

The Institute of Nuclear Physics Ministry of Energy of the Republic of Kazakhstan

Joint Institute for Nuclear Research

SCIENCE BRINGING NATIONS TOGETHER

INVESTIGATION OF THE EXCITED STATES OF ¹¹B NUCLEUS

D.M. Janseitov, N. Burtebayev, Y. Mukhamejanov

AYSS, DUBNA 2018

Relevance

Analogues of Hoyle's state

For nuclei with a pronounced cluster structure, the shell model does not reflect a number of their characteristic features. In the paper Milin M. and von Oertzen W // Eur. Phys. J. A-2002.-Vol. 14, it was assumed that similar Hoyle states can be detected in some neighboring nuclei, for example, the excited state of 8.56 MeV ($3/2^{-}$) in the ¹¹B nucleus.

2

Experiment

A series of collaborative experiments were conducted with the scientists of the Kurchatov Institute (Moscow, Russia) and the University of Jyväskylä (Jyvaskyla, Finland) in order to study the "exotic" state in neutron-rich nuclei (⁹Be, ¹¹B, and ¹³C), .

Experiments were carried out on the cyclotrons **U150M** (INP, Kazakhstan) and **K-130** (UY, Finland) at energies of accelerated alpha particles $E(\alpha) = 29$ and 65 MeV, respectively.

Experiment

Energy spectra of alpha particles scattered from ¹¹B at 20 degrees in laboratory frame, E_{α} =29 MeV.

Differential cross sections of elastic scattering of alpha particles from ¹¹B at different energies of incident particles

Theory

In the frame of the **optical model**, all the interactions between the nucleons of the projectile and the nucleons of the target are replaced by an average and central interaction U(r) between the projectile and the target in their ground states.

$$\Delta \Psi + \frac{2\mu}{h^2} \left(E - U(r) \right) \Psi = 0$$

 $U(r) = V_{c}(r) - V(r) - iW_{v}(r)$. The complex potential U(r) used in the optical model

$$U(r) = V_{c}(r) - V_{o} \left[1 + \exp(\frac{r - r_{v} \cdot A^{\frac{1}{3}}}{a_{v}}) \right]^{-1} - iW_{o} \left[1 + \exp(\frac{r - r_{w} \cdot A^{\frac{1}{3}}}{a_{w}}) \right]^{-1},$$

$$V(r) = \iint \rho_p(r_p) \rho_t(r_t) \upsilon(r_p) d^3 r_p d^3 r_t$$

The **double folding** (DF) model was widely used with success to calculate the nucleusnucleus interaction potential or the nucleonnucleus interaction potential.

The parameters of optical and double folding potentials of α +¹¹B system at 29 – 54.1 MeV

E MeV	Potential set	V _o MeV	r_v fm	a _v fm	W _o MeV	r _w fm	a _w fm	Nr
29	OM	79.55	1.2	0.743	23.65	1.76	0.438	
	DF				37.13	1.8	0.365	1.234
40	OM	77.85	1.245	0.856	19.01	1.57	0.7	
	DF				19.01	1.57	0.7	1.2
48.7	OM	76.0	1.245	0.825	15.89	1.57	0.801	
	DF				15.89	1.57	0.801	1.2
50	OM	77.22	1.245	0.856	16.85	1.57	0.833	
	DF				16.85	1.57	0.833	1.2
54.1	OM	80.73	1.245	0.822	15.08	1.57	0.85	
	DF				15.08	1.57	0.85	1.28

6

Results

Excited states of ¹¹B

The measurement of the radii of the excited state

Asymptotic Normalization Coefficients

Modified Diffraction Model Inelastic Nuclear Rainbow Scattering

Liu Z.H. et al.,PRC 64, 034312(2001)

Danilov A.N. et. al. PRC 80, 054603 (2009)

Ohkubo S. PRC 70, 041602 (2004)

9

The **modified diffraction model** assumes that the root-mean-square radius $R_{rms}(ex.st)$ of the excited state can be determined through the difference of the diffraction radii of the excited and ground states:

$\mathbf{R}_{\mathrm{rms}} \text{ (ex.st.)} = \mathbf{R}_{\mathrm{rms}} \text{ (g.s.)} + \left[\mathbf{R}_{dif} \text{(el)} - \mathbf{R}_{dif} \text{(inel)} \right]$

 $\mathbf{R}_{dif}(\mathbf{el})$ and $\mathbf{R}_{dif}(\mathbf{inel})$ are the diffraction radii, are determined from the positions of the minima and maxima of the experimental angular distributions of the inelastic and elastic scattering, respectively.

Analogues of Hoyle's state in ¹¹B

Observation of the exotic structure and the anomalously large radius of the Hoyle 0⁺ (7.65 MeV) state in the ¹²C nucleus prompted a number of assumptions that a similar situation may occur in neighboring ¹³C and ¹¹B nuclei, which differ from ¹²C, by adding a neutron or by removing the proton, respectively.

Analogues of Hoyle's state in ¹¹B

The rms radii of the excited state of the 8.56 MeV $(1/2^{-})$ ¹¹**B** nucleus obtained in the framework of MDM in comparison with the 0⁺ state of the ¹²**C** nucleus

$\mathbf{E}^*, \mathbf{M} \mathbf{\partial} \mathbf{B}, \mathbf{I}^{\pi}$	R _{dif} , fm	$ m R_{rms}$, fm	E_{α} , MeV
7.65, 0 ⁺ (¹² C)	5.71 ± 0.04	2.89±0.04	
8.56, 1/2-	5.64 ± 0.09	2.88±0.16	29
8.56, 1 /2 ⁻	5.66±0.10	2.87±0.13	65

E _{lab} ,	R_{rms} (g.s),	$\mathbf{R}_{\mathbf{rms}}$	R _{rms} (4.445),	R _{rms} (5.02),	R _{rms} (6.74),
MeV	fm	(2.12), fm	fm	fm	fm
29	2.29	2.33 ± 0.10	2.25 ± 0.12		2.25 ± 0.15
40.5	2.29		2.17 ± 0.08		2.22 ± 0.10
65		2.37 ± 0.20	2.27 ± 0.10	2.44 ± 0.14	2.32 ± 0.14

Danilov A.N. et. al. PRC 80, 054603 (2009).

Conclusion

Indeed, the calculations made within the framework of **MDM**, **show** that the excited state of 8.56 MeV **has an increased** radius in **comparison with the ground state**. That is, it's similar to rms radius of Hoyle state.

We made conclusion, that the configuration of ${}^{11}B$ nucleus in this state will be regarded like as alpha + alpha + tritium or ${}^{7}Li$ + alpha.

Thank you for attention!