Reception of modulated neutrino day-night effect signal by neutrino detectors

Oleg Kharlanov*

*Moscow State University, Moscow, Russia

AYSS-2018, Joint Institute of Nuclear Research 23 April, 2018

Why day-night effect? Why modulation?

- Day-night effect (day-night asymmetry, DNA): flavor composition of nighttime solar neutrinos ≠ that of daytime solar neutrinos ← regeneration inside the Earth [Carlson, 1986; Baltz,Weneser, 1986]
 Observed for ⁸P v/s at SK [DDL 2014b, 4 = 2 = 5%]
- \bullet Observed for $^8\text{B}~\nu\text{'s}$ at SK [PRL,2014]: $\mathcal{A}_{dn}\sim3-5\%$

Why day-night effect? Why modulation?

- Day-night effect (day-night asymmetry, DNA): flavor composition of nighttime solar neutrinos ≠ that of daytime solar neutrinos ← regeneration inside the Earth [Carlson, 1986; Baltz,Weneser, 1986]
- Observed for ⁸B ν 's at SK [PRL,2014]: $\mathcal{A}_{dn} \sim 3-5\%$
- Extraction of DNA needs a long-term observation ~ integration over time of the effect, which, actually, depends on the nadir angle Θ_N(t), i.e., is modulated

Why day-night effect? Why modulation?

- Day-night effect (day-night asymmetry, DNA): flavor composition of nighttime solar neutrinos ≠ that of daytime solar neutrinos ← regeneration inside the Earth [Carlson, 1986; Baltz,Weneser, 1986]
- Observed for ⁸B ν 's at SK [PRL,2014]: $\mathcal{A}_{dn} \sim 3-5\%$
- Extraction of DNA needs a long-term observation ~ integration over time of the effect, which, actually, depends on the nadir angle Θ_N(t), i.e., is modulated

► We probably lose the 'carrier' on $\int dt$... Can we 'receive' it by 'smart demodulation'?

O. Kharlanov (MSU)

The theory of DNA is quite conventional: for each neutrino trajectory $r = r(x; \Theta_N(t))$,

$$i\lambda\partial_x R(x,x_0) = H(x)R(x,x_0), \quad R(x_0,x_0) = 1;$$

$$H(x) = \left(-\cos 2\theta_0 + \frac{2EV(x)}{\Delta m^2}\right)\sigma_1 + \sin 2\theta_0 \sigma_3,$$

 $R_{f,f'}(x,x_0) \equiv \langle
u_f(x) \mid
u_{f'}(x_0)
angle$ is the flavor evolution matrix (f,f'=e,x)

 $\begin{array}{ll} V(x) = \sqrt{2}G_{\rm F}n_{\rm e}(x) \text{ is the Wolfenstein potential} & n_{\rm e}(x) \text{ is the electron density} \\ \lambda = \Delta m^2/4E = \pi/\ell_{\rm osc}, \quad \ell_{\rm osc} \sim 300 \text{ km} & E \text{ is the } \nu \text{ energy} \\ \sin^2 2\theta_0 \approx 0.86, \Delta m^2 \approx 7.6 \times 10^{-5} \text{ eV}^2 & x \text{ goes along the } \nu \text{ ray} \end{array}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

$$i\lambda\partial_{x}R(x,x_{0}) = \left\{ \left(-\cos 2\theta_{0} + \frac{2EV(x)}{\Delta m^{2}} \right)\sigma_{1} + \sin 2\theta_{0} \sigma_{3} \right\} R(x,x_{0})$$

< □ > < 同 > < 回

$$i\lambda\partial_{x}R(x,x_{0}) = \left\{ \left(-\cos 2\theta_{0} + \frac{2EV(x)}{\Delta m^{2}} \right)\sigma_{1} + \sin 2\theta_{0} \sigma_{3} \right\} R(x,x_{0})$$

In a number of papers [e.g., D'Olivo,1992; D'Olivo *et al.*, 2008; de Holanda, Wei Liao, Smirnov, 2004], this equation was solved leading to ν_e observation probabilities

$$P_e(day) = \frac{1}{2} + \frac{1}{2}\cos 2\theta_{Sun}\cos 2\theta_0,$$
$$P_e(night) = \frac{1}{2} + \frac{1}{2}\cos 2\theta_{Sun}\left\{\cos 2\theta_n^- + 2\sin 2\theta_0\sum_{j=1}^{n-1}\Delta\theta_j\cos 2\Delta\psi_{n,j}\right\}$$

O. Kharlanov (MSU)

(日)

$$i\lambda\partial_{x}R(x,x_{0}) = \left\{ \left(-\cos 2\theta_{0} + \frac{2EV(x)}{\Delta m^{2}} \right)\sigma_{1} + \sin 2\theta_{0} \sigma_{3} \right\} R(x,x_{0})$$

In a number of papers [e.g., D'Olivo,1992; D'Olivo *et al.*, 2008; de Holanda, Wei Liao, Smirnov, 2004], this equation was solved leading to ν_e observation probabilities

$$P_e(\text{day}) = \frac{1}{2} + \frac{1}{2}\cos 2\theta_{\text{Sun}}\cos 2\theta_0,$$
$$P_e(\text{night}) = \frac{1}{2} + \frac{1}{2}\cos 2\theta_{\text{Sun}}\left\{\cos 2\theta_n^- + 2\sin 2\theta_0\sum_{j=1}^{n-1}\Delta\theta_j\cos 2\Delta\psi_{n,j}\right\}$$

• The number of crossed interfaces *n* changes, depending on $\Theta_N(t)$

$$i\lambda\partial_{x}R(x,x_{0}) = \left\{ \left(-\cos 2\theta_{0} + \frac{2EV(x)}{\Delta m^{2}} \right)\sigma_{1} + \sin 2\theta_{0} \sigma_{3} \right\} R(x,x_{0})$$

In a number of papers [e.g., D'Olivo,1992; D'Olivo *et al.*, 2008; de Holanda, Wei Liao, Smirnov, 2004], this equation was solved leading to ν_e observation probabilities

$$P_e(day) = \frac{1}{2} + \frac{1}{2}\cos 2\theta_{Sun}\cos 2\theta_0,$$
$$P_e(night) = \frac{1}{2} + \frac{1}{2}\cos 2\theta_{Sun}\left\{\cos 2\theta_n^- + 2\sin 2\theta_0\sum_{j=1}^{n-1}\Delta\theta_j\cos 2\Delta\psi_{n,j}\right\}$$

• The number of crossed interfaces *n* changes, depending on $\Theta_N(t)$

• The oscillation phases $\Delta \psi_{n,j}$ vary by $\sim 2\pi R/\ell_{\rm osc} \gg \pi$

$$i\lambda\partial_{x}R(x,x_{0}) = \left\{ \left(-\cos 2\theta_{0} + \frac{2EV(x)}{\Delta m^{2}} \right)\sigma_{1} + \sin 2\theta_{0} \sigma_{3} \right\} R(x,x_{0})$$

In a number of papers [e.g., D'Olivo,1992; D'Olivo *et al.*, 2008; de Holanda, Wei Liao, Smirnov, 2004], this equation was solved leading to ν_e observation probabilities

$$P_{e}(day) = \frac{1}{2} + \frac{1}{2}\cos 2\theta_{Sun}\cos 2\theta_{0},$$
$$P_{e}(night) = \frac{1}{2} + \frac{1}{2}\cos 2\theta_{Sun}\left\{\cos 2\theta_{n}^{-} + 2\sin 2\theta_{0}\sum_{j=1}^{n-1}\Delta\theta_{j}\cos 2\Delta\psi_{n,j}\right\}$$

- The number of crossed interfaces *n* changes, depending on $\Theta_N(t)$
- The oscillation phases Δψ_{n,j} vary by ~ 2πR/ℓ_{osc} ≫ π → the observed DNA is a time average of a rapidly oscillating function!

$$i\lambda\partial_{x}R(x,x_{0}) = \left\{ \left(-\cos 2\theta_{0} + \frac{2EV(x)}{\Delta m^{2}} \right)\sigma_{1} + \sin 2\theta_{0} \sigma_{3} \right\} R(x,x_{0})$$

In a number of papers [e.g., D'Olivo,1992; D'Olivo *et al.*, 2008; de Holanda, Wei Liao, Smirnov, 2004], this equation was solved leading to ν_e observation probabilities

$$P_{e}(day) = \frac{1}{2} + \frac{1}{2}\cos 2\theta_{Sun}\cos 2\theta_{0},$$
$$P_{e}(night) = \frac{1}{2} + \frac{1}{2}\cos 2\theta_{Sun}\left\{\cos 2\theta_{n}^{-} + 2\sin 2\theta_{0}\sum_{j=1}^{n-1}\Delta\theta_{j}\cos 2\Delta\psi_{n,j}\right\}$$

- The number of crossed interfaces n changes, depending on $\Theta_{N}(t)$
- The oscillation phases Δψ_{n,j} vary by ~ 2πR/ℓ_{osc} ≫ π → the observed DNA is a time average of a rapidly oscillating function!
 ∫_a^b F(t)e^{iλS(t)}dt = √(2πi)/λS'(t_0)F(t_0)e^{iλS(t_0)} + F(t)e^{iλS(t)}/(iλS'(t)) | a + O(λ^{-3/2}), λ → +∞

Image: A matrix and a matrix

$$\int_{a}^{b} F(t)e^{\mathrm{i}\lambda S(t)}\mathrm{d}t \approx \sqrt{\frac{2\pi\mathrm{i}}{\lambda S''(t_0)}}F(t_0)e^{\mathrm{i}\lambda S(t_0)} + \left.\frac{F(t)e^{\mathrm{i}\lambda S(t)}}{\mathrm{i}\lambda S'(t)}\right|_{a}^{b}, \ S'(t_0) = 0$$

• The contribution of the stationary point t_0 is localized, i.e., does not depend on the observation time window [a, b], unless one gets under the localization scale δt s.t. $|S(t_0 + \delta t) - S(t_0)| \sim 2\pi/\lambda$

$$\int_{a}^{b} F(t)e^{i\lambda S(t)} dt \approx \sqrt{\frac{2\pi i}{\lambda S''(t_0)}}F(t_0)e^{i\lambda S(t_0)} + \left.\frac{F(t)e^{i\lambda S(t)}}{i\lambda S'(t)}\right|_{a}^{b}, S'(t_0) = 0$$

- The contribution of the stationary point t_0 is localized, i.e., does not depend on the observation time window [a, b], unless one gets under the localization scale δt s.t. $|S(t_0 + \delta t) S(t_0)| \sim 2\pi/\lambda$
- For the DN effect, $\int dt \rightsquigarrow \int d\zeta d\tau$ ($\zeta = \text{season}$, $\tau = \text{time of day}$), and the stationary points occur at midnights for $\int d\tau$ and on the two solstices for $\int d\zeta$

$$\int_{a}^{b} F(t)e^{i\lambda S(t)} dt \approx \sqrt{\frac{2\pi i}{\lambda S''(t_0)}}F(t_0)e^{i\lambda S(t_0)} + \left.\frac{F(t)e^{i\lambda S(t)}}{i\lambda S'(t)}\right|_{a}^{b}, S'(t_0) = 0$$

- The contribution of the stationary point t_0 is localized, i.e., does not depend on the observation time window [a, b], unless one gets under the localization scale δt s.t. $|S(t_0 + \delta t) S(t_0)| \sim 2\pi/\lambda$
- For the DN effect, $\int dt \rightsquigarrow \int d\zeta d\tau$ ($\zeta = \text{season}$, $\tau = \text{time of day}$), and the stationary points occur at midnights for $\int d\tau$ and on the two solstices for $\int d\zeta$
- The winter solstice contribution gets considerably augmented for a tropical detector ($\chi \sim 23.5^{\circ}$) [Aleshin, O.K., Lobanov, PRD2013]

< ロ > < 同 > < 三 > < 三 >

$$\int_{a}^{b} F(t)e^{i\lambda S(t)} dt \approx \sqrt{\frac{2\pi i}{\lambda S''(t_0)}}F(t_0)e^{i\lambda S(t_0)} + \left.\frac{F(t)e^{i\lambda S(t)}}{i\lambda S'(t)}\right|_{a}^{b}, S'(t_0) = 0$$

- The contribution of the stationary point t_0 is localized, i.e., does not depend on the observation time window [a, b], unless one gets under the localization scale δt s.t. $|S(t_0 + \delta t) S(t_0)| \sim 2\pi/\lambda$
- For the DN effect, $\int dt \rightsquigarrow \int d\zeta d\tau$ ($\zeta = \text{season}$, $\tau = \text{time of day}$), and the stationary points occur at midnights for $\int d\tau$ and on the two solstices for $\int d\zeta$
- The winter solstice contribution gets considerably augmented for a tropical detector ($\chi \sim 23.5^{\circ}$) [Aleshin, O.K., Lobanov, PRD2013]
- Despite the Sun spends little time shining through the core, for the localized contribution, it may not be a problem.

O. Kharlanov (MSU)

Modulated day-night effect

The miracles of the stationary points [1]: loc. scales

				10 Mar	
Latitude	Interfaces crossed	r_j ,	$\Delta t_j^{\mathrm{season}}$,	$\delta t_{-1,j}^{\text{solstice}}$ (winter solstice), month	$\delta t_{\pm 1,j}^{\text{solstice}}$ (summer solstice), month
x		\mathbf{km}	month	for $E = 10$ MeV ($E = 862$ keV)	for $E = 10$ MeV ($E = 862$ keV)
26.0°	$atmosphere \rightarrow crust$	6371	12.0	3.1 (0.9)	0.8 (0.2)
	upper mantle \rightarrow lower mantle	5701	12.0	3.0 (0.9)	0.7 (0.2)
	lower mantle \rightarrow outer core	3480	7.2	2.6 (0.8)	N/A
	outer core \rightarrow inner core	1221	3.3	1.7 (0.5)	N/A
	inner core \rightarrow outer core	1221	3.3	2.1 (0.6)	N/A
	outer core \rightarrow lower mantle	3480	7.2	4.7 (1.4)	N/A
	lower mantle \rightarrow upper mantle	5701	12.0	13 (3.7)	1.7 (0.5)
36.2°	$atmosphere \rightarrow crust$	6371	12.0	1.4 (0.4)	0.7 (0.2)
	upper mantle \rightarrow lower mantle	5701	12.0	1.3 (0.4)	0.6 (0.17)
	lower mantle \rightarrow outer core	3480	5.5	1.1 (0.3)	N/A
	outer core \rightarrow lower mantle	3480	5.5	2.0 (0.6)	N/A
	lower mantle \rightarrow upper mantle	5701	12.0	5.6 (1.6)	0.9 (0.3)
42.5°	$atmosphere \rightarrow crust$	6371	12.0	1.1 (0.3)	0.7 (0.20)
	upper mantle \rightarrow lower mantle	5701	10.3	1.1 (0.3)	N/A
	lower mantle \rightarrow outer core	3480	4.4	0.9 (0.3)	N/A
	outer core \rightarrow lower mantle	3480	4.4	1.5 (0.4)	N/A
	lower mantle \rightarrow upper mantle	5701	10.3	4.4 (1.3)	N/A

O. Kharlanov (MSU)

Modulated day-night effect

э 23 Apr 2018 6 / 15

▶ < ∃ ▶</p>

$$\int_{a}^{b} F(t)e^{\mathrm{i}\lambda S(t)}\mathrm{d}t \approx \sqrt{\frac{2\pi\mathrm{i}}{\lambda S''(t_0)}}F(t_0)e^{\mathrm{i}\lambda S(t_0)} + \left.\frac{F(t)e^{\mathrm{i}\lambda S(t)}}{\mathrm{i}\lambda S'(t)}\right|_{a}^{b}, \ S'(t_0) = 0$$

< □ > < 同 > < 回

$$\int_{a}^{b} F(t)e^{i\lambda S(t)} dt \approx \sqrt{\frac{2\pi i}{\lambda S''(t_0)}}F(t_0)e^{i\lambda S(t_0)} + \left.\frac{F(t)e^{i\lambda S(t)}}{i\lambda S'(t)}\right|_{a}^{b}, S'(t_0) = 0$$

► Aha, the observed DNA contains a cumulative and a localized terms. So what if I...

$$\int_{a}^{b} F(t)e^{\mathrm{i}\lambda S(t)}\mathrm{d}t \approx \sqrt{\frac{2\pi\mathrm{i}}{\lambda S''(t_0)}}F(t_0)e^{\mathrm{i}\lambda S(t_0)} + \left.\frac{F(t)e^{\mathrm{i}\lambda S(t)}}{\mathrm{i}\lambda S'(t)}\right|_{a}^{b}, \ S'(t_0) = 0$$

► Aha, the observed DNA contains a cumulative and a localized terms. So what if I...

• shrink the observation window, or introduce a weight w(t),

$$\int_{a}^{b} F(t)e^{\mathrm{i}\lambda S(t)}\mathrm{d}t \approx \sqrt{\frac{2\pi\mathrm{i}}{\lambda S''(t_0)}}F(t_0)e^{\mathrm{i}\lambda S(t_0)} + \left.\frac{F(t)e^{\mathrm{i}\lambda S(t)}}{\mathrm{i}\lambda S'(t)}\right|_{a}^{b}, \ S'(t_0) = 0$$

► Aha, the observed DNA contains a cumulative and a localized terms. So what if I...

- shrink the observation window, or introduce a weight w(t),
- introduce a weighted neutrino event number

$$N_{\text{night}}^{(w)} = \sum_{k=1}^{N_{\text{obs}}} \vartheta(\pi/2 - \Theta_{N}(t_{k})) w(t_{k})?$$

.

$$\int_{a}^{b} F(t)e^{\mathrm{i}\lambda S(t)}\mathrm{d}t \approx \sqrt{\frac{2\pi\mathrm{i}}{\lambda S''(t_0)}}F(t_0)e^{\mathrm{i}\lambda S(t_0)} + \left.\frac{F(t)e^{\mathrm{i}\lambda S(t)}}{\mathrm{i}\lambda S'(t)}\right|_{a}^{b}, \ S'(t_0) = 0$$

► Aha, the observed DNA contains a cumulative and a localized terms. So what if I...

- shrink the observation window, or introduce a weight w(t),
- introduce a weighted neutrino event number

$$N_{\mathsf{night}}^{(w)} = \sum_{k=1}^{N_{\mathsf{obs}}} \vartheta(\pi/2 - \Theta_{\mathsf{N}}(t_k)) \ w(t_k)?$$

N.B.: the noise of a half-year $N_{night}^{(w)}$ is $\sqrt{2}$ times higher than that of the full-year one; the cumulative contribution to \mathcal{A}_{dn} is the same, while the localized one is multiplied by two! Thus, the SNR got even $\sqrt{2}$ times better for the localized DN effect!

O. Kharlanov (MSU)

The goal: magnify solstice/midnight contributions the DNA

(日)

The goal: magnify solstice/midnight contributions the DNA

• Weighted asymmetry factor
$$\mathcal{A}_{dn}^{(w)} = \frac{2(N_{night}^{(w)}/T_{night} - \bar{N}_{day})}{N_{night}^{(w)}/T_{night} + \dot{N}_{day}}$$

(日)

The goal: magnify solstice/midnight contributions the DNA

• Weighted asymmetry factor $\mathcal{A}_{dn}^{(w)} = \frac{2(N_{night}^{(w)}/T_{night} - \bar{N}_{day})}{N_{night}^{(w)}/T_{night} + \bar{N}_{day}}$

• Weighted solar exposure function $\epsilon_w(\Theta) = \int_{1 \text{ year}} \frac{w(t)dt}{1 \text{ year}} \delta(\Theta_N(t) - \Theta)$

The goal: magnify solstice/midnight contributions the DNA

• Weighted asymmetry factor $\mathcal{A}_{dn}^{(w)} = \frac{2(N_{night}^{(w)}/T_{night}-\bar{N}_{day})}{N_{dn}^{(w)}/T_{night}+\bar{N}_{day}}$

• Weighted solar exposure function $\epsilon_w(\Theta) = \int_{1 \text{ year}} \frac{w(t)dt}{1 \text{ year}} \delta(\Theta_N(t) - \Theta)$

• "Probabilistic" asymmetry factor (does not depend on detector) $\hat{A}_{dn}^{(w)}(E) = \frac{2\left[\langle P(\mathsf{night}; E) \rangle_w - P(\mathsf{day}; E)\right]}{\langle P(\mathsf{night}; E) \rangle_w + P(\mathsf{day}; E)},$ $\langle P_{\nu_e}(\mathsf{night}; E) \rangle_w \equiv \frac{\int_0^{\pi/2} P_{\nu_e}(\Theta; E) \epsilon_w(\Theta) \mathrm{d}\Theta}{\int_0^{\pi/2} \epsilon_w(\Theta) \mathrm{d}\Theta}$

The goal: magnify solstice/midnight contributions the DNA

• Weighted asymmetry factor $\mathcal{A}_{dn}^{(w)} = \frac{2(N_{night}^{(w)}/T_{night} - \bar{N}_{day})}{N_{night}^{(w)}/T_{night} + \bar{N}_{day}}$

• Weighted solar exposure function $\epsilon_w(\Theta) = \int_{1 \text{ year}} \frac{w(t)dt}{1 \text{ year}} \delta(\Theta_N(t) - \Theta)$

- "Probabilistic" asymmetry factor (does not depend on detector) $\hat{A}_{dn}^{(w)}(E) = \frac{2\left[\langle P(\text{night};E) \rangle_w - P(\text{day};E)\right]}{\langle P(\text{night};E) \rangle_w + P(\text{day};E)},$ $\langle P_{\nu_e}(\text{night};E) \rangle_w \equiv \frac{\int_0^{\pi/2} P_{\nu_e}(\Theta;E)\epsilon_w(\Theta)d\Theta}{\int_0^{\pi/2} \epsilon_w(\Theta)d\Theta}$
- For a narrow electron recoil energy bin $[T, T + \Delta T], \ \Delta T \rightarrow 0$,

$$A_{dn}^{(w)}(T) \approx \frac{\int \Phi(E) dE \,\Delta \frac{d\sigma(E,T)}{dT} P_{day}(E) \hat{A}_{dn}^{(w)}(E)}{\int \Phi(E) dE \left\{ \Delta \frac{d\sigma(E,T)}{dT} P_{day}(E) + \frac{d\sigma_{\nu_x}(E,T)}{dT} \right\}}$$

Numerical simulation: "probabilistic asymmetry factor"

► The 'demodulation' of ⁷Be neutrinos was studied by Ioannisian, Smirnov, and Wyler [PRD2015]

O. Kharlanov (MSU)

Modulated day-night effect

23 Apr 2018 9 / 15

Numerical simulation: electron recoil signatures

▶ The high-energy tail is affected; the signature depends strongly on the latitude O. Kharlanov (MSU) 23 Apr 2018 10 / 15

Modulated day-night effect

Numerical simulation: electron recoil signatures

▶ An 'interference' experiment for determining Δm^2 ?

O. Kharlanov (MSU)

Modulated day-night effect

23 Apr 2018 11 / 15

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Numerical simulation: a (possibly) rhetorical question

► The same 'wiggly' signature? Could it be made more statistically significant by temporal weighting?

O. Kharlanov (MSU)

Modulated day-night effect

23 Apr 2018 12 / 15

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Some conclusions

 Although oscillatory contributions to the physical effects are usually assumed to average out, this may be not quite so if, e.g., the oscillations have stationary points

(日)

Some conclusions

- Although oscillatory contributions to the physical effects are usually assumed to average out, this may be not quite so if, e.g., the oscillations have stationary points
- The day-night effect has these points around midnights/solstices, and one can use their localization to amplify their contributions

Some conclusions

- Although oscillatory contributions to the physical effects are usually assumed to average out, this may be not quite so if, e.g., the oscillations have stationary points
- The day-night effect has these points around midnights/solstices, and one can use their localization to amplify their contributions
- Signatures of these points may be present in the high-energy tails of the recoil energy distributions and are quite sensitive to the oscillation parameters

< ロ > < 同 > < 回 > < 回 > < 回 > <

The numerical simulations were made using the Supercomputing cluster "Lomonosov" (MSU)

References

 S. S. Aleshin, O. G. Kharlanov, and A. E. Lobanov, Analytical treatment of long-term observations of the day-night asymmetry for solar neutrinos, Phys. Rev. D 87, 045025 (2013).
 O. G. Kharlanov, Peculiar seasonal effects in the neutrino day-night asymmetry, arXiv:1509.08073[hep-ph].

イロト イポト イヨト イヨト

Thank you for your attention!

O. Kharlanov (MSU)

Modulated day-night effect

Ξ ▶ 4 Ξ ▶ Ξ つへへ 23 Apr 2018 15 / 15

<ロト < 同ト < ヨト < ヨト