

INVESTIGATION OF RESONANCES OF 2D TWO-BODY SYSTEMS WITH ANISOTROPIC INTERACTION

Joint Institute for Nuclear Research Bogoliubov Laboratory of Theoretical Physics
E.A. Koval
O.A. Koval

Prof. V.S. Melezhik

Anisotropic quantum scattering in two dimensions

Eugene A. Koval, ${ }^{1,2,{ }^{*}}$ Oksana A. Koval, ${ }^{1, \dagger}$ and Vladimir S. Melezhik ${ }^{1,2, \ddagger}$
${ }^{1}$ Bogoliubov Laboratory of Theoretical Physics, Joint Institute for Nuclear Research, Dubna, Moscow Region 141980, Russian Federation
${ }^{2}$ Department of Theoretical Physics, Dubna International University for Nature, Society and Man, Dubna,
Moscow Region 141980, Russian Federation
(Received 15 March 2014; published 15 May 2014)

Motivation

\square Ultracold polar molecules collisions problem
(simulated by dipole-dipole scattering $\sim \frac{1}{\rho^{3}}$)
\square Partial wave expansion becomes inefficient at $q \rightarrow 0$:

$$
\frac{\tan \left(\delta_{l}\right)}{q} \rightarrow \text { const }
$$

$l=0,1,2 \ldots$

Two-dimensional (2D) stationary scattering problem formulation

\square Two-dimensional Schrödinger equation:

$$
\left\{\begin{array}{l}
H(\rho, \phi) \Psi(\rho, \phi)=E \Psi(\rho, \phi) \\
\Psi(\rho, \phi) \underset{\rho \rightarrow \infty}{ } e^{i q \rho \cos (\phi)}+f(q, \phi) \frac{e^{i q \rho}}{\sqrt{-i \rho}}
\end{array}\right.
$$

\square Hamiltonian of the system

$$
H(\rho, \phi)=-\frac{\hbar^{2}}{2 \mu}\left(\frac{1}{\rho} \frac{\partial}{\partial \rho}\left(\rho \frac{\partial}{\partial \rho}\right)+\frac{1}{\rho^{2}} \frac{\partial^{2}}{\partial \phi^{2}}\right)+U(\rho, \phi)
$$

$-q$ - the relative momentum, μ - the reduced mass, U - the interaction potential

Time evolution of 2D systems

\square Time-dependent two-dimensional Schrödinger equation:

$$
\left\{\begin{array}{l}
i \frac{d \Psi(\rho, \phi \mid t)}{d t}=H(\rho, \phi) \Psi(\rho, \phi) \\
\Psi(\rho, \phi \mid t=0)=\Psi_{0}(\rho, \phi)
\end{array}\right.
$$

\square Hamiltonian of the system

$$
H(\rho, \phi)=-\frac{\hbar^{2}}{2 \mu}\left(\frac{1}{\rho} \frac{\partial}{\partial \rho}\left(\rho \frac{\partial}{\partial \rho}\right)+\frac{1}{\rho^{2}} \frac{\partial^{2}}{\partial \phi^{2}}\right)+U(\rho, \phi)
$$

Algorithm of numerical solution

\square Transformation of partial differential equations into differential-difference equations:
\square Fourier basis:

$$
H_{0}(\phi) \xi_{m}(\phi)=-m^{2} \xi_{m}(\phi) \equiv \varepsilon_{m} \xi_{m}(\phi) ; \quad H_{0}(\phi)=\frac{\partial^{2}}{\partial \phi^{2}} ;
$$

\square Special representation of the wave-function:

$$
\begin{aligned}
& \Psi(\rho, \phi)=\frac{1}{\sqrt{\rho}} \sum_{j^{\prime}=0}^{N_{\phi}} \sum_{m=-N_{\phi} / 2}^{N_{\phi} / 2} \xi_{m}(\phi) \xi_{m j^{\prime}}^{-1} \Psi_{j^{\prime}}(\rho) \\
& \Psi\left(\rho, \phi_{j}\right)=\frac{1}{\sqrt{\rho}} \Psi_{j}(\rho) ; \\
& \begin{array}{c}
\xi_{j m}=\xi_{m}\left(\phi_{j}\right) \rightarrow \frac{(-1)^{m}}{\sqrt{2 \pi}} \exp \left(\text { im } \phi_{j}\right) \\
\hline \\
\hline
\end{array}
\end{aligned}
$$

$$
\left\{\begin{array}{l}
\rho=\rho_{m} s^{2}, \\
\left\{s_{0}, s_{1}, \ldots, s_{N}\right\} ; s_{0}=0, s_{N}=1
\end{array}\right.
$$

Stationary problem

\square The system of differential-difference equations has been obtained:

$$
\frac{1}{\sqrt{\rho}} \sum_{j} \sum_{m}\left[\frac{d^{2}}{d \rho^{2}}+\frac{1}{4 \rho^{2}}+\frac{\varepsilon_{m}}{\rho^{2}}+\frac{2 \mu}{\hbar^{2}}\left(E-U\left(\rho, \phi_{i}\right)\right)\right] \Psi_{j}(\rho) \xi_{m}\left(\phi_{i}\right) \xi_{m j}^{-1}=0
$$

after reducing it reads as:

$$
\frac{d^{2} \Psi_{i}(\rho)}{d \rho^{2}}+\left[\frac{1}{4 \rho^{2}}+\frac{2 \mu}{\hbar^{2}}\left(E-U\left(\rho, \phi_{i}\right)\right)\right] \Psi_{i}(\rho)+\frac{1}{\rho^{2}} \sum_{j=0}^{N_{\phi}}\left(\sum_{m=-\frac{N_{\phi}}{2}}^{\frac{N_{\phi}}{2}} \varepsilon_{m} \xi_{m}\left(\phi_{i}\right) \xi_{m j}^{-1}\right) \Psi_{j}(\rho)=0
$$

Hereafter $\hbar=\mu=1$.

TD Schrödinger equation

\square Crank-Nicolson scheme has been employed:

$$
\left\{\begin{array}{l}
\Psi\left(\rho, \phi \mid t_{n+1}\right)=\left[1+i \frac{\delta}{2} H(\rho, \phi)\right]^{-1}\left[1-i \frac{\delta}{2} H(\rho, \phi)\right] \Psi\left(\rho, \phi \mid t_{n}\right) \\
\Psi\left(\rho, \phi \mid t_{n=0}=0\right)=\Psi_{0}(\rho, \phi)
\end{array}\right.
$$

after reducing time evolution of wave function reads as:

$$
\left\{\begin{array}{l}
\Psi\left(\rho, \phi \mid t_{n+1}\right)+i \frac{\delta}{2} H(\rho, \phi) \Psi\left(\rho, \phi \mid t_{n+1}\right)=\Psi\left(\rho, \phi \mid t_{n}\right)-i \frac{\delta}{2} H(\rho, \phi) \Psi\left(\rho, \phi \mid t_{n}\right) \\
\Psi\left(\rho, \phi| |_{n=0}=0\right)=\Psi_{0}(\rho, \phi)
\end{array}\right.
$$

Hereafter $\hbar=\mu=1$.

Dipole-dipole scattering

\square An example of the physical system with the anisotropic interaction is the dipole-dipole system, that models polar molecules in optical traps.

For two arbitrary oriented dipoles interaction potential reads:

$$
V_{\vec{d}_{1} \vec{d}_{2}}=\frac{\left(\vec{d}_{1} \vec{d}_{2}\right)-3\left(\vec{d}_{\vec{e}_{r}}\right)\left(\vec{e}_{r} \vec{d}_{2}\right)}{\rho^{3}},
$$

where \vec{d}_{1}, \vec{d}_{2} - dipole moments, $\left(\vec{d}_{i} \vec{e}_{r}\right), i=1,2-\quad$ their projections onto the collision axis.

Dipole-dipole scattering

A particular case of parallel dipoles with the polarization axis tilted to the plane of motion $\gamma=\alpha ; \beta=0$ with short-range interaction modeled by a hard wall at the origin with the width $\rho_{0} / D=0.1$:

$$
V(\rho, \phi, \alpha)=V_{H W}(\rho)+\frac{d_{1} d_{2}}{\rho^{3}}\left[1-3 \sin ^{2}(\alpha) \cos ^{2}(\phi)\right],
$$

was considered in the paper by C. Ticknor [Phys.Rev. A84, 032702 (2011)].

Dipole-dipole scattering

A particular case of parallel dipoles with the polarization axis tilted to the plane of motion $\gamma=\alpha ; \beta=0$ with short-range interaction modeled by a hard wall at the origin with the width $\rho_{0} / D=0.1$:

$$
V(\rho, \phi, \alpha)=V_{H W}(\rho)+\frac{d_{1} d_{2}}{\rho^{3}}\left[1-3 \sin ^{2}(\alpha) \cos ^{2}(\phi)\right],
$$

was considered in the paper by C. Ticknor [Phys.Rev. A84, 032702 (2011)].

Dipole-dipole scattering

Dipole-dipole scattering

We have analyzed how the found "resonant" structure for the polarized dipoles in the calculated dependence of the scattering cross section on the dipole tilt angle $\gamma=\alpha$ varies with elimination of the polarization.

$$
\beta=0, \alpha=0.25 \pi
$$

$\beta=\pi, \alpha=0.25 \pi$

$\beta=0, \alpha=0.35 \pi$

$\beta=\pi, \alpha=0.35 \pi$

$$
\beta=\pi, \alpha=0.5 \pi
$$

Conclusions

\square Due to advantages the algorithm can be applied for several problems:
\square Numerical simulation of scattering processes in two-particle systems of the ultracold atoms in optical traps
\square Quantum collisions of the diatomic molecules with induced dipole moments.
\square Theoretical investigations of hydrogen atom collisions on the surface of liquid helium.

Thank you

for your attention!

Contacts

Prof. V.S. Melezhik

E-mail: melezhik@theor.jinr.ru
URL: http://theor.jinr.ru/~melezhik/

E.A. Koval

E-mail: e-cov@yandex.ru

O.A. Koval

E-mail: kov.oksana20@gmail.com

