

Current status of data center for cosmic rays based on KCDC

GRID-2018, Dubna

Victoria Tokareva, Dmitriy Kostunin, Andreas Haungs | September 14, 2018 for the German-Russian Astroparticle Data Life Cycle Group

INSTITUTE FOR NUCLEAR PHYSICS (IKP)

KIT - The Research University in the Helmholtz Association

www.kit.edu

Introduction: The astroparticle physics data rate

Modern astroparticle experiments data rate [Gbytes/day]*

- More than hundred years of cosmic particle measurements;
- Looking at the same sky with different eyes: different messengers, different detectors;
- Common data rate for astrophysical experiments all together is a few PBytes/yeary, which is comparable to the current LHC output*
- Big data for deep learning

*Berghöfer T., Agrafioti I. et all. Towards a model for computing in European astroparticle physics, Astroparticle Physics European Coordination committee, 2016

Introduction

The data integration approach

Conclusion

Victoria Tokareva, Dmitriy Kostunin, Andreas Haungs - Cosmic rays data center based on KCDC

German-Russian Astroparticle Data Life Cycle Initiative*

*Granted by RSF-Helmholtz Joint Research Groups ELE POR Introduction The data integration approach 3/16 September 14, 2018

Victoria Tokareva, Dmitriy Kostunin, Andreas Haungs - Cosmic rays data center based on KCDC

KASCADE-Grande

- Proposed in 1989—disassembled in 2013;
- Aimed at studying high-evergy (galactic) cosmic rays by observing extensive air showers (EAS);
- Consisted of:
 - scintillators detecting e, γ , μ :
 - KASCADE—256 stations;
 - GRANDE—37 stations;
 - Hadronic callorimeter;
 - Digital radio array LOPES detecting *e*, *e*⁺;

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

4/16

- Important features of cosmic-ray spectrum have been obtained. The data analysis is ongoing;
- KCDC (KASCADE Cosmic Ray Data Center, http://kcdc.ikp.kit.edu) is a dedicated portal where all the data collected are available online.

Introduction The data integration approach
Victoria Tokareva, Dmitriy Kostunin, Andreas Haungs – Cosmic rays data center based on KCDC September 14, 2018

TAIGA

Started in the mid 90s, is still operating and continiously enhancend

Introduction

The data integration approach

Conclusion

Victoria Tokareva, Dmitriy Kostunin, Andreas Haungs - Cosmic rays data center based on KCDC

The project objectives

[†]Minh Duc Nguyen, *A distributed data warehouse system for astroparticle physics*, GRID2018 session 10

[‡]Yu. Kazarina, *Application of Hubzero platform for the educational process in astroparticle physics*, GRID2018 poster

Introduction	The data integration approach		Conclusion
Victoria Tokareva, Dmitriy Kostunin, Andreas Haungs -	Cosmic rays data center based on KCDC	September 14, 2018	6/16

Deep into KASCADE-Grande and Tunka data formats

Different

- Data format (depends on avalilable detectors)
- Dedicated software for analyzing data
- Special system environment for the software

Common

- Metadata format (e.g. time, location, atmospheric conditions)
- Software for EAS simulation (e.g. CORSIKA)
- Shower parameters
- Theoretical models

Current state

 Separate APIs and UIs for different experiments

Our objective

 Unified API and UIs for different experiments

Introduction

The data integration approach

Conclusion

Victoria Tokareva, Dmitriy Kostunin, Andreas Haungs - Cosmic rays data center based on KCDC

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

WMS—workload management system

- The basic idea is to provide a central queue for all users and make all the distributed sites look like local ones;
- Starting from mid 90's are widely used in collider experiments (Dirac, PanDA);
- Dedicated for:
 - Unified usage of the distributed remote data and common data analysis;
 - Conceal various low-level software and provide unified high-level interface;
- Provide the common way to issue tasks to different types of the distibuted sites;
- The same system for the data access, analysis and simulation.

Introduction	The data integration approach		Conclusion
Victoria Tokareva, Dmitriy Kostunin, Andreas Haungs -	Cosmic rays data center based on KCDC	September 14, 2018	8/16

Data-oriented approach

Karbruhe Institute of Technology

What data do we work with?

- Data types:
 - Raw detector readouts;
 - Pre-analyzed events;
 - Metadata

Data structure:

- Different formats;
- Different messengers;
- Common metadata

Our approach:

- It is proposed to store unique event id and metadata in the unified database
- With growing data sizes, distributed storage for events could be useful

Introduction

The data integration approach

Conclusion

Victoria Tokareva, Dmitriy Kostunin, Andreas Haungs – Cosmic rays data center based on KCDC September

Proposed cosmic-ray metadata structure

Introduction

The data integration approach

Conclusion

Victoria Tokareva, Dmitriy Kostunin, Andreas Haungs – Cosmic rays data center based on KCDC

Software for data analysis depends on a particular experiment

- Problem: It may even require dedicated system environment
- Solution: Virtualization
- Data analysis requires huge amounts of input data
 - Problem: It is often more optimal to perform it on the same site the data are stored
 - Solution: Job management

Introduction The data integration approach Conclusion
Victoria Tokareva, Dmitriy Kostunin, Andreas Haungs – Cosmic rays data center based on KCDC September 14, 2018 11/16

Simulation

Feature		Consequence	
The software for EAS simulation (e.g. CORSIKA) does not de- pend on a particular experiment	\Rightarrow	Simulations require standar- tized system environment	
Simulations require small amounts of input data Simulations can be done inde- pendently for different events	\Rightarrow	Simulations are easily scalable	
Simulations require a lot of com- puting resources	\Rightarrow	HPC sites are needed	
Distributed computing could be useful			
		< ㅁ > < 큔 > < 클 > < 클 > 로) = 위역(

Introduction	The data integration approach		Conclusion
Victoria Tokareva, Dmitriy Kostunin, Andreas Haungs -	- Cosmic rays data center based on KCDC	September 14, 2018	12/16

Distributed analysis and simulation scheme

 Introduction
 The data integration approach
 Conclusion

 <u>Victoria Tokareva</u>, Dmitriy Kostunin, Andreas Haungs – Cosmic rays data center based on KCDC
 September 14, 2018
 13/16

Current status

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- The KASCADE-Grande project has a data center called KCDC, that is planned to serve as the basis for the future common center for data access;
- The differences in the data formats were analyzed and solutions for organizing storage and distributed data processing were proposed;
- A scheme of a relational database for the future data center is designed using a metadata-based approach;
- The possibilities to apply the results of the project to educational and outreach activities are being explored.

The joint resource **astroparticle.online** is created to provide access to KASCADE-Grande and TAIGA data and metadata.

Introduction	The data integration approach		Conclusion
Victoria Tokareva, Dmitriy Kostunin, Andreas Haungs -	Cosmic rays data center based on KCDC	September 14, 2018	14/16

Conclusion

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- The constantly growing amount of accumulated astroparticle data and the request for the multi-messenger astronomy and machine learning, enable us to develop a unified system for astroparticle data storage and processing;
- KASCADE-Grande is the only cosmic-ray experiment so far that has fully published its data and has a software infrastructure for data access and online analysis (KCDC);
- The pecularities of data format and acquisition make it impossible to utilize 'from scratch' the solutions widely used in collider experiments;
- We are developing a new approach to the astroparticle data life cycle for combined analysis of the KASCADE-Grande and TAIGA data;
- The built-up infrastructure will be used to analyze combined data sets with large statistics, allowing to study galactic sources of high-energy γ-rays, which could be a notable step forward in multi-messenger astroparticle physics.

 Introduction
 The data integration approach
 Conclusion

 <u>Victoria Tokareva</u>, Dmitriy Kostunin, Andreas Haungs – Cosmic rays data center based on KCDC
 September 14, 2018
 15/16

Thank you for your attention!

Introduction

The data integration approach

≧ ⊨ ∽ へ (~ Conclusion

Victoria Tokareva, Dmitriy Kostunin, Andreas Haungs - Cosmic rays data center based on KCDC

September 14, 2018 16/16

・ロット 日本 ・ 日本 ・ 日本

The German-Russian Astroparticle Data Life Cycle collaboration I

KASCADE - Grande

SCC Steinbuch Centre for Computing TAIGA—Tunka Advanced Instrument for cosmic ray physics and Gamma Astronomy (see taiga-experiment.info);

KASCADE-Grande—KArlsruhe Shower Core and Array DEtector—Grande (see www-ik.fzk.de/KASCADE_home.html);

KIT-IKP—Institute for Nuclear Physics Karlsruhe Institute of Technology

SCC—Steinbuch Centre for Computing Karlsruhe Institute of Technology

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

The German-Russian Astroparticle Data Life Cycle collaboration II

SINP MSU—Skobeltsyn Institute Of Nuclear Physics Lomonosov Moscow State University

ISU—Irkutsk State University

ISDCT—Matrosov Institute for System Dynamics and Control Theory

References

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

 Berghöfer T., Agrafioti I. *et al.* Towards a model for computing in European astroparticle physics, Astroparticle Physics European Coordination committee, 2016, web-source: http://appec.org/wp-content/uploads/ Documents/Docs-from-old-site/AModelForComputing-2.pdf;

- KCDC—KASCADE Cosmic Ray Data Center, web-source: http://kcdc.ikp.kit.edu;
- KASCADE-Grande official site, web-source: http://www-ik.fzk.de/KASCADE_home.html;
- TAIGA collaboration official site, web-source: http://taiga-experiment.info;
- Astroparticle.online—outreach resource, web-source: http://astroparticle.online.

KASCADE Workflow

Workflow for KASCADE Measurement and Simulation Data

Victoria Tokareva, Dmitriy Kostunin, Andreas Haungs - Cosmic rays data center based on KCDC September 14, 2018 20/16

KCDC IT Structure

Victoria Tokareva, Dmitriy Kostunin, Andreas Haungs – Cosmic rays data center based on KCDC September 14, 2018 21/16