On a moduli space of the Wigner quasiprobability distributions

Vahagn Abgaryan, Arsen Khvedelidze and Astghik Torosyan

Laboratory of Information Technologies Joint Institute for Nuclear Research Dubna, Russia

The XXII International Scientific Conference of Young Scientists and Specialists

Content

Objective

Introduction

- Wigner function
- Stratonovich-Weyl kernel
- Master equations
- Moduli space parametrization
- Examples: Qubit, Qutrit, Quatrit

Onclusions

- 3

3 🖌 🖌 3 🕨

Context

Recently an ambiguity in specification of the Wigner quasiprobability distribution for a finite-dimensional quantum system has been studied.

It was shown that for an N-level quantum system one can construct N-2 parametric family of unitary non-equivalent Wigner quasiprobability distributions.

The main objective

In the report the moduli space of the Wigner quasiprobability distributions for *N*-dimensional quantum systems will be discussed and exemplified for low dimensional cases: for a single qubit, qutrit and quartit.

Introduction

Abgaryan, Khvedelidze, Torosyan (JINR)

Wigner quasiprobability functions

- (E 23-27 April, AYSS-2018 4 / 23

э

A quantum state is described by a density operator ρ :

$$arrho^{\dagger}=arrho$$
 ; $tr(arrho)=1$; $arrho\geq 0$.

The Wigner function is constructed from the density matrix ρ and the Stratonovich-Weyl kernel $\Delta(\Omega_N)$:

$$W_{\varrho}(\Omega) = tr\left(\varrho \; \Delta(\Omega)
ight) \, .$$

Singular value decomposition: $\Delta(\Omega) = U(\Omega) P U^{\dagger}(\Omega)$,

where $P = diag||\pi_1, \cdots, \pi_N||$ and $\pi_1 \ge \pi_2 \ge \cdots \ge \pi_N$.

Master equations:

$$tr(\Delta(\Omega)) = 1, \qquad tr(\Delta(\Omega)^2) = N.$$

Abgaryan, Khvedelidze, Torosyan (JINR)

Parametrization of the moduli space

Abgaryan, Khvedelidze, Torosyan (JINR)

Wigner quasiprobability functions

23-27 April, AYSS-2018 6 / 23

The Stratonovich-Weyl kernel

$$\Delta(\Omega|\boldsymbol{\nu}) = \frac{1}{N} U(\Omega) \left[I + \kappa \sum_{\lambda \in H} \mu_s(\boldsymbol{\nu}) \lambda_s \right] U(\Omega)^{\dagger}, \quad \kappa = \sqrt{N(N^2 - 1)/2},$$

where

- H is the **Cartan subalgebra** in SU(N),
- parameter $oldsymbol{
 u}=(
 u_1\,,\cdots\,,
 u_{N-2})$ labels members of the WF family,

• coefficients
$$\left|\sum_{s=2}^{N} \mu_{s^2-1}^2(\boldsymbol{\nu}) = 1\right|$$

A density matrix of an N-dimensional quantum system

$$\varrho_{\xi} = \frac{1}{N} \left[I + \sqrt{\frac{N(N-1)}{2}} \left(\boldsymbol{\xi}, \boldsymbol{\lambda} \right) \right],$$

where

ξ is an (N² - 1)-dimensional Bloch vector,
λ = {λ₁, · · · , λ_{N²-1}} is su(N) algebra basis.

Abgaryan, Khvedelidze, Torosyan (JINR)

A family of the Wigner functions

$$W^{(\boldsymbol{
u})}_{\boldsymbol{\xi}}(\Omega_N) = rac{1}{N}\left[1+rac{N^2-1}{\sqrt{N+1}}(\boldsymbol{n},\boldsymbol{\xi})
ight]\,,$$

where

•
$$\boldsymbol{n} = \mu_3 \boldsymbol{n}^{(3)} + \dots + \mu_{N^2 - 1} \boldsymbol{n}^{(N^2 - 1)}$$
,

•
$$\boldsymbol{n}^{(s^2-1)} = \frac{1}{2} \operatorname{tr} \left(U \lambda_{s^2-1} U^{\dagger} \lambda_{\mu} \right)$$
, $s = \overline{2, N}$.

The spectrum $\{\pi_1, \cdots, \pi_N\}$ of the Stratonovich-Weyl kernel:

$$\pi_{i} = \frac{1}{N} \left(1 + \sqrt{2}\kappa \sum_{s=i+1}^{N} \frac{\mu_{s^{2}-1}}{\sqrt{s(s-1)}} - \kappa \sqrt{\frac{2(i-1)}{i}} \mu_{i^{2}-1} \right).$$

Abgaryan, Khvedelidze, Torosyan (JINR)

Wigner quasiprobability functions

23-27 April, AYSS-2018 8 / 23

- 3

(4 同) (4 日) (4 日)

Constraints on the spherical angles

The spherical (N - 2) angles:

$$\mu_{3} = \sin \psi_{1} \cdots \sin \psi_{N-2},$$

$$\vdots$$

$$\mu_{i^{2}-1} = \sin \psi_{1} \cdots \sin \psi_{N-i} \cos \psi_{N-i+1},$$

$$\vdots$$

$$\mu_{N^{2}-1} = \cos \psi_{1}, \qquad i = \overline{2, N}.$$

For decreasing order $\pi_1 \geq \cdots \geq \pi_N$

$$\mu_3 \ge 0, \qquad \mu_{(i+1)^2-1} \ge \sqrt{\frac{i-1}{i+1}} \, \mu_{i^2-1}, \quad i = \overline{2, N-1}.$$

Abgaryan, Khvedelidze, Torosyan (JINR)

Examples: qubit, qutrit and quatrit

Abgaryan, Khvedelidze, Torosyan (JINR)

Wigner quasiprobability functions

23-27 April, AYSS-2018

A B M A B M

10 / 23

3

The Wigner function of a single qubit

A generic qubit quantum state is parameterized in a standard way

$$\varrho_{qubit} = \frac{1}{2} \left(I + \boldsymbol{r} \cdot \boldsymbol{\sigma} \right)$$

by the Bloch vector $\mathbf{r} = (r \sin \psi \cos \phi, r \sin \phi \sin \phi, r \cos \psi)$. The master equations determine the spectrum:

$$\operatorname{spec}\left(P^{(2)}\right) = \left\{\frac{1+\sqrt{3}}{2}, \frac{1-\sqrt{3}}{2}\right\}$$

The Wigner function for a single qubit is

$$W_{\mathbf{r}}(\alpha,\beta) = \frac{1}{2} + \frac{\sqrt{3}}{2} (\mathbf{r},\mathbf{n}) ,$$

where $\mathbf{n} = (-\cos \alpha \sin \beta, \sin \alpha \sin \beta, \cos \beta)$ is the unit 3-vector.

Qutrit kernel and its fundamental region

A generic **qutrit** state is given by the density matrix

$$arrho_{qutrit} = rac{1}{3} \left(I + \sqrt{3} \sum_{
u=1}^{8} \xi_{
u} \lambda_{
u}
ight) \, .$$

The Stratonovich-Weyl kernel

$$\Delta(\Omega_3) = U(\Omega_3) \frac{1}{3} \left[I + 2\sqrt{3} \left(\mu_3 \lambda_3 + \mu_8 \lambda_8 \right) \right] U(\Omega_3)^{\dagger},$$

where the coefficients

$$\mu_3(\nu) = \frac{\sqrt{3}}{4}\sqrt{(1+\nu)(5-3\nu)}, \quad \mu_8(\nu) = \frac{1}{4}(1-3\nu)$$

are functions of the parameter $\nu = \frac{1}{3} - \frac{4}{3}\cos(\zeta)$ with $\zeta \in [0, \pi/3]$ being the moduli parameter of the unitary nonequivalent WF of a qutrit.

The Wigner function of a single qutrit

$$W_{\boldsymbol{\xi}}^{(\nu)}(\Omega_3) = \frac{1}{3} + \frac{4}{3} \left[\mu_3 \left(\boldsymbol{n}^{(3)}, \boldsymbol{\xi} \right) + \mu_8 \left(\boldsymbol{n}^{(8)}, \boldsymbol{\xi} \right) \right],$$

with two orthogonal unit 8-vectors

$$n_{\nu}^{(3)} = rac{1}{2} \mathrm{tr} \left[U \lambda_3 U^{\dagger} \lambda_{\nu}
ight] , \qquad n_{\nu}^{(8)} = rac{1}{2} \mathrm{tr} \left[U \lambda_8 U^{\dagger} \lambda_{\nu}
ight] .$$

The master equations

$$tr(\Delta(\Omega)) = 1,$$
 $tr(\Delta(\Omega)^2) = 3$

determine one-parametric family of kernels $P^{(3)}(\nu)$.

N = 3

One-parametric $P^{(3)}(\nu)$ -family

The spectrum of generic kernels:

$$\operatorname{spec}\left(P^{(3)}(\nu)\right) = \left\{\frac{1-\nu+\delta}{2}, \frac{1-\nu-\delta}{2}, \nu\right\},$$

where $\delta = \sqrt{(1+\nu)(5-3\nu)}$ and $\nu \in (-1, -\frac{1}{3})$.

• Two degenerate kernels:

$$\operatorname{spec}\left(P^{(3)}(-1)
ight) = \{1, 1, -1\}, \quad \operatorname{spec}\left(P^{(3)}(-1/3)
ight) = \left\{\frac{5}{3}, -\frac{1}{3}, -\frac{1}{3}
ight\}$$

• The spectrum of **singular** kernel:

$$\operatorname{spec}\left(P_{det=0}^{(3)}\right) = \left\{\frac{1+\sqrt{5}}{2}, 0, \frac{1-\sqrt{5}}{2}\right\}, \quad tr\left([P_{det=0}^{(3)}]^{m}\right) = \mathcal{L}_{m},$$

where the *m*-th Lucas number $\mathcal{L}_m = \phi^m + (-\phi)^{-m}$ and $\phi = \frac{1+\sqrt{5}}{2}$.

Examples

N = 3

The ordering of the SW kernel eigenvalues $|\pi_1 \ge \pi_2 \ge \pi_3|$ and condition $\sum \mu_i^2 = 1$ lead to

$$\mu_3 = \sin \zeta, \quad \mu_8 = \cos \zeta, \quad 0 \le \zeta \le \frac{\pi}{3}$$

Quatrit kernel and its fundamental region

A generic quatrit (N = 4) state is given by the density matrix

$$arrho_{quatrit} = rac{1}{4} \left(I + \sqrt{6} \sum_{
u=1}^{15} \xi_
u \lambda_
u
ight) \, .$$

The Stratonovich-Weyl kernel

$$\Delta(\Omega_N|\nu) = U(\Omega_N) \frac{1}{4} \left[I + \sqrt{30} \left(\mu_3 \lambda_3 + \mu_8 \lambda_8 + \mu_{15} \lambda_{15} \right) \right] U(\Omega_N)^{\dagger}.$$

The Wigner function of a quatrit

$$W^{(\nu)}_{\boldsymbol{\xi}}(\Omega_4) = rac{1}{4} + rac{3\sqrt{5}}{4} \left[\mu_3(\boldsymbol{n}^{(3)}, \boldsymbol{\xi}) + \mu_8(\boldsymbol{n}^{(8)}, \boldsymbol{\xi}) + \mu_{15}(\boldsymbol{n}^{(15)}, \boldsymbol{\xi})
ight] \,,$$

with

$$n_{\nu}^{(3,8,15)} = \frac{1}{2} \operatorname{tr} \left[U \lambda_{3,8,15} U^{\dagger} \lambda_{\nu} \right].$$

Abgaryan, Khvedelidze, Torosyan (JINR)

23-27 April, AYSS-2018

Quatrit density matrix

In a quatrit case, there are 24 ways of the spec $(\rho_{quatrit}) = \{r_1, r_2, r_3, r_4\}$ ordering.

The fixed order of the eigenvalues

$$\begin{split} 1 \geq r_1 \geq r_2 \geq r_3 \geq r_4 \geq 0, \\ 0 \leq r_i \leq 1, \qquad \sum r_i = 1, \end{split}$$

leads to

$$\begin{split} 0 &\leq \xi_3 \leq \sqrt{2/3}\,, \\ \frac{\xi_3}{\sqrt{3}} &\leq \xi_8 \leq \sqrt{2}/3\,, \\ \frac{\xi_8}{\sqrt{2}} &\leq \xi_{15} \leq 1/3\,. \end{split}$$

The master equations

$$tr\left(\Delta(\Omega)
ight)=1\,,\qquad tr\left(\Delta(\Omega)^2
ight)=4$$

determine two-parametric family of kernels $P^{(4)}$ with $\pi_1 \ge \pi_2 \ge \pi_3 \ge \pi_4$:

• Generic kernel:

$$\operatorname{spec}\left(P^{(4)}(\pi_3,\pi_4)\right) = \left\{\frac{\gamma+\delta}{2},\frac{\gamma-\delta}{2},\pi_3,\pi_4\right\},\,$$

where

$$\gamma = 1 - \pi_3 - \pi_4 \,, \quad \delta = \sqrt{8 - 2(\pi_3^2 + \pi_4^2) - \gamma^2} \,.$$

Abgaryan, Khvedelidze, Torosyan (JINR)

23-27 April, AYSS-2018

(4) E > (4) E >

3

$$\begin{aligned} \mathcal{R}_{m} &= \mathcal{R}_{m-1} + \frac{3}{2} \mathcal{R}_{m-2} , \ \mathcal{R}_{1} = 1 , \mathcal{R}_{2} = 4 ; \\ \mathcal{L}_{m} &= \mathcal{L}_{m-1} + \mathcal{L}_{m-2} , \quad \mathcal{L}_{1} = 2 , \mathcal{L}_{2} = 1 . \end{aligned}$$

• Degenerate kernels:

• Triple degenerate

$$\begin{aligned} & \mathcal{P}_{\{123\}4}^{(4)}: \pi_1 = \pi_2 = \pi_3 \neq \pi_4 \,, \\ & \mathcal{P}_{1\{234\}}^{(4)}: \pi_1 \neq \pi_2 = \pi_3 = \pi_4 \,. \end{aligned}$$

• Double degenerate

$$\begin{aligned} & P_{\{12\}\{34\}} : \pi_1 = \pi_2 \neq \pi_3 = \pi_4 , \\ & P_{\{12\}34} : \pi_1 = \pi_2 \neq \pi_3 \neq \pi_4 , \\ & P_{1\{23\}4} : \pi_1 \neq \pi_2 = \pi_3 \neq \pi_4 , \\ & P_{1\{23\}4} : \pi_1 \neq \pi_2 \neq \pi_3 = \pi_4 . \end{aligned}$$

• Singular kernels

 $P_{1\{2=0\}34} : \pi_1 \neq \pi_2 = 0 \neq \pi_3 \neq \pi_4,$ $P_{12\{3=0\}4} : \pi_1 \neq \pi_2 = 0 \neq \pi_3 \neq \pi_4,$ $P_{1\{\{23\}=0\}4} : \pi_1 \neq \pi_2 \neq \pi_3 = 0 \neq \pi_4,$ with $tr\left(P_{1\{\{23\}=0\}4}^m\right) = \mathcal{R}_m.$ functions 23-27 April, AYSS-2018 19 / 23 Parameterizing μ by two spherical coordinates

$$\mu_3=\sin\psi_1\sin\psi_2\,,\quad \mu_8=\sin\psi_1\cos\psi_2\,,\quad \mu_{15}=\cos\psi_1$$

and using the constraints coming from the requirement of a decreasing order of the SW kernel's eigenvalues

$$\mu_3 \ge 0, \qquad \mu_8 \ge \frac{\mu_3}{\sqrt{3}}, \qquad \mu_{15} \ge \frac{\mu_8}{\sqrt{2}},$$

we have:

$$\left\{ \begin{array}{l} \left\{ \begin{aligned} \psi_2 \in \left(0, \frac{\pi}{3}\right] \ , \\ 0 < \psi_1 \leq \arccos\left(\cos\psi_2/\sqrt{2}\right) \ ; \\ \left\{ \begin{aligned} \psi_2 = 0 \ , \\ 0 < \psi_1 \leq \arccos\left(1/\sqrt{2}\right) \ ; \\ \end{aligned} \right. \end{aligned} \right. \tag{See Figure 1} \\ \left\{ \begin{aligned} \psi_1 = 0 \ . \end{aligned} \right.$$

23-27 April, AYSS-2018

N = 4

Girard's theorem: the spherical excess of a triangle determines the solid angle

$$\pi/2 + \pi/3 + \pi/3 - \pi = 4\pi/24$$
.

Any fixed order of eigenvalues corresponds to one of 24 possible ways to tessellate a sphere.

Figure 1: Möbius (2, 3, 3) triangle with $(\pi/2, \pi/3, \pi/3)$ angles.

Conclusions

An ambiguity in the master equation's solution for Stratonovich-Weyl kernel is analyzed and the corresponding moduli spaces of the Wigner QPDF is determined for N = 3, 4 quantum systems:

- for the qutrit the moduli space is the $\frac{\pi}{3}$ arc of the unit circle,
- for the quatrit the moduli space is (2,3,3) Möbius triangle.

The basic goal of our further studies is understanding of a physical meaning of the Wigner function moduli space. Thank you for attention

э