.0
Payload

Pilot 2.0
Payload

Pilot 2.0
Payload

Pilot 2.0
Payload

Pilot 2.0
Payload

Pilot 2.0
Payload

Resources consumption on Titan with Harvester

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

200000

220000

240000

260000

280000

300000
01

.0
6.

20
18

 0
0:

04
:1

5
01

.0
6.

20
18

 0
3:

53
:1

6
01

.0
6.

20
18

 0
7:

32
:5

3
01

.0
6.

20
18

 1
1:

39
:5

7
01

.0
6.

20
18

 1
5:

19
:5

6
01

.0
6.

20
18

 1
8:

51
:0

9
01

.0
6.

20
18

 2
2:

34
:5

5
02

.0
6.

20
18

 0
2:

25
:1

0
02

.0
6.

20
18

 0
5:

58
:4

5
02

.0
6.

20
18

 0
9:

42
:3

7
02

.0
6.

20
18

 1
3:

17
:1

1
02

.0
6.

20
18

 1
6:

55
:1

0
02

.0
6.

20
18

 2
0:

38
:1

7
03

.0
6.

20
18

 0
0:

19
:2

6
03

.0
6.

20
18

 0
4:

05
:0

1
03

.0
6.

20
18

 0
7:

43
:4

9
03

.0
6.

20
18

 1
1:

28
:0

2
03

.0
6.

20
18

 1
5:

15
:4

9
03

.0
6.

20
18

 1
8:

54
:4

4
03

.0
6.

20
18

 2
2:

34
:1

7
04

.0
6.

20
18

 0
2:

11
:5

6
04

.0
6.

20
18

 0
5:

49
:4

9
04

.0
6.

20
18

 0
9:

28
:1

5
04

.0
6.

20
18

 1
3:

08
:5

2
04

.0
6.

20
18

 1
6:

46
:2

7
04

.0
6.

20
18

 2
0:

21
:4

2
04

.0
6.

20
18

 2
3:

59
:2

8
05

.0
6.

20
18

 0
3:

39
:5

1
05

.0
6.

20
18

 0
7:

24
:4

2
05

.0
6.

20
18

 1
0:

49
:5

1
05

.0
6.

20
18

 1
4:

30
:2

7
05

.0
6.

20
18

 1
8:

13
:2

5
05

.0
6.

20
18

 2
2:

00
:4

1
06

.0
6.

20
18

 0
1:

42
:4

5
06

.0
6.

20
18

 0
5:

14
:5

5
06

.0
6.

20
18

 0
8:

52
:5

2
06

.0
6.

20
18

 1
2:

31
:4

7
06

.0
6.

20
18

 1
6:

20
:1

3
06

.0
6.

20
18

 2
0:

04
:0

0
06

.0
6.

20
18

 2
3:

55
:3

8
07

.0
6.

20
18

 0
3:

33
:4

4
07

.0
6.

20
18

 0
7:

10
:1

1
07

.0
6.

20
18

 1
0:

53
:0

9
07

.0
6.

20
18

 1
4:

33
:1

7
07

.0
6.

20
18

 1
8:

05
:5

5
07

.0
6.

20
18

 2
1:

41
:0

0
08

.0
6.

20
18

 0
1:

25
:3

6
08

.0
6.

20
18

 0
5:

02
:1

7
08

.0
6.

20
18

 0
8:

44
:3

1
08

.0
6.

20
18

 1
2:

27
:4

5
08

.0
6.

20
18

 1
6:

04
:1

5
08

.0
6.

20
18

 1
9:

40
:0

4
08

.0
6.

20
18

 2
3:

20
:4

7
09

.0
6.

20
18

 0
2:

58
:0

2
09

.0
6.

20
18

 0
6:

55
:5

4
09

.0
6.

20
18

 1
0:

31
:0

3
09

.0
6.

20
18

 1
4:

15
:2

9
09

.0
6.

20
18

 1
7:

51
:1

0
09

.0
6.

20
18

 2
1:

30
:4

6
10

.0
6.

20
18

 0
1:

04
:2

6
10

.0
6.

20
18

 0
4:

48
:1

4
10

.0
6.

20
18

 0
8:

31
:3

6
10

.0
6.

20
18

 1
2:

17
:4

1
10

.0
6.

20
18

 1
5:

56
:5

4
10

.0
6.

20
18

 1
9:

27
:4

3
10

.0
6.

20
18

 2
3:

08
:0

4
11

.0
6.

20
18

 0
2:

57
:4

6
11

.0
6.

20
18

 0
6:

31
:0

1
11

.0
6.

20
18

 1
0:

07
:0

8
11

.0
6.

20
18

 1
4:

00
:4

6
11

.0
6.

20
18

 1
7:

41
:0

8
11

.0
6.

20
18

 2
1:

15
:0

4
12

.0
6.

20
18

 0
0:

58
:1

4
12

.0
6.

20
18

 0
4:

33
:2

2
12

.0
6.

20
18

 0
8:

09
:2

4
12

.0
6.

20
18

 1
1:

57
:0

7
12

.0
6.

20
18

 1
5:

30
:4

1
12

.0
6.

20
18

 1
9:

06
:1

1
12

.0
6.

20
18

 2
2:

48
:4

2
13

.0
6.

20
18

 0
2:

36
:4

6
13

.0
6.

20
18

 0
6:

16
:5

9
13

.0
6.

20
18

 0
9:

56
:5

7
13

.0
6.

20
18

 1
3:

41
:0

5
13

.0
6.

20
18

 1
7:

30
:2

8
13

.0
6.

20
18

 2
1:

17
:4

4
14

.0
6.

20
18

 0
0:

56
:1

7
14

.0
6.

20
18

 0
4:

37
:0

9

ATLAS
Backfill
Unusable (short period of availability)

ACHIEVEMENTS

0

5 000 000

10 000 000

15 000 000

20 000 000

25 000 000

30 000 000

35 000 000

40 000 000

45 000 000

50 000 000

Nov 16 Dec 16 Jan 17 Feb 17 Mar 17 Apr 17 May 17 Jun 17 Jul 17 Aug 17 Sep 17 Oct 17 Nov 17 Dec 17 Jan 18 Feb 18 Mar 18 Apr 18 May 18 Jun 18 Jul 18 Aug 18

Titan CPU Hours (backfill)
Titan CPU Hours (ALCC)

>300M Titan core hours in a year
~8M PanDA jobs competed in a year

PLANS: №1
➤ Summit, an IBM-built supercomputer now running at the Department of Energy’s (DOE) Oak Ridge

National Laboratory (ORNL), captured the number one spot with a performance of 122.3 petaflops on
High Performance Linpack (HPL), the benchmark used to rank the TOP500 list. Summit has 4,356
nodes, each one equipped with two 22-core Power9 CPUs, and six NVIDIA Tesla V100 GPUs. The
nodes are linked together with a Mellanox dual-rail EDR InfiniBand network.

Processor (2 per node): IBM POWER9™

GPUs (6 per node): NVIDIA Volta

Nodes: 4,608

Node Performance: 42TF

Memory/node: 512GB DDR4 + 96GB HBM2

NV Memory/node: 1600GB

Total System Memory: >10PB DDR4 + HBM + Non-volatile

Interconnect Topology: Mellanox EDR 100G InfiniBand, Non-blocking Fat Tree

Peak Power Consumption: 13MW

BACKUP SLIDES

FREE LAUNCH OVER TEN YEARS AGO

SLOTS FROM HPC

