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Introduction: General Case of Two-Point Correlator

[M. Yu. Borovkov et al., Phys. At. Nucl. 62 (1999) 1601]

Lagrangian density of local fermion interaction

Lint(x) =
[
f̄ (x)ΓAf (x)

]
JA(x)

JA — generalized current (photon, neutrino current, etc.)
ΓA — any of γ-matrices from the set
{1, γ5, γµ, γµγ5, σµν = i [γµ, γν ] /2}
Interaction constants are included into the current JA
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Two-point correlation function of general form

ΠAB =

∫
d4X e−i(qX ) Sp {SF(−X ) ΓA SF(X ) ΓB}

SF(X ) — Lorentz-invariant part of exact fermion propagator
Xµ = xµ − yµ — integration variable
Correlations of scalar, pseudoscalar, vector and axial-vector
currents were studied by Borovkov et al. [Phys. At. Nucl. 62
(1999) 1601]
Consider correlations of a tensor current with the other ones



Propagator in Constant Homogenious Magnetic Field

Dirac equation in an external electromagnetic field[
i ∂̂ − e Qf Â(r, t)−mf

]
Ψ(r, t) = 0

Qf and mf are the relative charge and mass of the fermion
∂̂ = ∂µ γ

µ, Â = Aµ γ
µ

Pure constant homogeneous magnetic field: B = (0, 0,B)

Four-potential (in Lorentz-covariant form): Aµ(x) = −Fµνxν

Fµν — strength tensor of external electromagnetic field
Equation for fermion propagator in the magnetic field[

i ∂̂ − e Qf Â(x)−mf

]
GF(x , y) = δ(4)(x − y)

Use the Fock-Schwinger method for its solution



Basic Tensors in Presence of Magnetic Field

Minkowski space filled with external magnetic field is divided
into two subspaces:

Euclidean with the metric tensor Λµν = (ϕϕ)µν ;
plane orthogonal to the field strength vector
Pseudo-Euclidean with the metric tensor Λ̃µν = (ϕ̃ϕ̃)µν
Metric tensor of Minkowski space gµν = Λ̃µν − Λµν

Dimensionless tensor of the external magnetic field and its dual

ϕαβ =
Fαβ
B

, ϕ̃αβ =
1
2
εαβρσϕ

ρσ

Arbitrary four-vector aµ = (a0, a1, a2, a3) can be decomposed
into two orthogonal components

aµ = Λ̃µνa
ν − Λµνa

ν = a‖µ − a⊥µ

For the scalar product of two four-vectors one has

(ab) = (ab)‖ − (ab)⊥

(ab)‖ = (aΛ̃b) = aµΛ̃µνb
ν , (ab)⊥ = (aΛb) = aµΛµνb

ν



Propagator in the Fock-Schwinger Representation

General representation of the propagator [Itzikson & Zuber]

GF(x , y) = eiΩ(x ,y) SF(x − y)

Lorentz non-invariant phase factor

Ω(x , y) = −eQf

∫ x

y

dξµ
[
Aµ(ξ) +

1
2
Fµν(ξ − y)ν

]
In two-point correlation function phase factors canceled

Ω(x , y) + Ω(y , x) = 0
Lorentz-invariant part of the fermion propagator (β = eB|Qf |)

SF(X ) = − iβ

2(4π)2

∞∫
0

ds

s2

{
(X Λ̃γ) cot(βs) − i(X ϕ̃γ)γ5 −

− βs

sin2(βs)
(XΛγ) + mf s [2 cot(βs) + (γϕγ)]

}
×

× exp
(
−i

[
m2

f s +
1
4s

(X Λ̃X ) − β cot(βs)

4
(XΛX )

])



Orthogonal Basis Motivated by Magnetic Field

Correlators having rank non-equal to zero, should be
decomposed in some orthogonal set of vectors
In magnetic field, such a basis naturally exists

b(1)
µ = (qϕ)µ, b(2)

µ = (qϕ̃)µ

b(3)
µ = q2 (Λq)µ − (qΛq) qµ, b(4)

µ = qµ

Arbitrary vector aµ can be presented as

aµ =
4∑

i=1

ai
b

(i)
µ

(b(i)b(i))
, ai = aµb(i)

µ

Arbitrary tensor Tµν can be similarly decomposed

Tµν =
4∑

i ,j=1

Tij
b

(i)
µ b

(j)
ν

(b(i)b(i)) (b(j)b(j))
, Tij = Tµνb(i)

µ b(j)
ν



Correlator of Pseudoscalar and Tensor Currents

Correlator of pseudoscalar and tensor currents is rank-2 tensor
From six non-trivial coefficients in the basis decomposition,
three ones only are independent
Integral representation of coefficients in tensor decomposition

Πij(q
2, q2

⊥, β) =
1

16π2

∞∫
0

dt

t

1∫
0

du Yij(q
2, q2

⊥, β; t, u) ×

× exp

{
−i

[
m2

f t −
q2
‖

4
t (1 − u2) + q2

⊥
cos(βtu) − cos(βt)

2β sin(βt)

]}

Integration variables: t = s1 + s2, u = (s1 − s2)/(s1 + s2)

Relation among momentum squared: q2
‖ = q2 + q2

⊥
Coefficients in tensor decomposition

Y
(PT)
12 = −Y (PT)

21 = −i βt q2
‖ q

2
⊥
sin(βtu)

sin(βt)
[ctg(βt)− u ctg(βtu)]



Integrands of Pseudoscalar-Tensor Correlator

The other four coefficients in the decomposition

Y
(PT)
23 (q2, q2

⊥, β; t, u) = −Y (PT)
32 (q2, q2

⊥, β; t, u)

=
i

2
β q2

‖q
2
⊥

{
4
[
m2

f t + i
]
− q2

‖t R(β; t, u)
}

Y
(PT)
24 (q2, q2

⊥, β; t, u) = −Y (PT)
42 (q2, q2

⊥, β; t, u)

= − i

2
β q2

‖

{
4
[
m2

f t + i
]
− q2

‖t
(
1− u2)− q2

⊥t R(β; t, u)
}

Auxiliary function was introduced

R(β; t, u) = 1− u2 +
2

sin2(βt)
[cos(βt) cos(βtu) + u sin(βt) sin(βtu)− 1]

Other correlators and their decomposition are under derivation



Correlators in Crossed-Field Limit

Correlators in electromagnetic crossed field can be obtained
from the ones calculated in magnetic field after pure field
parameter β2 = e2Q2

f (FF )/4 is neglected
Quantities calculated in the crossed field are completely
determined by dynamical parameter: χ2

f = e2Q2
f (qFFq)

Crossed-field limit is valid for an ultrarelativistic particle
moving in the direction transverse to the field strength in
relatively weak magnetic field
As basic vectors, it is convenient to use the following set:

b(1)
µ =

eQf

χf
(qF )µ, b(2)

µ =
eQf

χf
(qF̃ )µ

b(3)
µ =

eQ2
f

χf

√
q2

[
q2 (qFF )µ − (qFFq) qµ

]
, b(4)

µ =
qµ√
q2



Results for Correlators in the Crossed-Field Limit

Integral representation of coefficients in tensor decomposition

Πij(q
2, χf ) =

1
16π2

∞∫
0

dt

t

1∫
0

du Yij(q
2, χf ; t, u)

× exp
{
−i
[(

m2
f −

q2

4
(1− u2)

)
t +

1
48
χ2
f (1− u2)2

]}
Integrands of coefficients in pseudoscalar-tensor correlator

Y
(PT)
12 =

i

3
χ2
f t

2 u
(
1− u2)

Y
(PT)
23 =

iχf

2
√
q2

{
4
[
m2

f t + i
]

+
1
4
χ2
f t

3 (1− u2)2}
Y

(PT)
24 =

iχf

2
√
q2

{
4
[
m2

f t + i
]

+ q2t
(
1− u2)+

1
4
χ2
f t

3 (1− u2)2}
Similar results are obtained for scalar-tensor correlator



Applications of Correlators

Polarization operator is related with correlator of two vector
currents
Models beyond the Standard Model can effectively generate
the Pauli Lagrangian density

LAMM(x) = −µf
4
[
f̄ (x)σµν f (x)

]
Fµν(x)

After combining with the QED Lagrangian, it contributes to
the photon polarization operator
Contribution linear in the fermion AMM µf is determined by
correlator of vector and tensor currents
Its influence on photon requires detail discussion



Three-Point Correlators

Technique we are developed can be extended for calculation of
three-point correlators
My collaborators have such an experience when they
calculated axion-two-photon vertex in crossed and magnetic
field configurations
The result by Skobelev obtained later differs from ours but a
reason remains unclear and this problem requires to be resolved
Some other three-point vertecies are also of importance in
applications



Conclusions

Two-point correlators in presence of constant homogeneous
external magnetic field are considered
This analysis extended the previous one by inclusion of tensor
currents into consideration
Study of correlators of tensor fermionic current with other
ones allows to investigate possible effects due to anomalous
magnetic moment of fermion
Computer technique developed for two-point correlators is
planned to be applied for three-point ones


