Accelerating real-time ship motion simulations using general purpose GPU computations

I. Petriakov I. Gankevich A. Degtyarev

September 2018

Virtual testbed project

Global goal: Decision support system that analyses data from ships in sea, models the environment and predicts (and prevents) dangerous situations.

Current goal: Real-time simulation environment for ships with visualisation.

Key features:

- ► Real-time. We have 16–33 ms to compute everything.
- ► Realistic marine objects. We load ships from IGES files.
- ► Arbitrary-amplitude ocean waves (work-in-progress).

Project timeline (2018)

CPU GPU

Project timeline (2018)

CPU GPU

Project timeline (2018)

CPU GPU

The anatomy of a frame

The anatomy of a frame

FPS	One frame, ms	One stage, ms
60	16	5
30	33	11

Velocity potential equations

$\nabla^2 \phi = 0$	continuity equation	
$\phi_t + \frac{1}{2} \vec{v} ^2 + g\zeta = -\frac{p}{\rho}$	dynamic BC for $z=\zeta(x,y,t)$	
$D\zeta = \nabla \phi \cdot \vec{n}$	kinematic BC for $z=\zeta(x,y,t)$	

Velocity potential equations

$$\begin{array}{ll} \nabla^2\phi=0 & \text{continuity equation} \\ \phi_t+\frac{1}{2}|\vec{v}|^2+g\zeta=-\frac{p}{\rho} & \text{dynamic BC for } z=\zeta(x,y,t) \\ \\ D\zeta=\nabla\phi\cdot\vec{n} & \text{kinematic BC for } z=\zeta(x,y,t) \end{array}$$

$$\phi_{xx} + \phi_{yy} + \phi_{zz} = 0$$

$$\zeta_t = \underbrace{\left(\frac{\zeta_x}{\sqrt{1 + \zeta_x^2 + \zeta_y^2}} - \zeta_x\right)}_{f_1} \phi_x + \underbrace{\left(\frac{\zeta_y}{\sqrt{1 + \zeta_x^2 + \zeta_y^2}} - \zeta_y\right)}_{f_2} \phi_y - \underbrace{\frac{1}{\sqrt{1 + \zeta_x^2 + \zeta_y^2}}}_{f_3} \phi_z$$

Velocity potential equations

$$\begin{array}{ll} \nabla^2\phi=0 & \text{continuity equation} \\ \phi_t+\frac{1}{2}|\vec{v}|^2+g\zeta=-\frac{p}{\rho} & \text{dynamic BC for } z=\zeta(x,y,t) \\ \\ D\zeta=\nabla\phi\cdot\vec{n} & \text{kinematic BC for } z=\zeta(x,y,t) \end{array}$$

$$\phi_{xx} + \phi_{yy} + \phi_{zz} = 0$$

$$\zeta_t = \underbrace{\left(\frac{\zeta_x}{\sqrt{1 + \zeta_x^2 + \zeta_y^2}} - \zeta_x\right)}_{f_1} \phi_x + \underbrace{\left(\frac{\zeta_y}{\sqrt{1 + \zeta_x^2 + \zeta_y^2}} - \zeta_y\right)}_{f_2} \phi_y - \underbrace{\frac{1}{\sqrt{1 + \zeta_x^2 + \zeta_y^2}}}_{f_3} \phi_z$$

$$\phi(x, y, z, t) = \mathcal{W}_2(x, y, z) * \frac{\zeta_t(x, y, t)}{F(f_1, f_2, f_3)}$$

Velocity potential field computation performance

CPU AMD FX-8370 GPU GeForce GTX 1060 6GB OS Fedora 28

Wave pressure

Pressure:

$$p(x, y, z, t) = -\rho \phi_t - \rho \frac{1}{2} (\phi_x^2 + \phi_y^2 + \phi_z^2) - \rho gz$$

Pressure force:

$$F(x, y, z, t) = -pS\vec{n}$$

Pressure computation performance

CPU AMD FX-8370 GPU GeForce GTX 1060 6GB OS Fedora 28 Thank you for attention!