Research of light neutron-rich nuclei in FLNR

Vratislav Chudoba

FLNR, JINR

Silesian University in Opava, Czech Republic

Light exotic nuclei

- $Z=1$ - 16
- large excess of neutrons or protons
- limits of nuclear stability
- new types of radioactivity
- fundamental information about nuclear matter

Fragment separator ACCULINNA

$$
{ }^{8} \mathrm{He}
$$

${ }^{8} \mathrm{He}$: Introduction

- simplicity of the transfer reaction mechanism
- uncertainty of the first excited state energy
- basis for the next, ${ }^{10} \mathrm{He}$ investigation

$$
\begin{gathered}
{ }^{3} \mathrm{H}+{ }^{6} \mathrm{He} \rightarrow{ }^{8} \mathrm{He}+\mathrm{p} \\
{ }^{8} \mathrm{He} \rightarrow{ }^{6} \mathrm{He}+\mathrm{n}+\mathrm{n}
\end{gathered}
$$

beam energy: $25 \mathrm{MeV} / \mathrm{A}$
gaseous target $4 \mathrm{~mm}, 21 \mathrm{~K}$

${ }^{8} \mathrm{He}$: Obtained spectrum

- ground state
- $\mathbf{2}^{+}$state:
$3.6-3.9 \mathrm{MeV}$
- 1^{+}state:
5.4 MeV
- evidence for state at $\sim 7.5 \mathrm{MeV}$
- overall agreement with previous experimental data
- peculiar form of the first excited state $\left(2^{+}\right)$

${ }^{8} \mathrm{He}$: Soft dipole mode (SDM) of giant dipole resonance (GDR)

- GDR
\square protons vs. neutrons
$\square \mathrm{E}_{\mathrm{GDR}} \sim 14-24 \mathrm{MeV}$
\square induced by EM excitation
- SDM
\square halo vs. core
$\square \mathrm{E}_{\mathrm{SDM}}$ lower than $\mathrm{E}_{\text {GDR }}$
\square induced by EM excitation and charge-exchange reaction

${ }^{8} \mathrm{He}$: Form of the first peak

energy of the first excited state (2^{+}) determined with a large uncertainty: $2.7-3.6 \mathrm{MeV}$
steep rise straight from the threebody threshold
low-energy tail of the 2^{+}cannot be responsible for the near threshold events
only plausible source of the lowenergy events is the population of E1 (1-) continuum

${ }^{10} \mathrm{He}$

${ }^{10} \mathrm{He}$: Introduction

- extremely high excess of neutrons
- the lightest double magic isotope after alpha particle
- inconsistent data on 0^{+}ground state energy
- no correlation data

$$
\begin{array}{r}
3 \mathrm{H}+{ }^{8} \mathrm{He} \rightarrow{ }^{10} \mathrm{He}+\mathrm{p} \\
{ }^{10} \mathrm{He} \rightarrow{ }^{8} \mathrm{He}+\mathrm{n}+\mathrm{n}
\end{array}
$$

Ground state energy (above the ${ }^{8} \mathrm{He}+\mathrm{n}+\mathrm{n}$ threshold)

no correlation data				Reference	$E_{T}^{(\mathrm{He})}[\mathrm{MeV}]$	$\Gamma[\mathrm{MeV}]$
$\begin{aligned} & \text { annular } \\ & \text { detector } \end{aligned}$				Korsheninnikov et al.	1.2	1.2
		n	Square	Ostrowski et al.	1.07	0.3
	34 target	1 7	eiescoof	Chudoba et al., Golovkov et al.	~ 3	N/A
				Johansson et al. A	1.42	1.11
${ }^{8} \mathrm{He}$ beam				Johansson et al. B	1.54	1.91
	-			Kohley et al.	1.60	1.08

- ${ }^{8} \mathrm{He}$ beam: 21.5 MeV/A; $10^{5} \mathrm{pps}$
- ${ }^{3} \mathrm{H}$ target: $\mathrm{d} \sim 6 \mathrm{~mm} ; \mathrm{p} \sim 0.9 \mathrm{bar} ; \mathrm{T} \sim 26 \mathrm{~K}$

${ }^{10} \mathrm{He}$: Missing mass spectrum

- missing mass spectrum from protons measured in coincidence with ${ }^{8} \mathrm{He}$
- 479 events found
- population of 0+ ground state with maximum at $E_{T} \sim 2.1 \mathrm{MeV}$

- structureless spectrum for $E_{T}>4 \mathrm{MeV}$
- low background from competing processes

${ }^{10} \mathrm{He}$: Correlations

```
        2-body vs. 3-body decay
- 2 parameters for 2-body decay ( \(E, \Gamma\) )
- 5 additional parameters at given energy for 3-body decay
```


T-system

- full description of the internal correlations by parameters ε and θ_{k}

$$
\varepsilon=\frac{E_{x}}{E_{x}+E_{y}} \quad \cos \theta_{k}=\frac{\mathbf{k}_{x} \cdot \mathbf{k}_{y}}{k_{x} k_{y}}
$$

- external correlations: 3-body system orientation

${ }^{10} \mathrm{He}$: Quasibinary kinematics

- very useful when a few states present
- ${ }^{10} \mathrm{He}$ total angular momentum is fully determined by angular momentum of ${ }^{8} \mathrm{He}$

$$
\left[\left[l_{x} \otimes l_{y}\right]_{L} \otimes S\right]_{J} \rightarrow\left[\left[0 \otimes l_{y}\right]_{L} \otimes 0\right]_{J} \Rightarrow \mathbf{J}=\mathbf{1}_{y}
$$

Legendre polynomials can be visible

${ }^{10} \mathrm{He}$: Correlation and spectrum decomposition

First conclusion

${ }^{8} \mathrm{He}$
\square the ground, 2^{+}(3.6-3.9 MeV) and 1^{+}(5.4 MeV) states populated
\square some evidence for a state at energy 7.5 MeV
\square evidence for the manifestation of the SDM with low energy ~3.0 MeV

- 10 He
\square new energy of ground state at 2.1 MeV established
$\square J^{\pi}$ of the 1^{-}states determined from experimental data for the first time
\square evidence for 2^{+}state observed

New perspectives

ACCULINNA-2

- energy range 6 - $60 \mathrm{MeV} / \mathrm{A}$
- beam intensities higher in 2 orders
- $Z_{\mathrm{RIB}} \sim 1-36$

$$
\begin{array}{r}
{ }^{4} \mathrm{He}\left({ }^{9} \mathrm{Li}, 2 \alpha\right){ }^{5} \mathrm{H} \\
{ }^{4} \mathrm{He}\left({ }^{11} \mathrm{Li}, 2 \alpha\right)^{7} \mathrm{H}
\end{array}
$$

EXPERT@Super-FRS

EXPERT@Super-FRS@NUSTAR@FAIR

EXPERT@Super-FRS

EXPERT@Super-FRS@NUSTAR@FAIR

NeuRad

- neutron radioactivity studies: search of $n, 2 n, 4 n$, ($6 n$?) radioactivity
- E_{n} ~ $200-800 \mathrm{MeV}$ in LAB
- low transverse momentum 0.1 - 100 keV
- precise information on angular correlations of decay neutrons with a charged fragment

28 m from the target in FMF2
at least 64 modules $40 \times 40 \times 100 \mathrm{~cm}^{3}$

NeuRad: principle of work

- bundles
$\square 3 \times 3 \mathrm{~mm}$ scintillation fibers BCF12 (Saint-Gobain)
$\square 48 \times 48 \times 1000 \mathrm{~mm}$
$\square 2$ MAPMT from each side

- test modules (25 cm long)
- first tests on gammas
- neutron tests in preparation in FLNP or VBLHEP (neutron generator (d, n))

Software to handle the EXPERT instrumentation is needed

ExpertRoot: General concept

- simulation and digitization of one NeuRad module realized

ExpertRoot

FairRoot

- comparison with stand-alone GEANT4 simulations in process
- next step: detector GADAST

Conclusions

- preparation for the first-day experiments on ACCULINNA-2 started
- works on project EXPERT@FAIR
- development of software framework ExpertRoot in process
- we are looking forward the future

Thank you for your attention

Appendix: LEN

RIB = Radioactive ion beam

Fragmentseparator ACCULINNA at FLNR

In-Flight Production:

- acceleration of a primary beam ($\mathrm{I} \sim 10^{12} \mathrm{pps}$)
- reactions on a thin production target
- secondary beam: fragmentseparator ($\mathrm{I}<10^{6} \mathrm{pps}$)
- reactions on a physical target.

ISOL technique:

- acceleration of a primary beam (I $\sim 10^{12} \mathrm{pps}$)
- reactions in a thick production target: (fast production - slow release) \rightarrow reaction products to be extracted, ionized and reaccelerated
- secondary beam: ($\mathrm{I}<10^{8} \mathrm{pps}$)
- reactions on a physical target

${ }^{10} \mathrm{He}$: Missing mass spectrum

- missing mass spectrum from protons measured in coincidence with ${ }^{8} \mathrm{He}$
- 479 events found
- population of 0+ ground state with maximum at $E_{T} \sim 2.1 \mathrm{MeV}$
- structureless spectrum for $E_{T}<4$
 MeV
- low background from competing processes

Kinematical condition:

$$
E_{T}^{(\mathrm{He})} \geq\left(\frac{m_{8_{\mathrm{He}}}+2 m_{\mathrm{n}}}{2 m_{\mathrm{n}}}\right) \tilde{T}_{{ }_{\mathrm{He}}} \simeq 5 \tilde{T}_{8_{\mathrm{He}}}
$$

${ }^{5} \mathrm{H}$ and ${ }^{7} \mathrm{H}$ isotopes

- largest proton-neutron asymmetry among known nuclei
- decay pattern
\square 3-body: $\mathrm{t}+2 \mathrm{n}$
$\square 5$-body: $\mathrm{t}+5 \mathrm{n}$!!!!!
- very restricted experimental data
quasifree scattering

$$
\begin{array}{r}
{ }^{4} \mathrm{He}\left({ }^{9} \mathrm{Li}, 2 \alpha\right){ }^{5} \mathrm{H} \\
{ }^{4} \mathrm{He}\left({ }^{11} \mathrm{Li}, 2 \alpha\right){ }^{7} \mathrm{H}
\end{array}
$$

${ }^{6} \mathrm{Be}$: Correlations

$$
\frac{d \sigma}{d \Omega_{\varkappa} d S_{k^{\prime}} d E_{T}}=
$$

fast: reaction
mechanism; determines

> slow: asymptotes of
> 3-body decay
> (structure of Be)

- Three-body task calculated by theory using hyperspherical harmonics method
- External correlations: 3-body system orientation
- full description of the internal correlations by parameters ε and θ_{k}

$$
\varepsilon=\frac{E_{x}}{E_{x}+E_{y}} \quad \cos \theta_{k}=\frac{\mathbf{k}_{x} \cdot \mathbf{k}_{y}}{k_{x} k_{y}}
$$

