Research of light neutron-rich nuclei in FLNR

Vratislav Chudoba

FLNR, JINR Silesian University in Opava, Czech Republic

Light exotic nuclei

∠ = 1 − 16

- Iarge excess of neutrons or protons
- Iimits of nuclear stability
- new types of radioactivity
- fundamental information about nuclear matter

Fragment separator ACCULINNA

⁸He: Introduction

- simplicity of the transfer reaction mechanism
- uncertainty of the first excited state energy
- basis for the next, ¹⁰He investigation

$${}^{3}\text{H} + {}^{6}\text{He} \rightarrow {}^{8}\text{He} + p$$

 ${}^{8}\text{He} \rightarrow {}^{6}\text{He} + n + n$

beam energy: 25 MeV/A gaseous target 4 mm, 21K

⁸He: Obtained spectrum

- ground state
- 2⁺ state: 3.6 – 3.9 MeV
- 1⁺ state: 5.4 MeV
- evidence for state at ~7.5 MeV

- overall agreement with previous experimental data
- peculiar form of the first excited state (2⁺)

⁸He: Soft dipole mode (SDM) of giant dipole resonance (GDR)

⁸He: Form of the first peak

energy of the first excited state (2⁺) determined with a large uncertainty: 2.7 — 3.6 MeV

steep rise straight from the threebody threshold

low-energy tail of the 2⁺ cannot be responsible for the near threshold events

only plausible source of the lowenergy events is the population of E1 (1⁻) continuum

¹⁰He: Introduction

- extremely high excess of neutrons
- the lightest double magic isotope after alpha particle
- inconsistent data on 0⁺ ground state energy

no correlation data

 $^{3}\mathrm{H} + ^{8}\mathrm{He} \rightarrow ^{10}\mathrm{He} + \mathrm{p}$ $^{10}\text{He} \rightarrow^{8}\text{He} + n + n$

Ground state energy (above the ⁸He+n+n threshold)

				Reference	$E_T^{(\text{He})}$ [MeV]	$\Gamma \ [{ m MeV}]$
				Korsheninnikov <i>et al.</i>	1.2	1.2
		annular detector	n Square	Ostrowski et al.	1.07	0.3
TOF	MWPC's	^P ³ H target	n IIIII	Chudoba <i>et al.</i> , Golovkov <i>et al.</i>	$\sim\!3$	N/A
			811	Johansson <i>et al.</i> A	1.42	1.11
⁸ He beam			°He	Johansson et al. B	1.54	1.91
				Kohley <i>et al.</i>	1.60	1.08

⁸He beam: 21.5 MeV/A; 10⁵ pps

³H target: d ~ 6 mm; p ~ 0.9 bar; T ~ 26 K

¹⁰He: Missing mass spectrum

- missing mass spectrum from protons measured in coincidence with ⁸He
- 479 events found
- population of 0+ ground state with maximum at E_{τ} ~2.1 MeV
- structureless spectrum for $E_{\tau}>4$ MeV
- Iow background from competing processes

¹⁰He: Correlations

2-body vs. 3-body decay

- 2 parameters for 2-body decay (E,Γ)
- 5 additional parameters at given energy for 3-body decay

T-system

$$\varepsilon = \frac{E_x}{E_x + E_y} \qquad \cos \theta_k = \frac{\mathbf{k}_x \cdot \mathbf{k}_y}{k_x k_y}$$

external correlations: 3-body system orientation

¹⁰He: Quasibinary kinematics

Legendre

polynomials

can be visible

- very useful when a few states present
- ¹⁰He total angular momentum is fully determined by angular momentum of ⁸He

$$\left[\left[l_x \otimes l_y \right]_L \otimes S \right]_J \to \left[\left[0 \otimes l_y \right]_L \otimes 0 \right]_J \Rightarrow \mathbf{J} = \mathbf{l}_y$$

¹⁰He: Correlation and spectrum decomposition

First conclusion

⁸He

- □ the ground, 2^+ (3.6 3.9 MeV) and 1^+ (5.4 MeV) states populated
- □ some evidence for a state at energy 7.5 MeV
- evidence for the manifestation of the SDM with low energy ~3.0 MeV

¹⁰He

- new energy of ground state at 2.1 MeV established
- $\Box J^{\pi}$ of the 1⁻ states determined from experimental data for the first time
- evidence for 2⁺ state observed

New perspectives

ACCULINNA-2

- energy range 6 60 MeV/A
- beam intensities higher in 2 orders
- $Z_{\rm RIB} \sim 1 36$

 $^{4}\mathrm{He}(^{9}\mathrm{Li},2\alpha)^{5}\mathrm{H}$ $^{4}\mathrm{He}(^{11}\mathrm{Li},2\alpha)^{7}\mathrm{H}$

EXPERT@Super-FRS

EXPERT@Super-FRS@NUSTAR@FAIR

EXPERT@Super-FRS

EXPERT@Super-FRS@NUSTAR@FAIR

NeuRad

- neutron radioactivity studies: search of n, 2n, 4n, (6n?) radioactivity
- *E_n* ~ 200 800 MeV in LAB
- low transverse momentum
 0.1 100 keV
- precise information on angular correlations of decay neutrons with a charged fragment

NeuRad: principle of work

bundles

□ 3 x 3 mm scintillation fibers BCF12 (Saint-Gobain)

- □ 48 x 48 x 1000 mm
- 2 MAPMT from each side

- test modules (25 cm long)
- first tests on gammas
- neutron tests in preparation in FLNP or VBLHEP (neutron generator (d,n))

Software to handle the EXPERT instrumentation is needed

ExpertRoot: General concept

- simulation and digitization of one NeuRad module realized
- comparison with stand-alone
 GEANT4 simulations in process

next step: detector GADAST

Conclusions

- preparation for the first-day experiments on ACCULINNA-2 started
- works on project EXPERT@FAIR
- development of software framework ExpertRoot in process
- we are looking forward the future

Thank you for your attention

Thank you for your attention

Appendix: LEN

RIB = Radioactive ion beam

Fragmentseparator ACCULINNA at FLNR

In-Flight Production:

- acceleration of a primary beam (I~10¹² pps)
- reactions on a thin production target
- secondary beam: fragmentseparator (I<10⁶ pps)
- reactions on a physical target.

ISOL technique:

- acceleration of a primary beam (I~10¹² pps)
- reactions in a thick production target: (fast production slow release) → reaction products to be extracted, ionized and reaccelerated
- secondary beam: (I<10⁸ pps)
- reactions on a physical target

¹⁰He: Missing mass spectrum

- missing mass spectrum from protons measured in coincidence with ⁸He
- 479 events found
- population of 0+ ground state with maximum at E_{τ} ~2.1 MeV
- structureless spectrum for E_{τ} <4 MeV
- Iow background from competing processes

Kinematical condition:

 $\left(\frac{m_{^8\mathrm{He}}+2m_{\mathrm{n}}}{2m_{\mathrm{n}}}\right)\tilde{T}_{^8\mathrm{He}}\simeq 5\ \tilde{T}_{^8\mathrm{He}}$

10

[MeV]

12

