Grasmannians and form factors

A. Bolshov ${ }^{1,2}$
${ }^{1}$ Joint Institute of Nuclear Research
${ }^{2}$ Moscow Institute of Physics and Technology

26.04.18

Outline

(1) Preliminaries

- Introduction
- Basics of spinor helicity formalism
- BCFW recursion
- Novel methods
(2) Wilson line operator form factors
- Wilson line operator
- Gluing operation
- Momentum twistors
- Gluing operation in momentum twistor space
(3) Off-shell BCFW Conjecture

Preliminaries

Introduction

- Formfactors $\Leftrightarrow\langle 0| \mathcal{O}(x)|1, \ldots, n\rangle$
- On-shell diagram \Leftrightarrow integral over Grassmannian manifold
- Generalization for form factors
- Gluing operation

Preliminaries

Basics of spinor helicity formalism

$$
\begin{gathered}
\left(p_{i}^{\mu}\right)^{a \dot{a}}=\left(\begin{array}{cc}
p_{i}^{0}+p_{i}^{3} & p_{i}^{1}-i p_{i}^{2} \\
p_{i}^{1}+i p_{i}^{2} & p_{i}^{0}-p_{i}^{3}
\end{array}\right) \Leftrightarrow p_{i}^{\dot{a} a}=\lambda_{i}^{a} \tilde{\lambda}_{i}^{\dot{a}} \\
\langle i j\rangle:=\epsilon_{a b} \lambda_{i}^{a} \lambda_{j}^{b},[i j]:=\epsilon_{\dot{a} \dot{b}} \tilde{\lambda}_{i}^{\dot{a}} \tilde{\lambda}_{j}^{\dot{b}}
\end{gathered}
$$

Preliminaries

BCFW recursion

On-shell BCFW

- Deformation of momenta: $\hat{p}_{i}=p_{i}-z q, \hat{p}_{j}=p_{j}+z q$
- Cauchy theorem: $0=\oint_{\mathcal{C}} d z \frac{\hat{A}(z)}{z}=A+\sum_{z \neq 0} \operatorname{res}\left(\frac{\hat{A}(z)}{z}\right) \Rightarrow$ $A=\sum_{k} \hat{A}_{L}\left(z_{k}\right) \frac{1}{P_{k}^{2}} \hat{A}_{R}\left(z_{k}\right)$

Preliminaries

Off-shell BCFW

$$
\begin{aligned}
& A_{i, h}=\overbrace{\hat{i}}^{i} \frac{h}{K_{1, i}^{2}} \overbrace{i}^{i}: \\
& C=\frac{1}{\kappa_{1}} \quad 2=n-1
\end{aligned}
$$

Preliminaries

Novel methods

$$
\sum_{l} \int d^{4} \tilde{\eta}_{I} \int \frac{d^{2} \lambda_{l} d^{2} \tilde{\lambda}_{I}}{\operatorname{vol}[G L(1)]}
$$

Wilson line operator form factors

Wilson line operator

- Non-local operator
- From factors of Wilson line operator \Leftrightarrow Reggeon amplitudes

$$
\begin{gathered}
\mathcal{W}_{p}^{c}(k)=\int d^{4} x e^{i k \cdot x} \operatorname{Tr}\left\{\frac{1}{\pi g} t^{c} \mathcal{P} \exp \left[\frac{i g}{\sqrt{2}} \int_{-\infty}^{+\infty} d s p \cdot A_{b}(x+s p) t^{b}\right]\right\} \\
A_{m+n}^{*}\left(\Omega_{1}, \ldots, \Omega_{m}, g_{m+1}^{*}, \ldots, g_{m+n}^{*}\right)=\left\langle\Omega_{1} \ldots \Omega_{m}\right| \prod_{i=1}^{n} \mathcal{W}_{p_{m+i}}^{c_{m+i}}\left(k_{m+i}\right)|0\rangle
\end{gathered}
$$

i-th off-shell gluon

- k_{T} - parametrization: $k_{i}^{\mu}=x p_{i}^{\mu}+k_{T i}^{\mu}$
- 2 on-shell degrees of freedom: direction $p_{i}^{2}=0$ and auxiliary on-shell vector q

Wilson line operators

Gluing operation

$$
A_{k, n+1}^{*}=\frac{\langle\xi p\rangle}{\kappa^{*}} \int \frac{d^{k \times(n+2)} C}{V_{o l}[G L(k)]} \frac{\hat{\delta}^{2 \times k}(C \cdot \underline{\underline{\lambda}}) \hat{\delta}^{4 \times k}(C \cdot \tilde{\tilde{\eta}}) \hat{\delta}^{2 \times(n+2-k)}\left(C^{\perp} \cdot \underline{\underline{\lambda}}\right)}{\prod_{i=1}^{n} M_{i}}
$$

Wilson line operator form factors

Momentum twistors

- Needed to simplify momentum conservation and 0-mass condition
- Null-rays in space-time \Leftrightarrow points in twistor space

Incidence relations:
$\mu_{\dot{\alpha}}=x_{\alpha \dot{\alpha}} \lambda^{\alpha}, x_{\alpha \dot{\alpha}}=(p-q)_{\mu} \sigma_{\alpha \dot{\alpha}}^{\mu} \Rightarrow Z=\left(\lambda^{\alpha}, \mu_{\dot{\alpha}}\right)$

Wilson line operator form factors

Gluing operation in momentum twistor space

Claim:

Gluing operation in momentum twistor space is represented by attaching two consecutive BCFW bridges times some regulator:

$$
\tilde{\mathcal{G}}_{i-1, i}^{\text {m.tw. }}[\ldots]=N(\{\lambda\}) \operatorname{Br}(\hat{i}, i+1) \circ \operatorname{Br}(\widehat{i+1}, i)[M(\{\lambda\}) \cdot \ldots]
$$

Wilson line operator form factors

Gluing operation in momentum twistor space

Corollary

In momentum twistor space gluing operation amounts to shifting i-th twistor:

$$
\tilde{\mathcal{G}}_{i-1, i}^{\text {m.tw. }}\left[\mathcal{P}_{n+2}^{4(k-2)}\right]=\mathcal{P}_{n+2}^{4(k-2)}\left(\ldots, \mathcal{Z}_{i}-\frac{\langle i-1 i\rangle}{\langle i-1 i+1\rangle} \mathcal{Z}_{i+1}, \mathcal{Z}_{i+1}, \ldots\right)
$$

BCFW for on-shell integrands

On-shell BCFW:

$$
\begin{aligned}
\mathcal{A}_{n}^{L}= & \mathcal{A}_{n, \mathrm{MHV}}^{0}\left(Y_{n-1}^{L}+\sum_{j=3}^{n-2}[j-1, j, n-1, n, 1] Y_{\text {left }}^{L_{1}} Y_{r i g h t}^{L_{2}}+\right. \\
& \left.+\int_{A B}[A, B, n-1, n, 1] Y_{n+2}^{L-1}\left(\ldots, \hat{\mathcal{Z}}_{n_{A B}}, \mathcal{Z}_{A}, \mathcal{Z}_{B}\right)\right)
\end{aligned}
$$

BCFW via gluing operation

Observation:

- Gluing operator maps terms of on-shell BCFW decomposition exactly to to terms of the off-shell recursion
- Depending on legs, to which the off-shell vertex is attached, the operator maps BCFW poles to poles of the form $p_{i j}^{2}=0$ (ordinary BCFW poles), or to eikonal ones
- By appropriate choice of the BCFW shift, eikonal poles can be eliminated from consideration

Off-shell BCFW:

$$
\begin{aligned}
& \mathcal{I}_{(n-2)+1}^{*, L}=\mathcal{I}_{n-1}^{*, L}+\sum_{j=3}^{n-2}\left[j-1, j, n-1, n^{*}, 1\right] \mathcal{I}_{\text {left }}^{*, L_{1}} \mathcal{I}_{\text {right }}^{*, L_{2}}+ \\
& \quad+\int_{A B}[A, B, n-1, n *, 1] \mathcal{I}_{n+2}^{*, L-1}\left(\ldots, \hat{\mathcal{Z}}_{n_{A B}}^{*}, \mathcal{Z}_{A}, \mathcal{Z}_{B}\right)
\end{aligned}
$$

Summary

- A method for deriving Grassmannian integral representation is obtained
- The new method is valid for different representations of external data
- Results derived by means of new and conventional methods agree
- Derivation of BCFW recursion relations via gluing operation for off-shell amplitudes at arbitrary loop-level and for arbitrary number of external legs

References I

围 H．Elvang，Y．Huang．
Scattering amplitudes．
e－Print：arXiv：1308．1697v2［hep－th］
围 A．I．Onishchenko，L．V．Bork．
Four dimensional ambitwistor strings and form factors of local and Wilson line operators．
e－Print：arXiv：1704．04758［hep－th］
R．Frassek，D．Meidinger，D．Nandan，M．Wilhelm．
On－shell Diagrams，Grassmannians and Integrability for Form Factors．
JHEP 1601 （2016） 182
围 B．Pennate，G．Travaglini，B．Spence，C．Wen．
On super form factors of half－BPS operators in $\mathcal{N}=4$ super Yang－Mills．
e－Print：arXiv：1402．1300v3［hep－th］

