New Bayesian analysis of hybrid EoS constraints with mass-radius data for CS

Alexander Ayriyan

Laboratory of Information Technologies Joint Institute for Nuclear Research

June 8, 2015

What if we have twins

Important questions

- Does hybrid neutron star exist?
- Does CEP exist on QCD phase diagram?

Existence of CEP at the QCD Phase Diagram

Topic for discussion!

Observational Constraints

Mass and Radius Constraints

Radius and maximum mass constraints are given from PSR J0437-4715 (Bogdanov. Ast. J. 762, 96) and PSR J0348+0432 (Antoniadis et al. Sci. 340, 6131) correspondingly.

Observational constraints
Parameterization of HEoS
Bayesian Analysis
Results
Conclusions

Observational Constraints

Gravitational Binding Energy Constraint

A constraint on the gravitational binding energy is taken from the neutron star B in the binary system J0737-3039 (B).

Observational Constraints

Three Statistically Independent Constraints

- A radius constraint from the nearest millisecond pulsar PSR J0437-4715 [S. Bogdanov. Astrophys. J. 762, 96 (2013)].
- A maximum mass constraint from PSR J0348+0432 [J. Antoniadis et al. Science 340, 6131 (2013)].
- A constraint on the gravitational binding energy from the neutron star B in the binary system PSR J0737-3039 (B) [F. Kitaura et al. A. \& A. 450, 345 (2006)].

EoS Parametrization

AHP scheme of hybrid EoS

$$
\begin{aligned}
& p(\epsilon)=p^{\prime}(\epsilon) \Theta\left(\epsilon_{c}^{\prime}-\epsilon\right)+p^{\prime}\left(\epsilon_{c}^{\prime}\right) \Theta\left(\epsilon-\epsilon_{c}^{\prime}\right) \Theta\left(\epsilon_{c}^{\prime}-\epsilon+\Delta \epsilon\right)+ \\
& p^{\prime \prime}(\epsilon) \Theta\left(\epsilon-\epsilon_{c}^{\prime}-\Delta \epsilon\right),
\end{aligned}
$$

where $p^{\prime}(\epsilon)$ is given by a pure hadronic EoS, and $p^{\prime \prime}(\epsilon)$ represents the high density matter introduced here as quark matter given in the bag-like form.

Bag-Like Form of QM EoS

$p^{\prime \prime}(\epsilon)=c_{Q M}^{2} \epsilon-B$,
where $c_{Q M}^{2}$ is the squared speed of sound in quark matter and B is the bag constant.

Observational constraints
Parameterization of HEoS
Bayesian Analysis
Results
Conclusions

EoS Parametrization

AHP scheme of hybrid EoS

EoS Parametrization

Hybrid EoS Pareameters

Vector of Parameters

For the BA, we have to sample the above defined parameter space and to that end we introduce a vector of the parameter values:

$$
\pi_{i}=\vec{\pi}\left(\epsilon_{c}(k), \gamma(I), c_{\mathrm{QM}}^{2}(m)\right)
$$

$$
i=1 \ldots N \text { (here } N=\prod_{q=1}^{3} N_{q} \text {) and } i=N_{1} \times N_{2} \times k+N_{2} \times I+m
$$

$$
\begin{aligned}
& 400 \leq \epsilon_{C}\left[\mathrm{MeVfm}^{-3}\right] \leq 1000: \epsilon_{C}(k) \quad k=1 \ldots N_{1}=10 \\
& 0 \leq \gamma=\frac{\Delta \epsilon}{\epsilon_{c}} \leq 1 \quad: \quad \gamma(I) \quad I=1 \ldots N_{2}=10 \\
& 0.3 \leq c_{Q M}^{\epsilon_{C}} \leq 1 \quad: \quad c_{Q M}^{2}(m) \quad m=1 \ldots N_{3}=10
\end{aligned}
$$

EoS Parametrization

Maxwell construction of hybrid EoS

(A) $p(\mu)$ functions.

(B) $p(\epsilon)$ functions.

EoS Parametrization

Maxwell Construction of hybrid EoS

$\mu_{H}=\mu_{Q}=\mu$ and $p_{H}(\mu)=p_{Q}(\mu)$,
where $p_{H}(\mu)$ is DD2 and $p_{Q}(\mu)$ is NJL8 quark EoS (here $\eta_{2}=0.03$).

Hybrid EoS Pareameters

$0 \leq \eta_{4} \leq 20: \eta_{4}(i) \quad i=0 \ldots N=21$

Vector of Parameters

For the BA, vector of parameters is defined as following: $\pi_{i}=\vec{\pi}\left(\eta_{4}(i)\right), i=1 \ldots N$.

Qualification of the EoS models from Observation

Goal of the BA

To find posterior probabilities of the set of π_{i} taking into account the observational constraints.

Unification of priori probabilities
$P\left(\pi_{i}\right)=1$ for $\forall i$.

Calculation of Probabilities

Probability of Corresponding to Radius Constraint for π_{i}

$P\left(E_{B} \mid \pi_{i}\right)=\Phi\left(R_{i}, \mu_{B}, \sigma_{B}\right)$, here R_{i} is max radius given by π_{i}. $\mu_{B}=15.5 \mathrm{~km}$ and $\sigma_{B}=1.5 \mathrm{~km}$ [?].

Calculation of Probabilities

Probability of Corresponding to Mass Constraint for π_{i}

$P\left(E_{A} \mid \pi_{i}\right)=\Phi\left(M_{i}, \mu_{A}, \sigma_{A}\right)$, here M_{i} is max mass given by π_{i}. $\mu_{A}=2.01 \mathrm{M}_{\odot}$ and $\sigma_{A}=0.04 \mathrm{M}_{\odot}[?]$.

Calculation of Probabilities

Probability of Corresponding to $M-M_{B}$ Constraint for π_{i}

We need to estimate the probability for the closeness of a theoretical point $M_{i}=\left(M_{i}, M_{B i}\right)$ to the observed point $\mu_{K}=\left(\mu_{G}, \mu_{B}\right)$. The required probability can be calculated using the following formula

$$
P\left(E_{K} \mid \pi_{i}\right)=\left[\Phi\left(\xi_{G}\right)-\Phi\left(-\xi_{G}\right)\right] \cdot\left[\Phi\left(\xi_{B}\right)-\Phi\left(-\xi_{B}\right)\right]
$$

where $\Phi(x)=\Phi(x, 0,1), \xi_{G}=\sigma_{M_{G}} / d_{M_{G}}$ and $\xi_{B}=\sigma_{M_{B}} / d_{M_{B}}$, with $d_{M_{G}}$ and $d_{M_{B}}$ being the absolute values of components of the vector $\mathbf{d}_{\mathrm{i}}=\mu-\mathbf{M}_{i}$, where $\mu_{\mathbf{B}}=\left(\mu_{G}, \mu_{B}\right)^{T}$ is given in

Calculation of Probabilities

Probability of $M-M_{B}$ for π_{i}

Calculation of Probabilities

Probability of All Constraints for π_{i}

Taking to the account assumption that these measurements are independent on each other we can calculate complete conditional probability:

$$
P\left(E \mid \pi_{i}\right)=P\left(E_{A} \mid \pi_{i}\right) \times P\left(E_{B} \mid \pi_{i}\right) \times P\left(E_{K} \mid \pi_{i}\right)
$$

Calculation of a posteriori Probabilities of π_{i}
Now, we can calculate posterior probability of π_{i} :

$$
P\left(\pi_{i} \mid E\right)=\frac{P\left(E \mid \pi_{i}\right) P\left(\pi_{i}\right)}{\sum_{j=0}^{N-1} P\left(E \mid \pi_{j}\right) P\left(\pi_{j}\right)}
$$

Observational constraints Parameterization of HEoS Bayesian Analysis Results
Conclusions

Results for AHP EoS models with APR Results for AHP EoS models with DD2
Fictitious radius measurements
APR with fictitious radius measurements DD2 with fictitious radius measurements

0.0000

Bayesian analysis of the AHP HEoS models based on pure APR.

Observational constraints Parameterization of HEoS Bayesian Analysis Results Conclusions

Results for AHP EoS models with APR Results for AHP EoS models with DD2
Fictitious radius measurements
APR with fictitious radius measurements
DD2 with fictitious radius measurements

BA of AHP HEoS models with excluded volume APR.

Observational constraints Parameterization of HEoS Bayesian Analysis Results Conclusions

Results for AHP EoS models with APR Results for AHP EoS models with DD2
Fictitious radius measurements
APR with fictitious radius measurements
DD2 with fictitious radius measurements

BA of AHP HEoS models based on pure DD2.

Observational constraints Parameterization of HEoS Bayesian Analysis Results Conclusions

Results for AHP EoS models with APR Results for AHP EoS models with DD2 Fictitious radius measurements
APR with fictitious radius measurements DD2 with fictitious radius measurements

BA of AHP HEoS models with excluded volume DD2, $n_{c p}=0.9 \mathrm{fm}^{-3}$.
"Now let us travel into future. It is year 2017, some new, reliable NS radius measurement methods are discovered and were used to find the size of two most massive pulsars, which still are PSR J0348+0432 and PSR J1614-2230. The community was shocked when received the results of observations: one radius is $13 \pm 0.5 \mathrm{~km}$, while the other is $11 \pm 0.5 \mathrm{~km}$!"

- Michał Sokołowski, Master Thesis, 2014

Results for AHP EoS models with APR Results for AHP EoS models with DD2 Fictitious radius measurements
APR with fictitious radius measurements DD2 with fictitious radius measurements
"Now let us travel into future. It is year 2017, some new, reliable NS radius measurement methods are discovered and were used to find the size of two most massive pulsars, which still are PSR J0348+0432 and PSR J1614-2230. The community was shocked when received the results of observations: one radius is $13 \pm 0.5 \mathrm{~km}$, while the other is $11 \pm 0.5 \mathrm{~km}$!"

- Michał Sokołowski, Master Thesis, 2014

Fictitious radius measurements
For masses $M_{1}=2.01 \pm 0.04 \mathrm{M}_{\odot}$ and $M_{2}=1.93 \pm 0.04 \mathrm{M}_{\odot}$ we suggested folowing radius mesurements:

- $R_{1}=11 \mathrm{~km}$,
- $R_{2}=13 \mathrm{~km}$
with $\sigma_{1,2}=0.5 \mathrm{~km}$.

Observational constraints Parameterization of HEoS Bayesian Analysis Results Conclusions

Results for AHP EoS models with APR Results for AHP EoS models with DD2 Fictitious radius measurements
APR with fictitious radius measurements DD2 with fictitious radius measurements

[^0]Observational constraints Parameterization of HEoS Bayesian Analysis Results
Conclusions

Results for AHP EoS models with APR Results for AHP EoS models with DD2
Fictitious radius measurements
APR with fictitious radius measurements DD2 with fictitious radius measurements

BA of HEOS models based on pure DD $2^{\text {thever with }}$ fictitious radius measurements.

Lahoratory of information 7.: Technologies

Observational constraints
Parameterization of HEoS Bayesian Analysis

Results
Conclusions

Results for AHP EoS models with APR Results for AHP EoS models with DD2
Fictitious radius measurements
APR with fictitious radius measurements DD2 with fictitious radius measurements

BA of HE .asis models based on excluded volume DD2 $\left(n_{c p}=0.9 \mathrm{fm}^{-3}\right)$ with fictitious radius measurements.

Conclusions

- BA of HEoS (AHP construction) is focused on possibility of high mass neutron stars.
- Stiff hadronic EoS is necessary to achieve high mass twins.
- Radius measurements can be used to detect twin stars, therefore, to select HEoS.

[^0]: BA of HEoS models based on pure APR with fictitious radius measurements.

