

Nuclear Angular Correlation on 57Fe

Pavla Šretrová¹, Vlastimil Vrba¹, Vít Procházka¹

¹Department of Experimantal Physics, Faculty of Science, Palacký University Olomouc

Content

- Motivation and aims
- Angular correlations theory
- Angular correlations on ⁵⁷Fe
- Calculations of perturbation function
- Graphs of perturbation function
- Plans for future

- Conclusion

Motivation

- Additional method for Emission Mössbauer Spectroscopy
- Decision between quadrupole or magnetic origin of interactions
- Measurement of hyperfine interaction in liquid materials
- Precise measurement of weak hyperfine magnetic fields

Aims

- Building of a suitable setup for angular correlation measurements
- Study of hyperfine interactions in amorphous metals
- Comparison of quadrupole splitting in liquids and frozen state

Angular Correlation

- Nuclear technique investigating the nuclear energy levels involved in nuclear transitions emitting particles or quanta
- Nuclei with three or more energy levels
- Transitions between the energy levels are carried out by emittions of gamma radiations

Time-Dependent Unperturbed AC

- Suppose that the intermediate state *B* has a finite lifetime $\tau_{_{\rm N}}$
 - Explicitly exclude any interaction leading to precession while nucleus is in the intermediate level
- Time dependent angular correlation function decays exponentially with lifetime *τ*_N of intermediate level (no time dependence in angular part!)

$$W(\theta,t) \propto \exp\left(\frac{-t}{\tau_N}\right) \sum_k A_{kk} P_k(\cos\theta)$$

Time-Dependent Unperturbed Angular Correlation

- Coincidence histograms
 - Function of the time elapsed between emission of γ_1 and γ_2

Different coincidence countrates for detectors at 180° and 90°

Time-Dependent Perturbed Angular Correlation

 Nucleus in the intermediate state with non-zero lifetime τ_N interacts with extranuclear perturbating field
→ splitting into sublevels m_a and m_b.

- Lifetime in range 10 ns < τ_N < 1000 ns $\frac{I_C=1/2}{V}$ $\frac{V}{V}$ causes a mixing between intermediate sublevel m_a and m_b.
 - Deexcitation: level A \rightarrow sublevel m_a(m_b) \rightarrow sublevel m_b(m_b) \rightarrow level C
 - Described by the perturbation function G_{kk}(t) in the angular correlation function

$$W(\theta,t) \propto \exp\left(\frac{-t}{\tau_N}\right) \sum_k A_{kk} G_{kk}(t) P_k(\cos\theta)$$

- Detection of coherent superposition of both γ -quanta leads to quantum beats in the coincidance count rate between $\gamma 1$ and $\gamma 2$ with the beat frequency being $\omega = \Delta/\hbar$.

Time-Dependent Perturbed Angular Correlation

 The intermediate state is unsplit

- The intermediate state is split by hyperfine interactions (Q and B)
 - Time-dependence in amplitude and angle θ between γ_1 and γ_2
 - Spin precession

- ⁵⁷Co (271.8 days) decays via electron capture to the exited level of ⁵⁷Fe with energy 136.47 keV
- The second excited state (level A)
 - $I_{\rm A} = 5/2$, odd parity, long $\tau_{\rm N}$
- The first excited (intermediate) state (level B)
 - $I_{\rm B} = 3/2$, odd parity, $\tau_{\rm N} = 97.8$ ns
- The ground state (level C)
 - $I_{\rm c} = 1/2$, odd parity, stable
- Both transitions, $5/2^{-}(\gamma_2) 3/2^{-}$ and $3/2^{-}(\gamma_1) 1/2^{-}$, are a **magnetic dipole**

 \rightarrow Angular correlation function: $W(\theta, t) = e^{\frac{-t}{97.8 \cdot 10^{-9}}} [1 + \frac{1}{20} \cdot G_{22}(t) \cdot (\frac{3}{2}\cos^2(\theta) - \frac{1}{2})]$

 This is derived from probabilities of transitions between energetic states of the nucleus.

- Hamiltonian of mixed state H_{MIX}
 - eigenvalues + eigenvectors

$$H_{\text{MIX}} = \begin{pmatrix} \frac{e Q V \eta}{4} - \frac{3}{2} B \gamma \hbar \text{Cos}[\vartheta] & \frac{1}{2} \sqrt{3} B e^{i \varphi} \gamma \hbar \text{Sin}[\vartheta] & \frac{e Q V \eta}{4\sqrt{3}} & 0 \\ \frac{1}{2} \sqrt{3} B e^{-i \varphi} \gamma \hbar \text{Sin}[\vartheta] & -\frac{1}{4} e Q V - \frac{1}{2} B \gamma \hbar \text{Cos}[\vartheta] & B e^{i \varphi} \gamma \hbar \text{Sin}[\vartheta] & \frac{e Q V \eta}{4\sqrt{3}} \\ & \frac{e Q V \eta}{4\sqrt{3}} & B e^{-i \varphi} \gamma \hbar \text{Sin}[\vartheta] & -\frac{1}{4} e Q V + \frac{1}{2} B \gamma \hbar \text{Cos}[\vartheta] & \frac{1}{2} \sqrt{3} B e^{i \varphi} \gamma \hbar \text{Sin}[\vartheta] \\ & 0 & \frac{e Q V \eta}{4\sqrt{3}} & \frac{1}{2} \sqrt{3} B e^{-i \varphi} \gamma \hbar \text{Sin}[\vartheta] & \frac{e Q V \eta}{4} + \frac{3}{2} B \gamma \hbar \text{Cos}[\vartheta] \end{pmatrix}$$

- Calculation of "single crystal" perturbation function

$$G_{k_{1}k_{2}}^{N_{1}N_{2}}(t) = \sum_{m_{a}m_{b}} (-1)^{2I+m_{a}+m_{b}} \sqrt{(2k_{1}+1)(2k_{2}+1)} \begin{pmatrix} I & I & k_{1} \\ m_{a'}-m_{a}N_{1} \end{pmatrix} \begin{pmatrix} I & I & k_{2} \\ m_{b'}-m_{b}N_{2} \end{pmatrix}$$
$$\cdot \sum_{mm'} \langle m_{b}|m \rangle^{*} \langle m_{a}|m \rangle \langle m_{b'}|m' \rangle \langle m_{a'}|m' \rangle^{*} \exp\left(\frac{-i}{\hbar} (E_{m}-E_{m'})t\right)$$

- Calculation of "powder" perturbation function $(k_1 = k_2 = k, N_1 = N_2 = N)$ $G_{kk}(t) = \frac{1}{2k+1} + \sum_{N=-k}^{k} G_{kk}^{NN}(t)$

- $G_{22}(t)$ of pure quadrupole interactions with $\eta = 0$ (axial symmetry) for different V_{zz} (the largest component of the electric field gradient tensor)

- $G_{22}(t)$ of pure quadrupole interactions with $V_{zz} = 6.005 \cdot 10^{21} \text{ V} \cdot \text{m}^{-2}$ for different η

– $\rm G_{_{22}}(t)$ of pure quadrupole interactions with random combination of $\rm V_{_{zz}}$ and η

- $G_{_{22}}(t)$ of pure magnetic interactions with random combination of *B*, θ and φ

Pavla Šretrová, 26.04.2018, Department of Experimental Physics, Faculty of Science, Palacký University Olomouc

- $G_{_{22}}(t)$ of mixed interactions with random combination of $V_{_{ZZ}}$, η , B, θ and φ

Plans for Future

- Developing a program for evaluation of TDPAC data
 - Numerical calculation of $W(\theta,t)$
- Comparison of experimental data of quadrupole splitting values obtained by MS measurement (frozen sample) and TDPAC (liquid sample)
 - Fitting of experimental data by using method of the smallest squares

 Study of hyperfine interactions in amorphous metals using TDPAC method

Conclusion

- Nuclear angular correlation is an additional method for Emission Mössbauer spectroscopy for determination of quadrupole or magnetic origin of interactions
- Basic principles of angular correlation
- Time-Dependent Unperturbation Angular correlation
- Time-Dependent Perturbation Angular correlation
- Calculations of perturbation function $G_{22}(t)$ for the specific cases of ⁵⁷Fe
- Developing a program evaluating experimental data from TDPAC experiments

Thank you for your attention!

Authors thank to internal IGA grant of Palacký University (IGA_PrF_2018_002)