Charm physics in NA61/SHINE

Wojciech Bryliński

for NA61/SHINE Warsaw University of Technology

25.04.2018

▲ 문 ▶ ▲ 문 ▶ 문 범 = ∽ ۹ @

NA61/SHINE (SPS Heavy Ion and Neutrino Experiment) is a multi-purpose spectrometer optimised to study hadron production in different types of collisions: p+p, p+A, A+A.

ATLA

ALICE

More details: 26/04; 12:30, Andrey Seryakov "Results from the NA61/SHINE energy and system size scan program"

LHC 27 km

CERN Rese

MS

Motivation of open charm measurements

2 First measurements in NA61/SHINE

Precise open charm studies after Long Shutdown 2

EL NOR

Motivation of open charm measurements

EL NOR

→ Ξ → < Ξ</p>

Motivation of open charm measurements

Three main questions that motivate open charm measurements at the CERN SPS:

- What is the mechanism of open charm production?
- O How does the onset of deconfinement impact open charm production?
- How does the formation of quark-gluon plasma impact J/ψ production?

To answer these questions **mean number of charm quark pairs** $\langle c\bar{c} \rangle$ produced in the full phase space in A+A collisions has to be known. Up to now corresponding experimental data **does not exist**.

Models of charm production

Predictions for $\langle c\bar{c} \rangle$ in central Pb+Pb collisions at beam momentum of 158A GeV/*c* differ by about **two orders of magnitude**.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Charm yield as the signal of deconfinement

Phase Transition: ${\sf T}_c pprox 150~{\sf MeV}$

confined matter $D\overline{D}$ mesons $2M \approx 3.7$ GeV

quark-gluon plasma (anti-)charm quarks $2m \approx 2.6$ GeV

J/ψ suppression as the signal of deconfinement

Open charm and J/ψ production within Matsui-Satz model [PL B178 416]

$$P(c\bar{c} \rightarrow J/\psi) \equiv rac{\langle J/\psi \rangle}{\langle c\bar{c} \rangle} \equiv rac{\sigma_{J/\psi}}{\sigma_{c\bar{c}}}$$

Medium reduces probability of J/ψ production.

[Satz, Adv. High Energy Phys. 2013 (2013) 242918]

J/ψ suppression as the signal of deconfinement

Calculation of $P(c\bar{c} \rightarrow J/\psi)$ requires data on:

• $\langle J/\psi \rangle$ - precise data at SPS by NA38, NA50, NA60

• $\langle c\bar{c} \rangle$ - can be estimated from open charm measurements started by NA61/SHINE

NA61

INE

J/ψ production at CERN SPS

Data on J/ψ production has been normalized by the Drell-Yan yield

Interpretation of these results is based on assumption: $\langle c\bar{c}\rangle\sim \langle DY\rangle$

First measurements in NA61/SHINE

25.04.2018 11 / 26

ELE SQC

イロト イボト イヨト イヨト

Open charm distribution

0-20% Pb+Pb at 158 GeV/c

S…INE

What can NA61/SHINE measure?

•
$$D^0 \rightarrow \pi^+ + K^-$$

 $c\overline{\tau} \approx 123 \ \mu m$
BR = 3.89%

•
$$D_s^+ \rightarrow \pi^+ + K^+ + K^-$$

 $c\bar{\tau} \approx 150 \ \mu m$
 $BR = 5.5\%$

$$D^+
ightarrow \pi^+ + \pi^+ + K^-$$

 $c \overline{\tau} \approx 312 \ \mu m$
 $BR = 9.22\%$

•
$$\Lambda_c^+ \rightarrow p + \pi^+ + K^-$$

 $c \overline{\tau} \approx 60 \ \mu m$
BR = 5.0%

Up to now only $\langle D^0 \rangle$ measurements were tested, but after Long Shutdown 2 at CERN (2019-2020) NA61/SHINE will be able to measure all of the most popular carriers of *c* and \bar{c} quarks.

Open charm measurement concept

Vertex Detector is needed to reconstruct primary vertex and secondary vertices with high precision.

NA61/SHINE detector

Small Acceptance Vertex Detector (SAVD)

Small Acceptance Vertex Detector introduced in 2016:

- 16 CMOS MIMOSA-26 sensors located on two horizontally movable arms
- target holder integrated

Achieved goals:

- tracking in large track multiplicity environment
- precise primary vertex reconstruction
- TPC-SAVD track matching
- first search of D^0 and $\bar{D^0}$ signal

Wojciech Bryliński (WUT)

Acceptance of SAVD

AMPT simulations for central Pb+Pb collisions at 150A GeV/c SAVD reconstructs 5% out of all $D^0\to\pi^++K^-$ decays

Test data taking – December 2016 Pb+Pb at 150A GeV/c

First indication of D^0 and $\bar{D^0}$ peak

Precise open charm studies after Long Shutdown 2

< ∃ > < ∃

EL NOR

NA61/SHINE upgrades

NA61/SHINE Vertex Detector

General requirements:

- precise vertex measurement
- fast detectors with high granularity
- low material budget
- large acceptance

Technology developed for ALICE ITS – ALPIDE sensors:

- very low noise
- fast readout
- two possible working modes: continuous and triggered readout

I DQA

Acceptance of NA61/SHINE VD

AMPT simulations for central Pb+Pb collisions at 150A GeV/c VD reconstructs 13% out of all $D^0 \rightarrow \pi^+ + K^-$ decays Corrected results will refer to >90% of total open charm yield

Total systematic uncertainty of $\langle D^0 \rangle$ and $\langle \overline{D^0} \rangle$ is expected to be about 10%.

Wojciech Bryliński (WUT)

Impact of NA61/SHINE open charm measurements ...INE 10 STATISTICAL MODELS DYNAMICAL MODELS accuracy of (CC) NA61 2020+ result 10 HSD pQCD HRG QUARK COALESCENCE SMES §^{10²} Bσ(J/ψ) / σ(DY)_{2:9-4.5} $\sigma(J/\psi) / \sigma(\pi) * 10^6$ 35 30 10 Lever and the second 25 20 Sec. 2 15 10 10 Ph . Ph 1994 5 10-2 120 140 20 40 60 80 100 4 12 14 16 18 S_{NN} (GeV) E_T (GeV)

Wojciech Bryliński (WUT)

Summary

NA61/SHINE charm program addresses the following questions:

- What is the mechanism of open charm production?
- I How does the onset of deconfinement impact open charm production?
- How does the formation of quark-gluon plasma impact J/ψ production?

To answer these questions NA61/SHINE is planning to perform precise measurements of mean multiplicity of charm quark pairs after Long Shutdown 2.

Only NA61/SHINE can perform this measurement in the near future.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

VD - team

- Kraków (AGH): M. Baszczyk, P. Dorosz, W. Kucewicz, Ł. Mik
- GU Frankfurt: M. Deveaux, M. Gaździcki, M. Koziel, A. Snoch Thanks to: P. Klaus, J. Michel, M. Wiebusch
- Warsaw: A. Aduszkiewicz, W. Bryliński, D. Tefelski
- St. Petersburg State University: G. Feofilov
- ETH Zürich: S. Di Luise

and many others ...

Thank you!!!

Wojciech Bryliński (WUT)

25.04.2018 26 / 26

三日 のへぐ

イロト イボト イヨト イヨト

Backup

Wojciech Bryliński (WUT)

25.04.2018 1 / 39

三日 のへで

<ロト <回ト < 回ト < 回ト

Uniqueness of NA61 open charm program

Landscape of present and future heavy ion experiments

NA61/SHINE is the only experiment which is able to measure open charm production in heavy ion collisions in full phase space in the near future.

- LHC and RHIC at high energies: measurement in small phase space due to collider geometry and kinematics
- RHIC BES collider: measurement not possible due to collider geometry and kinematics
- RHIC BES fixed-target: measurement require dedicated setup – not under consideration
- NICA (<80A GeV/c): measurement during stage 2 under consideration
- J-PARC (<20*A* GeV/*c*): maybe possible after 2025
- FAIR (<10A GeV/c): not possible

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

SAVD-TPC track matching

- extrapolate SAVD and TPC tracks to the common surface
- preselection: cut on y-slope of tracks
- After cut on dx and dy clear correlation peaks are visible in dpx and dpy distributions

Search for D^0 and $\overline{D^0}$

Combinatorial background is reduced by the cuts on:

- track transverse momentum
- track impact parameter
- longitudinal distance between primary and secondary vertices
- pair impact parameter

Wojciech Bryliński (WUT)

ELE SQC

ヘロト 人間 ト 人 ヨ ト 人 ヨ ト

Cuts – simulations

simulation

Cuts – data

data

三日 のへで

LAVD acceptance

4 3 > 4 3

4% detection efficiency is calculated in respect to all D0s in that decayed to pi+K channel, so it includes:

- suppression due to two particle combined acceptance of SAVD and VTPC1+VTPC2.
- suppression due to matching efficiency between SAVD and VTPCs (98% in simulation)
- suppression due to background suppression cuts. These cuts suppress background by factor of 10^6 (in the D0 invariant mass region) and D0->pi+K by factor of about 2.

Full version has efficiency of 12% mostly due to increase of the combined LAVD + VTPC1+VTPC2 acceptance for D0->pi+K by factor of 3.

▲冊▶ ▲ヨ▶ ▲ヨ▶ ヨヨ のなべ

HSD predictions

LHC charm measurements

Wojciech Bryliński (WUT)

..INE

RHIC charm measurements

EL NOR

Image: A Image: A

Drell-Yan process

The Drell-Yan Process

- lepton pair production in hard EM interactions of two hadrons
- process not influenced by QGP production
- $\langle DY \rangle \sim N_{\textit{coll}}$

Example of J/ψ normal nuclear absorption: $J/\psi + h \rightarrow D + \overline{D} + X$ $J/\psi + \pi \rightarrow D + \overline{D}$

→ Ξ → < Ξ</p>

MIMOSA-26 sensors

- 1152x576 pixels of 18.4x18.4 μm^2
- readout time: 115.2 μs
- 50 μm thin
- SAVD: 16 sensors; 32 cm²; 10 MPixel

3 1 4

Data taking with Small Acceptance Vertex Detector before Long Shutdown 2:

- December 2016 test run for SAVD Pb+Pb at 150A GeV/c
- November 2017 Xe+La at 150A GeV/c and 75A GeV/c
- 2018 pilot data taking Pb+Pb at 150A GeV/c

December 2016 – Pb+Pb at 150A GeV/c

From the analysis of collected Pb+Pb data:

- Clusters spacial resolution: $\sigma_{x,y}(Cl) \approx 5 \ \mu m$
- Primary Vertex resolution: $\sigma_x(PV) \approx 5 \ \mu m$ $\sigma_y(PV) \approx 1.8 \ \mu m$ $\sigma_z(PV) \approx 30 \ \mu m$

 $\sigma_x(PV) > \sigma_y(PV)$ due to magnetic field difference: $B_y > B_x \approx 0$

- 三ト - 三ト

Vertex Detector software

Wojciech Bryliński (WUT)

25.04.2018 16 / 39

JI DOC

イロト イボト イヨト イヨ

Data reconstruction

Geometry tuning

- Track finding
- Primary Vertex Reconstruction
- SAVD-TPC track matching
- analysis with full particles information

4 ∃ ≥ 4

EL NOR

SAVD geometry tuning

Geometry tuning:

- finding the corrections for the sensor positions
- using tracks reconstructed without magnetic field

Deviation variable definition

In order to define the collinearity of three hits, the variable "dev" was introduced:

$$dev_x = \frac{x_1 + x_3}{2} - x_2 dev_y = \frac{y_1 + y_3}{2} - y_2$$

Generally, the problem is to minimise the sum of deviations – minimisation of function of 48 parameters (8 sensors; each has 6 degrees of freedom).

Wojciech Bryliński (WUT)

Geometry tuning – algorithm

VD Tracks Names:

- down1: Vds1_0, Vds2_0, Vds3_0, Vds4_0;
- down2: Vds1_0, Vds2_0, Vds3_0, Vds4_2;
- up1: Vds1_0, Vds2_0, Vds3_1, Vds4_1;
- up2: Vds1_0, Vds2_0, Vds3_1, Vds4_3;

- fix the position of first sensor (reference);
- loop over down1 track candidates, calculate the sum of "dev" values, minimise the obtained sum using the MINUIT package by changing the offsets and rotation corrections of included sensors;
- fix the position of Vds2_0, Vds3_0, Vds4_0 sensors;
- do the same minimisation for up1 track candidates and fix the position of Vds3_1, Vds4_1;
- do the same minimisation for up2 and down2 track candidates and fix the position of Vds4_3, Vds4_2;

◆□▶ ◆母▶ ◆ヨ▶ ◆ヨ▶ ヨヨ のなべ

Final tuning

Final tuning:

- all sensors in parallel
- minimisation of standart deviation and mean values of residuals distributions

The improvement factor was calculated from the following formula:

$$\text{improvement} = \frac{\sigma_{\textit{oldGeometry}} - \sigma_{\textit{newGeometry}}}{\sigma_{\textit{oldGeometry}}} \cdot 100\%$$

∃ ▶ ∢

Saleve - biggest improvement

Improvement: 46.9 %

x residuals - arm: Saleve, sensor: Vds3_0, tracks: down1

• INE

Saleve - smallest improvement

Improvement: 2.7 %

x residuals - arm: Saleve, sensor: Vds4_3, tracks: up2

Jura - biggest improvement

Improvement: 16.5 %

x residuals - arm: Jura, sensor: Vds4_0, tracks: down1

Jura - smallest improvement

Improvement: 0.7 %

x residuals - arm: Jura, sensor: Vds3_1, tracks: up1

Example results:

Example results (data taken in December 2016): Jura: sensor from 4th station:

• rotations:

- $rot X = -0.01 (0.6^{\circ})$
- $rotY = 0.01 (0.6^{\circ})$
- rotZ = -0.049 (2.8°)
- offsets from nominal geometry:
 - offset X = 2.1 mm
 - offset Y = 1.1 mm
 - offset Z = 0.5 mm

ELE SQC

(4) E > (4) E

Dismounted sensor in July 2017

SUINE

SUINE

Always read instructions!!!

Data reconstruction

- Geometry tuning
- Track finding
- Primary Vertex Reconstruction
- SAVD-TPC track matching
- analysis with full particles information

< ∃ ► <

Algorithm of matching: Primary Tracks

Wojciech Bryliński (WUT)

25.04.2018 30 / 39

ELE NOR

1st step: Refit track to VD primary vertex

For refitting Kalman filter existing in SHINE is used

25.04.2018

31 / 39

2nd step: Interpolate refitted track to VD stations and collect clusters

How to collect clusters?

25.04.2018

33 / 39

SHINE

Residuals cut

- distributions of residuals between clusters and refitted tracks are fitted with gaussian (σ)
- ullet cluster is accepted as matched if the distance from track is smaller than 2σ

y-residuals between clusters from first station and refitted track: plot was created with 3σ cut, but to make sure that only primary tracks are matched, in the analysis 2σ cut is used.

Track is accepted as primary track if at least **one VD cluster** is matched (as first approach)

Algorithm of matching: Secondary tracks

4 ∃ ≥ 4

ELE NOR

3rd step: Refit track to VD cluster from second station silve

Every track is combined with all VD clusters from second station.

EL NOR

4 ∃ ≥ < 4 ∃</p>

4th step: Interpolate refitted track to VD stations and collect clusters

Wojciech Bryliński (WUT)

SHINE

^{25.04.2018 37 / 39}

4th step: Interpolate refitted track to VD stations and collect clusters

SHINE

Residuals cut

- $\bullet\,$ the $\sigma\,$ cuts values are taken from primary tracks analysis
- ullet cluster is accepted as matched if the distance from track is smaller than 3σ

y-residuals between clusters from first station and refitted track: background from fake tracks is visible, but it is better to have more fake tracks than lose efficiency.

Track is accepted as secondary track if at least **three VD clusters** are matched (one refitted from second station + 2 clusters from other stations)