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e Spatially homogeneous system of gluons, isotropic in momentum
space. Evolve using QCD Boltzmann equation.

e For certain initial conditions a Bose-Einstein condensate forms in
finite time

e We extend this beyond the onset of condensation, and introduce
anisotropy
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The Anatomy of a Collision

/ / freeze out

hadrons — kinetic theory

gluons & quarksin eq. —s ideal hydro

gluons & quarks out of eq. —s viscous hydro

strong fields — classical dynamics

z

e Equilibriation is fast - O(1 fm)
e So why the Boltzmann equation?

3 of 32
EEEEE————————————————————————



Relativistic Hydrodynamics

e |deal Hydro
o Works well

o “Equilibriation” is instantaneous

e Dissipative Hydro
o Can consider off-equilibrium systems

o No relativistic equivalent to
Navier-Stokes equations
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A more microscopic approach

Can derive hydrodynamics from the Boltzmann equation

Perhaps worth investigating the problem using this directly?

Boltzmann equation treats the QGP as a dilute particle gas

Hydro only assumes energy-momentum conservation - is the
particle approach appropriate at high energies?

Boltzmann equation is computationally difficult - but let's do it!
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Boltzmann equation

e Gluon plasma subject to elastic, number-conserving two-body
collisions. D:f = C[f], where

1 o o
Clfl = 5 / I(Mizs342(27)*6(p1 + p2 — p3 — pa)(Gafifo — fifaf3fa).
234

e This is a nonlinear integro-differential equation. Solving it is...

non-trivial.
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The H-theorem

e Can, however, describe some properties without solving it. By the
H-theorem,

e Here v is the particle 4-current, u is a chemical potential and T is
the temperature.

e There is one caveat.
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Bose-Einstein condensation

e There exist certain initial distributions of gluons that are
“overpopulated” with respect to equilibrium.

e Consider the CGC-inspired family of spherically symmetric

distribution functions

p
f(p) =f0(1 - —)
Q

S

Qs
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e For f(p) = ff(1 — p/Qs)

1 Qs Q4
— —f
€0 027T2 o dpp 08 2
1 Qs Q3
=fo—= d =1
no 0271_2/0 PP 06

e Now consider the number and energy densities for the equilibrium
Bose distribution:

_ 1 [e'e) p3 B 3T4 ) /T
Eeq(T;N) = F/O dpe(P_H)/T 1 = 2 L|4(e )

_ 1= PP T T
”eq(T> /’L) - ﬁ/o dpe(p—,u)/T 1 — ?LIZJ,(G )
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e Consider contours of constant n and ¢
no = Neq; €0 — Cegq

r= ne_3/4; rerie = 0.28
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Relaxation Time Approximation

e From the initial condition we always
know the final distribution function -
can make an ansatz.

plu, foo — F
P T

81_—f —

e In a sense we have “averaged over”
the collision term. An analytic solution
exists, viz.

PIJ'U/,LL)

F(t) = foo + (fy — fi)e Um"F

11 of 32




How good is the RTA?

e Approaches equilibrium exponentially

e Can model the growth of the
condensate

e Relaxation time parameter 7 has to be
set by hand

e No QCD features though

e Ultimately we would like to use
something closer to the truth
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The Fokker-Planck Equation

e Under the assumption that small scattering angle collisions
dominate, it is possible to recast the collision term as the
divergence of a current,

th:C[f]Lv.j

scattering

where
J(p) = LVF + I,ffp+ (VF - )T + (VF x p) x L.
o l=[ff ly=[% and T =(Z,T,,Z;) = [ EfF are functionals
of the distribution function.
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The scheme for isotropic initial conditions
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The basic idea of the implementation

e First discretize the phase space. Next interpolate over the arbitrary
initial distribution function.

e Numerically integrate to obtain the particle number in each cell.

e Calculate the particle flux at the boundaries between cells and
update the particle number using the forward Euler method.

e From analytical expressions for the integrals of your interpolating
functions, use rootfinding to obtain the new distribution function

e As my supervisor is fond of saying, the devil is in the details.
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An interpolation ansatz

e For overpopulated initial conditions, the equilibrium distribution is
singular at the origin

1

for = T

A linear interpolation would fail

Instead we interpolate with piecewise Bose distributions

e Many nice properties, including an exact interpolation of the
equilibrium distribution
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Some results
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a(p)

18 of 32
EEEEE————————————————————————



Some results

Evolution of Overpopulated Distribution Function Over Time
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Some results

Evolution of Overpopulated Distribution Function Over Time
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Some results

Evolution of Overpopulated Distribution Function Over Time
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Evolution of the condensate over time
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Some results
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Some results

Equilibriation time measure as a function of f
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Estimating the relaxation time

Equilibriation Time Measure vs Relaxation Time for fy = 0.12
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RTA vs Fokker-Planck: Overpopulated f;
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RTA vs. Fokker-Planck: Condensate Formation
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Cylindrical Symmetry & Anisotropy
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A Measure of Anisotropy

We define the “anisotropy parameter”,
22

_ Tirr
= 733

Tire

T/'vF is the energy-momentum tensor in the local rest frame

For cylindrically symmetric f(p), T'! = T?2 = P, is the
transverse pressure

T33 = P, is the longitudinal pressure.
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Equilibriation vs Isotropization
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Equilibriation vs Isotropization
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Conclusion

e In summary, we have developed an efficient numerical scheme to
solve the QCD Boltzmann equation in the small scattering angle
approximation.

e Our work extends the results of Blaizot et al. to systems with
cylindrically symmetric momentum distributions

e We also handle the dynamics of the formation of the Bose-Einstein
condensate.

e Thank you!
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