Event reconstruction chain in GEM detector of the BM@N experiment

- uses FairSoft external packages (ROOT, MillePede, Geant3/4, PLUTO, etc.)
- has a part inherited from FairRoot (GSI, Darmstadt)
- includes experiment-specific parts for each detector
- has flexible and scalable structure

S. Merts

- Everybody knows how important are two procedures in blue rectangles
- But what about input data?

Common reconstruction chain. Input digits

- Everybody knows how important are two procedures in blue rectangles
- But what about input data?

Converter

- takes binary data file and produces ROOT-file accordingly DAQ-data-format
- reads macro parameters (event number, run number, event type, etc.) and put them into DB on fly
- output ROOT-file contains tree with «DAQ-digits» (ADC, TDC, HRB, etc.)

Decoder

- takes ROOT-file with DAQ-digits and decodes it into ROOT-file with detector-digits (BmnGemDigit, BmnTofDigit, etc.)
- connects to DB to read mappings (channel-to-strip)
- calculates pedestals and common modes of channels
- clears noisy channels S. Merts

Common reconstruction chain

Hit reconstruction. Description

Hit reconstruction. Fake hits problem

S. Merts

Tracking quality checking. Monte Carlo

Results for experimental data

Possible classification of events

- Field-; Target- not interested events
- Field-; Target+ events for alignment
- Field+; Target- events to estimate momentum resolution and test tracking
- Field+; Target+ physics events

S. Merts

Results for experimental data. Alignment

The package based on formalism of Millepede II with all its features and allows one to include / exclude different subdetectors from alignment (GEM, SI, MWPC, ...). Generalized straight-line model of track:

 $u_i^j = x_0^j \cos \alpha_i + t_x^j z \cos \alpha_i + y_0^j \sin \alpha_i + t_y^j z \sin \alpha_i + \Delta u_i + (t_x \cos \alpha_i + t_y \sin \alpha_i) \Delta z$ Chosen weights:

$$w_i^1 = \cos lpha_i - ext{shifts} (x_0)$$

 $w_i^2 = z_i \cos lpha_i - ext{shearings} (t_x)$
 $w_i^3 = \sin lpha_i - ext{shifts} (y_0)$
 $w_i^4 = z_i \sin lpha_i - ext{shearings} (t_y)$
 $w_i^5 = 1 - ext{overall shift in } \mathbf{Z}$
 $w_i^6 = z_i - ext{scaling in } \mathbf{Z}$

Results for experimental data

Results. MagField+, Target-

Results for experimental data

Thank you!