Bacronic Mamer
 : 10 O
 anWuctornon

 Outer Tracker of the BM@N

 Outer Tracker of the BM@N Experiment

 Experiment}
M. Kapishin, Vasilisa Lenivenko, V. Palichik, N. Voytishin AYSS-2018, Dubna

BM@N - experimental setup Run7 (March-April 2018)

- Beam counters: T0 and beam monitors
- MWPC - alignment and incoming beam trajectory positioning
- Central tracker (GEM) - AA interactions reconstruction
- Outer tracker (DCH, CSC) - link central tracks to ToF
- ToF - hadrons and light nuclei identification
- ZDC calorimeter - centrality of AA collisions measurement
- Electromagnetic calorimeter - $\gamma, \mathrm{e}+\mathrm{e}-$ detection

DCH Performance

4 double coordinate planes: wire angles $0,90, \pm 45^{\circ}$, wire pitch 10 mm , Yout $\pm 1.35 \mathrm{~m}$, Xout $\pm 1.35 \mathrm{~m}$, Rmin = 10 cm , 2048 wires per chamber

Not working amplifier (run7)

Cathode Strip Chambers

Coordinate calculated by CoG at the moment. To be fitted by Gatti function in the future.

Number of strips per cluster

Typical cluster charge distribution on strips

- CSC is resistant to high loads
- Does not depend on starting time

Reconstructed Hit

- 2D coordinate
of the passing particle on a zone.

Zones

CSC performance and matching to DCH

Unsatisfied starting time TO

Beam momentum estimation procedure

$$
\mathrm{P}_{\text {beam(est })}=\frac{0.3 * \int \mathrm{Bdl}}{\sin \left(\alpha_{\text {out }}\right)-\sin \left(\alpha_{\text {in }}\right)}
$$

$\alpha_{i n}$ - angle of beam before magnet (MWPC); $\alpha_{\text {out }}$ - angle of beam after magnet (DCH); $\int B d l$ - magnet field integral [T*m].

$$
P_{\text {beam }}=\frac{A}{Z} * \sqrt{\left(E / n+M_{p}\right)^{2}-M_{p}^{2}}
$$

A - mass number;
Z - number of protons;
E / n - beam energy per nucleon;
M_{p} - proton mass.

Momentum vs. Int(BdL)

Data Run6

C beam energy $4.5 \mathrm{GeV} /$ nucleon;
Momentum $10.7 \mathrm{GeV} / \mathrm{c}$;
Beam Momentum

C beam energy $3.5 \mathrm{GeV} /$ nucleon;
Momentum $8.7 \mathrm{GeV} / \mathrm{c}$;
Beam Momentum

RED - Nuclotron beam momentum;
BLUE - Estimated beam momentum.

2 nucleon Short Range Correlations

- Occasionally 2 nucleons are at close proximity in the nucleus
- This pair is characterized by high momentum of each nucleon and low center of mass momentum
- Properties of SRC pairs were studied in the last BM@N run

SRC at BM@N

- Measure the residual nucleus (A-2)
for the first time: define A and Z
- BC3 for measure $Z\left(Z^{2}\right)$
- MWPC and DCH - turning angle
- TOF-700 information will help to identify A-2

Role of MWPC in SRC at BM@N

- Beam monitor
- N of tracks after target
- Initial direction for turning angle

Each chamber has 6 planes $\left(X_{1}, V_{1}, U_{1}, X_{2}, V_{2}, U_{2}\right)$ with angle 60 degrees between them

$$
\begin{aligned}
& \mathrm{U}=\frac{\mathrm{x}+\sqrt{3} \mathrm{y}}{2} \\
& V=\frac{x-\sqrt{3} y}{2}
\end{aligned}
$$

which leads to $\mathrm{X}=\mathrm{U}+\mathrm{V}$
The intersection of these planes is a working area.

Reconstructed Track parameters: slopeX, slopeY, x, y

1. Recognize segments with groups of $6,5,4$ - fired wires per segment
2. Reconstruct \& fit track-segments in each chamber
(slope X_{i}, slope $Y_{i}, k x_{i}, k y_{i}$ in the Z_{i} - chamber center)
3. Reconstruct track in each pair of chambers
(slope $X_{0,1}$, slope $_{0,1}, \mathrm{kx}_{0,1}, \mathrm{ky}_{0,1}$ in the $\mathrm{Z}_{0,1}-$ pair center)
4. Extrapolate tracks to the target center for each pair
5. Plot distributions

Track parameters for Pair 0 in the target center: run 2685 (Beam: C, empty target)

Chamber 0 | Chamber 1

ky vs kx (pair0) in_target

Track parameters for Pair 0 in the target center: run 2706 (Beam: C , target: H2)

Chamber 0 | Chamber 1
kx pair0 in_target

ky vs kx (pair0) in_target

Summary

- The software for the MWPC and DCH detector systems was developed and implemented into the official experiment software and the software for CSC is under development
- The spatial resolution for different layers of the DC chambers varies within 150-200 $\mu \mathrm{m}$
- The MWPC and DCH systems give us the possibility to estimate the beam momentum value with a high precision $\sim 2 \%$ for the working values of the magnetic field integral
- The outer tracker detector systems (DCH \& CSC) provide a high hit efficiency per layer
- The first look at CSC spatial hits matching with DCH global tracks shows a good CSC-DCH correlation
- MWPC plays a key role in estimation of beam momentum and identification of A-2 for SRC program

Thank you for your attention!

ax slope for beam - C $4.5 \mathrm{GeV} /$ nucl

Spatial resolution calculation:

- Only 6 \& 5-point segments are considered;
- For each layer with hit a straight line fit is applied excluding the current layer and the residual (Δ) between the measured strip coordinate and the predicted track coordinate from fit is used for resolution calculation.

- - hit used for fit
- - hit excluded from fit
x - predicted track coordinate

Efficiency per layer (from segments):

```
Numerator 1 1 1 1 0 1 0
    Segment-x * * 0 * 0- Efficiency
Demoninator 1 1 1 1 1 1 1
```

