Event reconstruction chain in GEM detector of the $\mathrm{BM} @ \mathrm{~N}$ experiment

Sergei Merts
AYSS-2018
VBLHEP
April 26, 2018

NīCA
 BM@N full configuration

BmnRoot

- uses FairSoft external packages (ROOT, MillePede, Geant3/4, PLUTO, etc.)
- has a part inherited from FairRoot (GSI, Darmstadt)
- includes
experiment-specific parts for each detector
- has flexible and scalable structure

- Everybody knows how important are two procedures in blue rectangles
- But what about input data?
 Common reconstruction chain. Input digits
- Everybody knows how important are two procedures in blue rectangles
- But what about input data?

Where do we get data

Converter

- takes binary data file and produces ROOT-file accordingly DAQ-data-format
- reads macro parameters (event number, run number, event type, etc.) and put them into DB on fly
- output ROOT-file contains tree with «DAQ-digits» (ADC, TDC, HRB, etc.)
Decoder
- takes ROOT-file with DAQ-digits and decodes it into ROOT-file with detector-digits (BmnGemDigit, BmnTofDigit, etc.)
- connects to DB to read mappings (channel-to-strip)
- calculates pedestals and common modes of channels
- clears noisy channels

Digitization. Experimental data. Beam only

Hit reconstruction. Description

Hit reconstruction. Fake hits problem

Tracking chain

Takes 1-5 iterations

NİCA

Seed finder

Tracking quality checking. Monte Carlo

Results for experimental data. Alignment

	Magnetic field OFF	Magnetic field ON
$\begin{aligned} & \text { 눈 } \\ & \stackrel{1}{0} \\ & \stackrel{\rightharpoonup}{0} \\ & \frac{00}{10} \\ & \hline \end{aligned}$		
$\begin{aligned} & z \\ & 0 \\ & \stackrel{0}{0} \\ & \stackrel{0}{0} \\ & 10 \end{aligned}$		

NīCA

Results for experimental data. Alignment

The package based on formalism of Millepede II with all its features and allows one to include / exclude different subdetectors from alignment (GEM, SI, MWPC, ...).
Generalized straight-line model of track:
$u_{i}^{j}=x_{0}^{j} \cos \alpha_{i}+t_{x}^{j} z \cos \alpha_{i}+y_{0}^{j} \sin \alpha_{i}+t_{y}^{j} z \sin \alpha_{i}+\Delta u_{i}+\left(t_{x} \cos \alpha_{i}+t_{y} \sin \alpha_{i}\right) \Delta z$
Chosen weights:
$w_{i}^{1}=\cos \alpha_{i}-$ shifts $\left(x_{0}\right)$
$w_{i}^{2}=z_{i} \cos \alpha_{i}-$ shearings $\left(t_{x}\right)$
$w_{i}^{3}=\sin \alpha_{i}-$ shifts $\left(y_{0}\right)$
$w_{i}^{4}=z_{i} \sin \alpha_{i}-$ shearings $\left(t_{y}\right)$
$w_{i}^{5}=1$ - overall shift in Z
$w_{i}^{6}=z_{i}-$ scaling in \mathbf{Z}

NICA

Quality of alignment

Results for experimental data

	Magnetic field OFF	Magnetic field ON
$\begin{aligned} & z \\ & 0 \\ & 廿 \\ & \vdots \\ & 00 \\ & \stackrel{0}{0} \end{aligned}$		

(NicA

Results. MagField+, Target-

Run 1209, $\mathrm{T}=3.5 \mathrm{GeV} / \mathrm{n}$, C-beam

Monte Carlo simulation, $\mathbf{T}=3.5 \mathrm{GeV} / \mathrm{n}, \mathrm{C}$-beam

Results for experimental data

	Magnetic field OFF	Magnetic field ON
$\begin{aligned} & \text { z } \\ & 0 \\ & \stackrel{\rightharpoonup}{0.0} \\ & \frac{10}{10} \end{aligned}$		

(NICA)
 $\Lambda^{0} \rightarrow \pi^{-}+p, \mathbf{C - C u} @ 4 \mathrm{GeV} / \mathbf{n}$

Invariant mass: $\Lambda^{0} \rightarrow \mathrm{p}+\pi^{-}$

Thank you!

