
Event selection for the ν_e analysis in the NOvA experiment

Liudmila Kolupaeva

JINR, MSU

26 April 2018 AYSS-2018

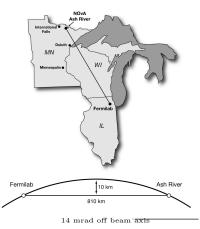
Oscillation parameters: $\theta_{12}, \theta_{23}, \theta_{13}$, CP phase δ , $|\Delta m_{13}^2|$, Δm_{12}^2

2 / 14

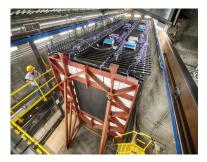
The NuMI Off-Axis ν_e Appearance Experiment. Goals

NOvA experiment goals :

Using $\nu_{\mu} \to \nu_e \ (\overline{\nu}_{\mu} \to \overline{\nu}_e)$


- * neutrino mass hierarchy
- * CP violating phase

Using $\nu_{\mu} \to \nu_{\mu} \ (\overline{\nu}_{\mu} \to \overline{\nu}_{\mu})$

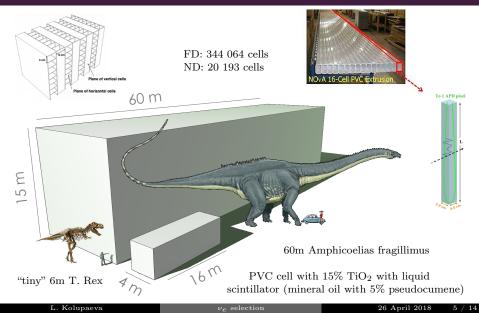

- * precise measurement Δm_{32}^2
- * mixing angle θ_{23} octant (more than 45° or less).

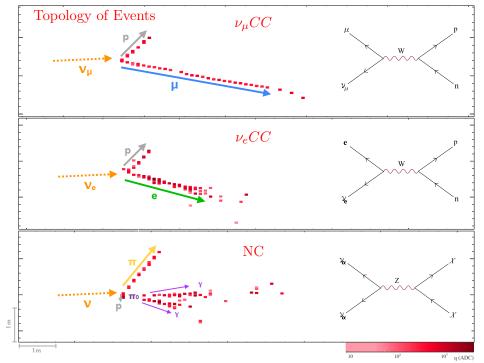
Also:

sterile neutrino searches (via deficit of NC events), supernova, neutrino crosssection measurements in the Near Det., monopoles, cosmic ray physics, and many other interesting phenomena.

Two detector scheme

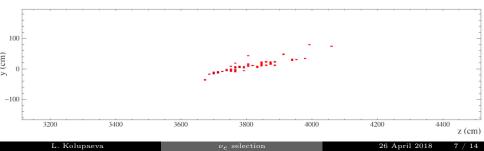
Near Detector (ND):

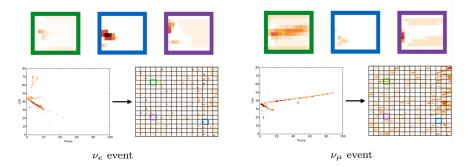

- $\ast~1~{\rm km}$ after target, weight 300 t
- * measure flux composition before oscillations
- * ND data used for prediction in FD (extrapolation procedure)



Far Detector (FD):

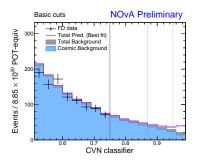
- $\,\ast\,$ 810 km after target, weight 14 kt
- * measure neutrino flux after oscillations
- * extrapolation cancels most systematics
- ✤ FD identical to ND

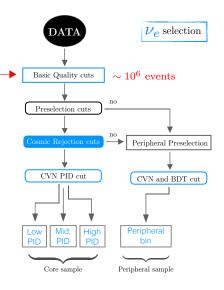

Two NOvA detectors - huge tracking calorimeters

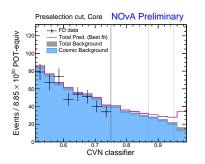


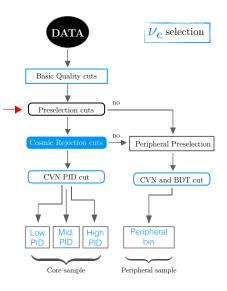
ν_e Appearance Mode

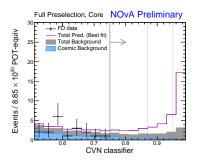
- * Identify ν_e CC candidates in the FD.
- * Use ND events to predict beam backgrounds in the FD.
- \ast The excess over the background is a signal.
- * Currenly have 8.85×10^{20} POT (Proton on target) statistics (50% more than in 2016 analysis)
- * Many significant improvements for 2017 analysis: revised detector resoponce and cross section models, new data based flux prediction, analysis techniques (selection and binning).

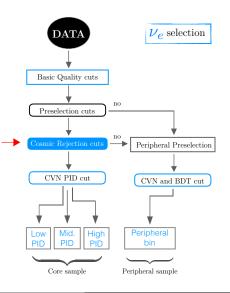


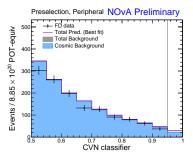

Particle identification technique

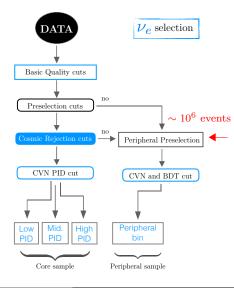

- * We keep using "Convolutional Visual Network" (CVN) particle identification technique based on ideas from computer vision and deep learning.
- * Input: Calibrated hit maps; Image processing transformations \rightarrow abstract features
- * Network decides important features + correlations; Output: event classifier
- * Use in ν_{μ} and ν_{e} analysis the same event selection technique.

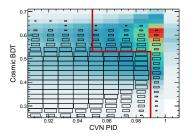

- * This cartoon illustrates the selection flow in ν_e analysis.
- * Cosmic bkg is one of the largest in the NOvA FD.
- * We introduced two samples for 2017 analysis - Core and Peripheral.

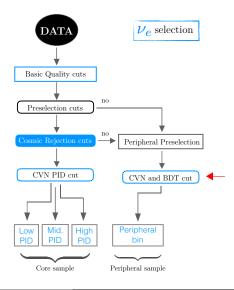


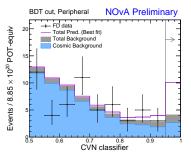

- * This cartoon illustrates the selection flow in ν_e analysis.
- * Cosmic bkg is one of the largest in the NOvA FD.
- * We introduced two samples for 2017 analysis - Core and Peripheral.

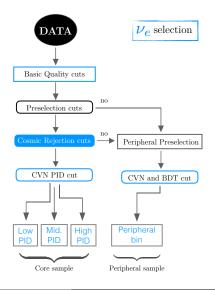


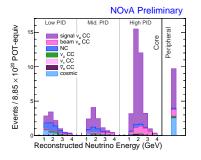

- * This cartoon illustrates the selection flow in ν_e analysis.
- * Cosmic bkg is one of the largest in the NOvA FD.
- * We introduced two samples for 2017 analysis - Core and Peripheral.

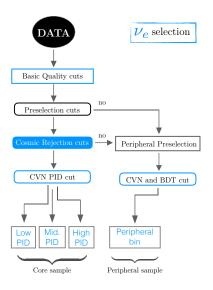



- * This cartoon illustrates the selection flow in ν_e analysis.
- * We introduced two samples for 2017 analysis - Core and Peripheral.
- * Cosmic rejection cuts also reject some signal events. Combined tight CVN + BDT cut allow us to reclaim some of those events.

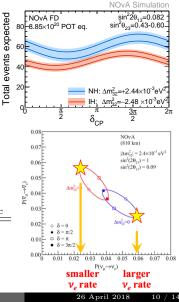



- * This cartoon illustrates the selection flow in ν_e analysis.
- * We introduced two samples for 2017 analysis - Core and Peripheral.
- * Cosmic rejection cuts also reject some signal events. Combined tight CVN + BDT cut allow us to reclaim some of those events.



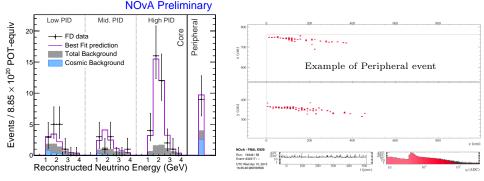

- * This cartoon illustrates the selection flow in ν_e analysis.
- * We introduced two samples for 2017 analysis - Core and Peripheral.
- Cosmic rejection cuts also reject some signal events. Combined tight CVN + BDT cut allow us to reclaim some of those events.

* As a result of this flow we have 4 spectra for different CVN PID binning and Peripheral sample separately.

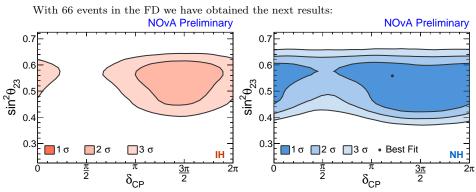


* Signal depends on oscillation parameters

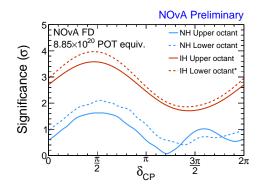
- * Expect about 20.5 background events.
- * Dominated by Beam ν_e and NC events.
- * Background has small variation with oscillation parameters.


Total bkg.Beam
$$\nu_e$$
NC ν_{μ} CC ν_{τ} CCCosmic20.57.16.61.10.34.9

 ν_e selection



Observed 66 events in the FD, with background expectation 20.5 ± 2.5 . 9 events in the peripheral sample.


In 2016 analysis we had 33 events, thus with just +50% of exposure and improvement in selection techniques we $\times 2$ the analysis sample.

NOvA fit results

- * Best Fit: $\delta_{CP} = 1.21\pi$, Upper Octant, Normal Hierarchy.
- * Upper octant is preferred at 0.2σ .
- * Exclude $\delta_{CP} = \pi/2$ region in the IH at $> 3\sigma$.
- * Approaching IH rejection at 2σ .

* Best Fit: $\delta_{CP} = 1.21\pi$, Upper Octant, Normal Hierarchy.

- * Upper octant is preferred at 0.2σ .
- * Exclude $\delta_{CP} = \pi/2$ region in the IH at $> 3\sigma$.
- * Approaching IH rejection at 2σ .

With 8.85×10^{20} POT and significant improvements in our analysis tools and simulation, NOvA obtained the next results:

- * We doubled our analysis sample with just +50% more exposure.
 - * Found 66 ν_e CC events in the FD (33 events were in the previous analysis)
- * Inverted Hierarchy, $\delta_{CP} = \pi/2$ is disfavored at greater than 3σ .
 - * Approaching 2σ IH rejection for all values of δ_{CP} .
- * We're running with antineutrino beam right now. First result with $\nu + \bar{\nu}$ data later this year