Two-Point One Loop Fermionic Amplitudes in Constant Homogeneous Magnetic Field

Ilya Karabanov, Alexandra Dobrynina, Alexander Parkhomenko \& Lubov Vassilevskaya

Department of Theoretical Physics
P. G. Demidov Yaroslavl State University

The XXII International Scientific Conference of Young Scientists and Specialists JINR, Dubna, Russia, 23-27 April 2018

Outline

(1) Introduction
(2) Correlators in Constant Homogeneous Magnetic Field
(3) Correlators in the Crossed-Field Limit
(4) Applications of Correlators
(5) Conclusions

Introduction: General Case of Two-Point Correlator

[M. Yu. Borovkov et al., Phys. At. Nucl. 62 (1999) 1601]

- Lagrangian density of local fermion interaction

$$
\mathcal{L}_{\mathrm{int}}(x)=\left[\bar{f}(x) \Gamma^{A} f(x)\right] J_{A}(x)
$$

- J_{A} - generalized current (photon, neutrino current, etc.)
- Γ_{A} - any of γ-matrices from the set $\left\{1, \gamma_{5}, \gamma_{\mu}, \gamma_{\mu} \gamma_{5}, \sigma_{\mu \nu}=i\left[\gamma_{\mu}, \gamma_{\nu}\right] / 2\right\}$
- Interaction constants are included into the current J_{A}

Introduction: General Case of Two-Point Correlator

- Two-point correlation function of general form

$$
\Pi_{A B}=\int d^{4} X \mathrm{e}^{-i(q X)} \operatorname{Sp}\left\{S_{\mathrm{F}}(-X) \Gamma_{A} S_{\mathrm{F}}(X) \Gamma_{B}\right\}
$$

- $S_{\mathrm{F}}(X)$ - Lorentz-invariant part of exact fermion propagator
- $X^{\mu}=x^{\mu}-y^{\mu}$ - integration variable
- Correlations of scalar, pseudoscalar, vector and axial-vector currents were studied by Borovkov et al. [Phys. At. Nucl. 62 (1999) 1601]
- Consider correlations of a tensor current with the other ones

Propagator in Constant Homogenious Magnetic Field

- Dirac equation in an external electromagnetic field

$$
\left[i \hat{\partial}-e Q_{f} \hat{A}(\mathbf{r}, t)-m_{f}\right] \Psi(\mathbf{r}, t)=0
$$

- Q_{f} and m_{f} are the relative charge and mass of the fermion $\hat{\partial}=\partial_{\mu} \gamma^{\mu}, \quad \hat{A}=A_{\mu} \gamma^{\mu}$
- Pure constant homogeneous magnetic field: $\quad \mathbf{B}=(0,0, B)$
- Four-potential (in Lorentz-covariant form): $A_{\mu}(x)=-F_{\mu \nu} x^{\nu}$
- $F_{\mu \nu}$ - strength tensor of external electromagnetic field
- Equation for fermion propagator in the magnetic field

$$
\left[i \hat{\partial}-e Q_{f} \hat{A}(x)-m_{f}\right] G_{F}(x, y)=\delta^{(4)}(x-y)
$$

- Use the Fock-Schwinger method for its solution

Basic Tensors in Presence of Magnetic Field

- Minkowski space filled with external magnetic field is divided into two subspaces:
- Euclidean with the metric tensor $\Lambda_{\mu \nu}=(\varphi \varphi)_{\mu \nu}$; plane orthogonal to the field strength vector
- Pseudo-Euclidean with the metric tensor $\tilde{\Lambda}_{\mu \nu}=(\tilde{\varphi} \tilde{\varphi})_{\mu \nu}$
- Metric tensor of Minkowski space $g_{\mu \nu}=\tilde{\Lambda}_{\mu \nu}-\Lambda_{\mu \nu}$
- Dimensionless tensor of the external magnetic field and its dual

$$
\varphi_{\alpha \beta}=\frac{F_{\alpha \beta}}{B}, \quad \tilde{\varphi}_{\alpha \beta}=\frac{1}{2} \varepsilon_{\alpha \beta \rho \sigma} \varphi^{\rho \sigma}
$$

- Arbitrary four-vector $a^{\mu}=\left(a_{0}, a_{1}, a_{2}, a_{3}\right)$ can be decomposed into two orthogonal components

$$
a_{\mu}=\tilde{\Lambda}_{\mu \nu} a^{\nu}-\Lambda_{\mu \nu} a^{\nu}=a_{\| \mu}-a_{\perp \mu}
$$

- For the scalar product of two four-vectors one has

$$
\begin{gathered}
(a b)=(a b)_{\|}-(a b)_{\perp} \\
(a b)_{\|}=(a \tilde{\Lambda} b)=a^{\mu} \tilde{\Lambda}_{\mu \nu} b^{\nu}, \quad(a b)_{\perp}=(a \wedge b)=a^{\mu} \Lambda_{\mu \underline{\underline{\underline{b}}}} b^{\nu}
\end{gathered}
$$

Propagator in the Fock-Schwinger Representation

- General representation of the propagator [Itzikson \& Zuber]

$$
G_{F}(x, y)=\mathrm{e}^{i \Omega(x, y)} S_{F}(x-y)
$$

- Lorentz non-invariant phase factor

$$
\Omega(x, y)=-e Q_{f} \int_{y}^{x} d \xi^{\mu}\left[A_{\mu}(\xi)+\frac{1}{2} F_{\mu \nu}(\xi-y)^{\nu}\right]
$$

- In two-point correlation function phase factors canceled

$$
\Omega(x, y)+\Omega(y, x)=0
$$

- Lorentz-invariant part of the fermion propagator $\left(\beta=e B\left|Q_{f}\right|\right)$

$$
\begin{aligned}
S_{\mathrm{F}}(X) & =-\frac{i \beta}{2(4 \pi)^{2}} \int_{0}^{\infty} \frac{d s}{s^{2}}\left\{(X \tilde{\Lambda} \gamma) \cot (\beta s)-i(X \widetilde{\varphi} \gamma) \gamma_{5}-\right. \\
& \left.-\frac{\beta s}{\sin ^{2}(\beta s)}(X \Lambda \gamma)+m_{f} s[2 \cot (\beta s)+(\gamma \varphi \gamma)]\right\} \times \\
& \times \exp \left(-i\left[m_{f}^{2} s+\frac{1}{4 s}(X \tilde{\Lambda} X)-\frac{\beta \cot (\beta s)}{4}(X \wedge X)\right]\right)
\end{aligned}
$$

Orthogonal Basis Motivated by Magnetic Field

- Correlators having rank non-equal to zero, should be decomposed in some orthogonal set of vectors
- In magnetic field, such a basis naturally exists

$$
\begin{aligned}
& b_{\mu}^{(1)}=(q \varphi)_{\mu}, \quad b_{\mu}^{(2)}=(q \tilde{\varphi})_{\mu} \\
& b_{\mu}^{(3)}=q^{2}(\wedge q)_{\mu}-(q \wedge q) q_{\mu}, \quad b_{\mu}^{(4)}=q_{\mu}
\end{aligned}
$$

- Arbitrary vector a_{μ} can be presented as

$$
a_{\mu}=\sum_{i=1}^{4} a_{i} \frac{b_{\mu}^{(i)}}{\left(b^{(i)} b^{(i)}\right)}, \quad a_{i}=a^{\mu} b_{\mu}^{(i)}
$$

- Arbitrary tensor $T_{\mu \nu}$ can be similarly decomposed

$$
T_{\mu \nu}=\sum_{i, j=1}^{4} T_{i j} \frac{b_{\mu}^{(i)} b_{\nu}^{(j)}}{\left(b^{(i)} b^{(i)}\right)\left(b^{(j)} b^{(j)}\right)}, \quad T_{i j}=T^{\mu \nu} b_{\mu}^{(i)} b_{\nu}^{(j)}
$$

Correlator of Pseudoscalar and Tensor Currents

- Correlator of pseudoscalar and tensor currents is rank-2 tensor
- From six non-trivial coefficients in the basis decomposition, three ones only are independent
- Integral representation of coefficients in tensor decomposition

$$
\begin{array}{r}
\Pi_{i j}\left(q^{2}, q_{\perp}^{2}, \beta\right)=\frac{1}{16 \pi^{2}} \int_{0}^{\infty} \frac{d t}{t} \int_{0}^{1} d u Y_{i j}\left(q^{2}, q_{\perp}^{2}, \beta ; t, u\right) \times \\
\times \exp \left\{-i\left[m_{f}^{2} t-\frac{q_{\|}^{2}}{4} t\left(1-u^{2}\right)+q_{\perp}^{2} \frac{\cos (\beta t u)-\cos (\beta t)}{2 \beta \sin (\beta t)}\right]\right\}
\end{array}
$$

- Integration variables: $t=s_{1}+s_{2}, u=\left(s_{1}-s_{2}\right) /\left(s_{1}+s_{2}\right)$
- Relation among momentum squared: $q_{\|}^{2}=q^{2}+q_{\perp}^{2}$
- Coefficients in tensor decomposition

$$
Y_{12}^{(\mathrm{PT})}=-Y_{21}^{(\mathrm{PT})}=-i \beta t q_{\|}^{2} q_{\perp}^{2} \frac{\sin (\beta t u)}{\sin (\beta t)}[\operatorname{ctg}(\beta t)-u \operatorname{ctg}(\beta t u)]
$$

Integrands of Pseudoscalar-Tensor Correlator

- The other four coefficients in the decomposition

$$
\begin{aligned}
& Y_{23}^{(\mathrm{PT})}\left(q^{2}, q_{\perp}^{2}, \beta ; t, u\right)=-Y_{32}^{(\mathrm{PT})}\left(q^{2}, q_{\perp}^{2}, \beta ; t, u\right) \\
& \quad=\frac{i}{2} \beta q_{\|}^{2} q_{\perp}^{2}\left\{4\left[m_{f}^{2} t+i\right]-q_{\|}^{2} t R(\beta ; t, u)\right\} \\
& \quad Y_{24}^{(\mathrm{PT})}\left(q^{2}, q_{\perp}^{2}, \beta ; t, u\right)=-Y_{42}^{(\mathrm{PT})}\left(q^{2}, q_{\perp}^{2}, \beta ; t, u\right) \\
& \quad=-\frac{i}{2} \beta q_{\|}^{2}\left\{4\left[m_{f}^{2} t+i\right]-q_{\|}^{2} t\left(1-u^{2}\right)-q_{\perp}^{2} t R(\beta ; t, u)\right\}
\end{aligned}
$$

- Auxiliary function was introduced

$$
R(\beta ; t, u)=1-u^{2}+\frac{2}{\sin ^{2}(\beta t)}[\cos (\beta t) \cos (\beta t u)+u \sin (\beta t) \sin (\beta t u)-1]
$$

- Other correlators and their decomposition are under derivation

Correlators in Crossed-Field Limit

- Correlators in electromagnetic crossed field can be obtained from the ones calculated in magnetic field after pure field parameter $\beta^{2}=e^{2} Q_{f}^{2}(F F) / 4$ is neglected
- Quantities calculated in the crossed field are completely determined by dynamical parameter: $\quad \chi_{f}^{2}=e^{2} Q_{f}^{2}(q F F q)$
- Crossed-field limit is valid for an ultrarelativistic particle moving in the direction transverse to the field strength in relatively weak magnetic field
- As basic vectors, it is convenient to use the following set:

$$
\begin{aligned}
& b_{\mu}^{(1)}=\frac{e Q_{f}}{\chi_{f}}(q F)_{\mu}, \quad b_{\mu}^{(2)}=\frac{e Q_{f}}{\chi_{f}}(q \tilde{F})_{\mu} \\
& b_{\mu}^{(3)}=\frac{e Q_{f}^{2}}{\chi_{f} \sqrt{q^{2}}}\left[q^{2}(q F F)_{\mu}-(q F F q) q_{\mu}\right], \quad b_{\mu}^{(4)}=\frac{q_{\mu}}{\sqrt{q^{2}}}
\end{aligned}
$$

Results for Correlators in the Crossed-Field Limit

- Integral representation of coefficients in tensor decomposition

$$
\begin{aligned}
& \Pi_{i j}\left(q^{2}, \chi_{f}\right)=\frac{1}{16 \pi^{2}} \int_{0}^{\infty} \frac{d t}{t} \int_{0}^{1} d u Y_{i j}\left(q^{2}, \chi_{f} ; t, u\right) \\
& \times \exp \left\{-i\left[\left(m_{f}^{2}-\frac{q^{2}}{4}\left(1-u^{2}\right)\right) t+\frac{1}{48} \chi_{f}^{2}\left(1-u^{2}\right)^{2}\right]\right\}
\end{aligned}
$$

- Integrands of coefficients in pseudoscalar-tensor correlator

$$
\begin{aligned}
& Y_{12}^{(\mathrm{PT})}=\frac{i}{3} \chi_{f}^{2} t^{2} u\left(1-u^{2}\right) \\
& Y_{23}^{(\mathrm{PT})}=\frac{i \chi_{f}}{2 \sqrt{q^{2}}}\left\{4\left[m_{f}^{2} t+i\right]+\frac{1}{4} \chi_{f}^{2} t^{3}\left(1-u^{2}\right)^{2}\right\} \\
& Y_{24}^{(\mathrm{PT})}=\frac{i \chi_{f}}{2 \sqrt{q^{2}}}\left\{4\left[m_{f}^{2} t+i\right]+q^{2} t\left(1-u^{2}\right)+\frac{1}{4} \chi_{f}^{2} t^{3}\left(1-u^{2}\right)^{2}\right\}
\end{aligned}
$$

- Similar results are obtained for scalar-tensor correlator

Applications of Correlators

- Polarization operator is related with correlator of two vector currents
- Models beyond the Standard Model can effectively generate the Pauli Lagrangian density

$$
\mathcal{L}_{\mathrm{AMM}}(x)=-\frac{\mu_{f}}{4}\left[\bar{f}(x) \sigma_{\mu \nu} f(x)\right] F^{\mu \nu}(x)
$$

- After combining with the QED Lagrangian, it contributes to the photon polarization operator
- Contribution linear in the fermion $\mathrm{AMM} \mu_{f}$ is determined by correlator of vector and tensor currents
- Its influence on photon requires detail discussion

Three-Point Correlators

- Technique we are developed can be extended for calculation of three-point correlators
- My collaborators have such an experience when they calculated axion-two-photon vertex in crossed and magnetic field configurations
- The result by Skobelev obtained later differs from ours but a reason remains unclear and this problem requires to be resolved
- Some other three-point vertecies are also of importance in applications

Conclusions

- Two-point correlators in presence of constant homogeneous external magnetic field are considered
- This analysis extended the previous one by inclusion of tensor currents into consideration
- Study of correlators of tensor fermionic current with other ones allows to investigate possible effects due to anomalous magnetic moment of fermion
- Computer technique developed for two-point correlators is planned to be applied for three-point ones

