Estimating the radiative part of QED effects for systems with supercritical charge

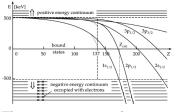
Artem Aleksandrovich Roenko

Lomonosov Moscow State University Faculty of Physics

Dubna, 23 April 2018

Non-perturbative vacuum effects for $Z > Z_{cr}$

• The most well-know effect predicted by QED for supercritical region $(Z > Z_{cr})$ is a vacuum positron emission caused by diving the discrete electronic levels into the lower continuum.¹



Critical charge Z_{cr} :

$$E_{1s_{1/2}}(Z_{cr}) = -mc^2$$
$$Z_{cr} \simeq 170$$

• The recent non-perturbative computations show that E_{VP} demonstrates essentially non-linear behaviour for $Z > Z_{cr}$ and, under certain conditions, E_{VP} can compete with E_{Coul} .²

¹S. S. Gershtein and Y. B. Zeldovich, Zh. Eksp. Teor. Fiz. **57**, 654 (1969), W. Pieper and W. Greiner, Z. Phys. **218**, 327–340 (1969).

0

• Is it possible to compensate for non-perturbative vacuum effects (caused by fermion loops) by QED effects with virtual photon exchange?

- Is it possible to compensate for non-perturbative vacuum effects (caused by fermion loops) by QED effects with virtual photon exchange?
- Full non-perturbative analysis of the radiative effects is too complicated

 \Downarrow

The interaction of the electron magnetic anomaly with Coulomb field

 ΔU_{AMM} is a component of the self-energy contribution to the total radiative shift of the levels.

 ΔU_{AMM} is a local operator, which allows for a detailed non-perturbative analysis.

Effective interaction due to AMM

In the static limit

$$\Delta U_{AMM}^{(0)}(\vec{r}) = \frac{\Delta g}{2} \frac{e}{4m} \, \sigma^{\mu\nu} F_{\mu\nu} \,. \tag{1}$$

AMM is not an intrinsic property of the electron $\Rightarrow \Delta g \to \Delta g_{free} c(r)$.

The one-loop vertex correction⁴

$$\Gamma^{\mu}(q^2) = \gamma^{\mu} F_1(q^2) + \frac{i}{2m} F_2(q^2) \sigma^{\mu\nu} q_{\nu} .$$
 (2)

Hence, the effective potential of the interaction with an external electromagnetic field:

$$\Delta U_{AMM}(\vec{r}) = \frac{e}{2m} \,\sigma^{\mu\nu} \partial_{\mu} \mathcal{A}_{\nu}^{(cl)}(\vec{r}), \tag{3}$$

where

$$\mathcal{A}_{\mu}^{(cl)}(\vec{r}) = \frac{1}{(2\pi)^3} \int d\vec{q} \ e^{i\vec{q}\cdot\vec{r}} \, \tilde{A}_{\mu}^{(cl)}(\vec{q}) F_2(-\vec{q}^2) \,. \tag{4}$$

³K. Geiger, J. Reinhardt, B. Müller, et al., Z. Phys. A - Atomic Nuclei 329, 77–88 (1988), A. O. Barut, en, Z. Phys. A - Atomic Nuclei 336, 317–320 (1990).

Effective interaction due to AMM

Taking into account the dynamical screening of the electronic AMM at short distances, one obtains⁵:

$$\Delta U_{AMM}(\vec{r}) = i \lambda \vec{\gamma} \cdot \vec{\nabla} \left(\sum_{i} \frac{Z_{i} c(|\vec{r} - \vec{r_{i}}|)}{|\vec{r} - \vec{r_{i}}|} \right), \tag{5}$$

where $\lambda = \alpha^2/4\pi m$, $F_2(0) = \Delta g_{free}/2 \simeq \alpha/2\pi$,

$$c(r) = 2 \int_{0}^{\infty} q dq \sin qr \left(-\frac{1}{Ze} \tilde{\Phi}(q) \right) \frac{1}{\pi} \frac{F_2(-q^2)}{F_2(0)},$$
 (6)

and $\tilde{\Phi}(q)$ is a Fourier-transform of the nuclear Coulomb field $\Phi(r)$.

⁵A. Roenko and K. Sveshnikov, Int. J. Mod. Phys. A **32**, 1750130 (2017), arXiv:1608.04322 [physics.atom-ph], A. Roenko and K. Sveshnikov, Phys. Part. Nucl. Lett. **15**, 20–28 (2018).

Dynamical screening of AMM

For the extended nucleus in a form of the uniformly charged ball with raduis R the calculations give⁶

$$\begin{split} c_N(r) &= 1 - \int\limits_{4m^2}^\infty \frac{dQ^2}{Q^2} \, \frac{3QR \cosh QR - 3 \sinh QR}{R^3 Q^3} \, e^{-Qr} \, \frac{1}{\pi} \, \frac{\mathrm{Im} \, F_2(Q^2)}{F_2(0)}, \qquad r > R \, , \\ c_N(r) &= \frac{(3R^2 - r^2)}{2R^3} \, r - \frac{r}{2m^2 R^3} \, + \\ &+ \int\limits_{-2}^\infty \frac{dQ^2}{Q^2} \, \frac{3(QR + 1)}{R^3 Q^3} \, \sinh Qr \, e^{-QR} \, \frac{1}{\pi} \, \frac{\mathrm{Im} \, F_2(Q^2)}{F_2(0)}, \qquad r < R \, . \end{split}$$

$$c(r) \to 0 \text{ for } r \to 0, \qquad c(r) \simeq 1 \text{ for } r \gg 1/m$$

⁶A. Roenko and K. Sveshnikov, Int. J. Mod. Phys. A **32**, 1750130 (2017), arXiv:1608.04322 [physics.atom-ph].

The Dirac equation with ΔU_{AMM}

The Dirac equation with an additional effective interaction ΔU_{AMM} has the form $(\hbar = c = m = 1)$

$$(\vec{\alpha}\vec{p} + \beta + W(r) + \Delta U_{AMM}) \psi = \epsilon \psi.$$
 (7)

In the spherically symmetric case (H-like atom):

$$\psi = \begin{pmatrix} i\varphi \\ \chi \end{pmatrix}, \qquad \varphi = f_{\kappa}(r) \Omega_{jlm_j}, \quad \chi = g_{\kappa}(r) \Omega_{jl'm_j}. \tag{8}$$

The system of equation for f_{κ} , g_{κ} has the form

$$\partial_r f_{\kappa} - \frac{Z\lambda\nu(r)}{r^2} f_{\kappa} + \frac{1+\kappa}{r} f_{\kappa} = (\epsilon + 1 - W(r))g_{\kappa} ,$$

$$\partial_r g_{\kappa} + \frac{Z\lambda\nu(r)}{r^2} g_{\kappa} + \frac{1-\kappa}{r} g_{\kappa} = -(\epsilon - 1 - W(r))f_{\kappa} ,$$
(9)

where $\kappa = \pm (j + 1/2), \ \nu(r) = c(r) - rc'(r).$

The potential ΔU_{AMM} is accounted non-perturbatively both in $Z\alpha$ and (partially) in α/π , since α/π enters as a factor in the coupling constant λ .

The two-center Dirac equation with ΔU_{AMM}

For a compact nuclear quasi-molecule ($d\lesssim 100$ fm) the expansion of the electronic wave-function under the spherical harmonics and the multipole expansion of the two-center potential may be used, $W(\vec{r}) = -\alpha U(\vec{r})$

$$\varphi = \sum_{\kappa=\pm 1}^{\pm N} f_{\kappa} X_{\kappa, m_j}, \qquad \chi = \sum_{\kappa=\pm 1}^{\pm N} g_{\kappa} X_{-\kappa, m_j}, \qquad (10)$$

where $X_{-|\kappa|,m_j} \equiv \Omega_{jlm_j}$ is $X_{|\kappa|,m_j} \equiv (\vec{\sigma}\vec{n}) \Omega_{jlm_j}$ As a result one obtain⁷

$$\partial_{r} f_{\kappa} + \frac{1+\kappa}{r} f_{\kappa} + \lambda \sum_{\bar{\kappa}} M_{\kappa;\bar{\kappa}}(r) f_{\bar{\kappa}} = (1+\epsilon) g_{\kappa} + \alpha \sum_{\bar{\kappa}} N_{-\kappa;-\bar{\kappa}}(r) g_{\bar{\kappa}} ,$$

$$\partial_{r} g_{\kappa} + \frac{1-\kappa}{r} g_{\kappa} - \lambda \sum_{\bar{\kappa}} M_{-\kappa;-\bar{\kappa}}(r) g_{\bar{\kappa}} = (1-\epsilon) f_{\kappa} - \alpha \sum_{\bar{\kappa}} N_{\kappa;\bar{\kappa}}(r) f_{\bar{\kappa}} ,$$
(11)

⁷A. A. Roenko and K. A. Sveshnikov, Phys. Rev. A **97**, 012113 (2018), arXiv:1710.08494 [physics:atom-ph].

The two-center Dirac equation with ΔU_{AMM}

where

$$N_{\kappa;\bar{\kappa}}(r) = \sum_{n} U_n(r) W_{\bar{\varsigma}}^{\varsigma}(n; l_{\kappa}; l_{\bar{\kappa}}),$$

$$M_{\kappa;\bar{\kappa}}(r) = \sum_{n} \left(\partial_r + \frac{\kappa - \bar{\kappa}}{r} \right) V_n(r) W_{\bar{\varsigma}}^{\varsigma}(n; l_{\kappa}; l_{\bar{\kappa}}),$$
(12)

$$\varsigma = \operatorname{sign}(-\kappa) = \begin{cases} -, & \kappa > 0, \\ +, & \kappa < 0, \end{cases} \quad l_{\kappa} = \begin{cases} \kappa, & \kappa > 0, \\ |\kappa| - 1, & \kappa < 0, \end{cases}$$

and

$$W_{\bar{\varsigma}}^{\varsigma}(n; l_{\kappa}; l_{\bar{\kappa}}) \equiv \langle X_{\kappa, m_j} | P_n(\cos \vartheta) | X_{\bar{\kappa}, m_j} \rangle.$$

The Eq. (12) includes the multipole moments of the two-center potentials U_n and V_n :

$$U(\vec{r}) = \int d\vec{r}' \frac{\rho(\vec{r})}{|\vec{r} - \vec{r}'|}, \quad \rho(\vec{r}) = \rho_0(\vec{r} - \vec{a}) + \rho_0(\vec{r} + \vec{a})$$
 (13)

$$V(\vec{r}) = Z\left(\frac{c(|\vec{r} - \vec{a}|)}{|\vec{r} - \vec{a}|} + \frac{c(|\vec{r} + \vec{a}|)}{|\vec{r} + \vec{a}|}\right). \tag{14}$$

The general properties of the shifts due to ΔU_{AMM}

 The self-energy shift of the electronic levels for H-like atoms is usually represented in the form⁸

$$\Delta E_{nj}^{SE}(Z\alpha) = \frac{Z^4 \alpha^5}{\pi n^3} F_{nj}(Z\alpha). \tag{15}$$

In perturbative QED, $F_{nj}(Z\alpha)$ is found⁹ for the lowest electronic levels of H-like atoms with the nucleus charge in the range Z=1-110. For the level $1s_{1/2}$ the calculations with a precision of about 5% were performed up to Z=170.¹⁰

• And although ΔE_{AMM} is not a dominant contribution to ΔE_{SE} , the behaviour F_{nj}^{AMM} (with accounting for the dynamical screening) for a number of the lower electronic levels qualitively reproduces¹¹ the behaviour of the F_{nj} .

⁸P. J. Mohr, G. Plunien, and G. Soff, Phys. Rept. **293**, 227–369 (1998).

⁹V. A. Yerokhin and V. M. Shabaev, J. Phys. Chem. Ref. Data 44, 033103 (2015).

¹⁰K. T. Cheng and W. R. Johnson, Phys. Rev. A 14, 1943–1948 (1976), G. Soff, P. Schlüter, B. Müller, et al., Phys. Rev. Lett. 48, 1465–1468 (1982).

The shift due to ΔU_{AMM}

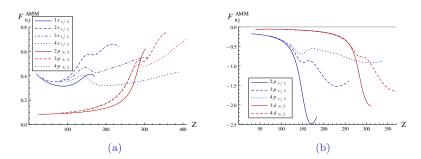


Figure: The function F_{nj}^{AMM} for the contribution from ΔU_{AMM} as a function from the nuclear charge Z for levels with $n \leq 4$ and $j = \frac{1}{2}, \frac{3}{2}$. The levels with $j = l + \frac{1}{2}$ (Fig. a) and $j = l - \frac{1}{2}$ (Fig. b) are shown.

Table: The values $F_{nj}^{AMM}(Z_{cr}\alpha)$ for the shift due to ΔU_{AMM} for levels with different nlj near the threshold of the lower continuum in the range $Z_{cr,1s} < Z < 1000$.

\overline{n}	$ns_{1/2}$	$np_{3/2}$	$nd_{5/2}$	$nf_{7/2}$	$ng_{9/2}$	$nh_{11/2}$
1	0.398	0	0	0	0	0
2	0.641	0.624	0	0	0	0
3	0.551	0.764	0.736	0	0	0
4	0.431	0.722	0.805	0.809	0	0
5	0.338	0.626	0.775	0.827	0.851	0
6	0.272	0.529	0.706	0.797	0.844	0.886
7	0.223	0.449	0.624	0.740	0.807	0.859
8	0.187	0.384	0.549	0.671	0.754	0.814
9	0.159	0.333	0.483	0.606	0.695	0.763
10	0.137	0.292	0.427	0.544	0.638	_
11	0.120	0.258	0.381	0.490	0.583	_
12	0.106	0.229	0.342	_	_	_

The shift due to ΔU_{AMM} near $\epsilon = -1$

Table: The values $F_{nj}^{AMM}(Z_{cr}\alpha)$ for the shift due to ΔU_{AMM} for levels with different nlj near the threshold of the lower continuum in the range $Z_{cr,1s} < Z < 1000.$

\overline{n}	$np_{1/2}$	$nd_{3/2}$	$nf_{5/2}$	$ng_{7/2}$	$nh_{9/2}$	$ni_{11/2}$
2	-2.309	0	0	0	0	0
3	-1.393	-2.031	0	0	0	0
4	-0.874	-1.669	-1.749	0	0	0
5	-0.601	-1.273	-1.559	-1.586	0	0
6	-0.442	-0.969	-1.318	-1.447	-1.486	0
7	-0.341	-0.754	-1.089	-1.278	-1.358	-1.414
8	-0.272	-0.604	-0.900	-1.107	-1.228	-1.296
9	-0.223	-0.496	-0.750	-0.957	-1.095	-1.186
10	-0.187	-0.416	-0.633	-0.823	-0.968	-1.071
11	-0.160	-0.355	-0.543	-0.714	-0.855	_
12	-0.138	-0.307	-0.472	-0.624	_	_

The shift due to ΔU_{AMM} near $\epsilon = -1$

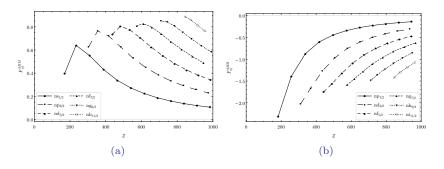


Figure: The shift of the levels due to ΔU_{AMM} in term of $F_{nj}^{AMM}(Z_{cr}\alpha)$ for levels with different nlj near the threshold of the lower continuum in the range $Z_{cr,1s} < Z < 1000$.

The separate trajectories correspond to the series of the levels with different parity and lj (Fig. a $-\kappa < 0$, j = l + 1/2, Fig. b $-\kappa > 0$, j = l - 1/2)

The shift due to ΔU_{AMM}

Table: The shift of the levels $1\sigma_g$ and $1\sigma_u$ due to ΔU_{AMM} for the different values $Z_{\Sigma}=2Z$ and d. The shift of the levels $1s_{1/2}$ and $2p_{1/2}$ for H-like atom is depicted for comparison (in keV).

level	Z_{Σ}	H-like	$d=15.5~\mathrm{fm}$	$d=20~\mathrm{fm}$	$d=30~\mathrm{fm}$	$d=40~\mathrm{fm}$
	140	0.495	0.465	0.448	0.413	0.385
	150	0.690	0.635	0.603	0.545	0.500
	160	0.912	0.828	0.779	0.692	0.626
$1\sigma_g$	170	1.118	1.017	0.953	0.840	0.755
$(1s_{1/2})$	173	_	1.068	1.002	0.883	0.793
,	176	_	_	1.047	0.924	0.830
	181	_	_	_	0.987	0.888
	186	_	_	_	_	0.942
	150	-0.373	-0.329	-0.304	-0.264	-0.234
	160	-0.632	-0.546	-0.497	-0.417	-0.361
	170	-0.875	-0.763	-0.696	-0.580	-0.498
	180	-1.052	-0.937	-0.861	-0.725	-0.625
$1\sigma_u$	183	-1.090	-0.978	-0.901	-0.763	-0.659
$(2p_{1/2})$	188	_	-1.034	-0.960	-0.819	-0.711
,	191	_	_	-0.989	-0.848	-0.738
	195	_	_	_	-0.883	-0.773
	199	_	_	_	-0.912	-0.802
	206	_	_	_	_	-0.843

The shift due to ΔU_{AMM}

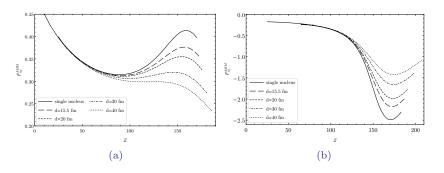


Figure: The function F_{nj}^{AMM} for the contribution from ΔU_{AMM} as a function of total charge Z for the electronic level $1\sigma_g$ a and $1\sigma_u$ b in the diatomic quasi-molecule (for fixed internuclear distances r = 15.5, 20, 30, 40 fm).

- The shift of the electronic level caused by ΔU_{AMM} is considered within the nonperturbative approach for H-like atom and diatomic quasi-molecule. There appears a natural assumption that in the overcritical region, the decrease with the growing Z and the size of the system of Coulomb sources R should also take place for the total self-energy contribution to the levels' shift near the threshold of the lower continuum, and so for the other radiative QED effects with virtual photon exchange.
- Thus, the non-linear growth of the vacuum energy for $Z >> Z_{cr}$, where the contribution from the fermionic loop plays the main role, can not be compensated by the contribution from the radiative corrections.

Thanks for your attention!

Dynamical screening of AMM

In the static limit

$$\Delta U_{AMM}^{(0)}(\vec{r}) = \frac{\Delta g}{2} \frac{e}{4m} \, \sigma^{\mu\nu} F_{\mu\nu} \,. \tag{16}$$

The one-loop vertex correction¹²

$$\Gamma^{\mu}(q^2) = \gamma^{\mu} F_1(q^2) + \frac{i}{2m} F_2(q^2) \sigma^{\mu\nu} q_{\nu}.$$
 (17)

Hence, the effective potential of the interaction with the external electromagnetic field:

$$\Delta U_{AMM}(\vec{r}) = \frac{e}{2m} \sigma^{\mu\nu} \partial_{\mu} \mathcal{A}_{\nu}^{(cl)}(\vec{r}), \tag{18}$$

where

$$\mathcal{A}_{\mu}^{(cl)}(\vec{r}) = \frac{1}{(2\pi)^3} \int d\vec{q} \ e^{i\vec{q}\cdot\vec{r}} \, \tilde{A}_{\mu}^{(cl)}(\vec{q}) F_2(-\vec{q}^2) \,. \tag{19}$$

Dynamical screening of AMM

For a spherically symmetric Coulomb field $A_{\mu}^{(cl)}(\vec{r}) = \delta_{0,\mu}\Phi(r)$

$$\Delta U_{AMM}(r) = -i \lambda \vec{\gamma} \cdot \vec{\nabla} \left(-\frac{Zc(r)}{r} \right) , \qquad (20)$$

where $\lambda = \alpha^2/4\pi m$, $\alpha = e^2/4\pi$, $F_2(0) = \Delta g_{free}/2 \simeq \alpha/2\pi$,

$$c(r) = 2 \int_{0}^{\infty} q dq \sin qr \left(-\frac{1}{Ze} \tilde{\Phi}(q) \right) \frac{1}{\pi} \frac{F_2(-q^2)}{F_2(0)}.$$
 (21)

It should be noted, that Eq. (20) has the same structure as Eq. (16)

$$\Delta U_{AMM}^{(0)}(\vec{r}) = -i \lambda \vec{\gamma} \cdot \vec{\nabla} \left(\frac{4\pi \Phi(\vec{r})}{e} \right). \tag{22}$$