

MODELS OF CONTINUUM DAMAGE MECHANICS APPLICABLE IN CRYOGENIC CONDITIONS

Maciej Dziewiecki Wroclaw University of Science and Technology

CONTINUUM DAMAGE MECHANICS

CONTINUUM DAMAGE MECHANICS

	Table 1	1. Probabilities	of defect	occurrence	(failure rates)) of	the most	common	defect
--	---------	------------------	-----------	------------	-----------------	------	----------	--------	--------

Defect	Failure rate	Source	
Cold weld rupture	2.53-10-7 m ⁻¹ -year -1	1	
Cold pipe leakage	4.61.10 ⁻⁶ m ⁻¹ .vear ⁻¹	2	
Cold pipe rupture	4.54-10-7 m ⁻¹ -year -1	2	
Cold bellows rupture	8.76-10-5 year -1	3	
Vacuum jacket rupture	8.77-10-3 year -1	4	
Capilary break	2.0-10-8 year -1	5	

Dobór zaworów bezpieczeństwa

EN ISO 4126-1:2007 Safety devices for protection against excessive pressure - Part 1: Safety valves

$$\dot{m} = 0.2883 \cdot C \cdot K_{dr} \cdot K_{b} \cdot \sqrt{\frac{p_{0}}{\nu}} \qquad C = 3.984 \sqrt{\kappa \left(\frac{2}{\kappa+1}\right)^{\frac{\kappa+1}{\kappa-1}}} \qquad K_{b} = \sqrt{\frac{\frac{2k}{k-1} \left[\left(\frac{p_{b}}{p_{0}}\right)^{2/k} - \left(\frac{p_{b}}{p_{0}}\right)^{(k+1)/k}\right]}{k \left(\frac{2}{k+1}\right)^{(k+1)/(k-1)}}}$$

880 B

CONTINUUM DAMAGE MECHANICS

Continuum Damage Mechanics (CDM) falls within the group of inelastic materials, and deals with materials that undergo structural weakening as a result of microcrack formation (brittle damage) or of void growth and coalescence (ductile damage)

500µm

200µm

Sr. No	Temperature	Energy absorb by
	(In °C)	specimen (in joule)
1	-120	-
2	-110	2.5
3	-100	3.5
4	-90	8
5	-80	24
6	-70	34
7	-60	26
8	-50	58
9	-40	82
10	-30	100
11	-20	105
12	-10	105
13	0	88

CONTINUUM DAMAGE MECHANICS

Reducing the strength of the material with respect to the theoretical strength is linked with the presence - in fact unavoidable - two types of defects:

- 1. Geometrical stress contentrators sharp gaps and notches
- 2. Stress concentrators in the form of dislocations

Griffith Theory of Brittle Fracture

 The critical stress required for crack propagation in a brittle material is given by:

$$\sigma_c = \left(\frac{2E\gamma_s}{\pi a}\right)^{1/2}$$

- E = modulus of elasticity
- gs= specific surface energy
- a = half the length of an internal crack
- Applies only in cases where there is no plastic deformation present.

CONTINUUM DAMAGE MECHANICS

Verification other mathematical models eg:

- Irwin Model
- Dugdale-Barenblatt Model
- Czerepanow Model
- Orowan Model
-

Or using a proper numerical analysis (uncoupled/coupled) for cryogenics temperatures (correction factors for material data?)

CONTINUUM DAMAGE MECHANICS

THANK YOU