Three-loop massive effective potential from differential equations

Andrey Pikelner

Hamburg University and BLTP JINR

April 26, 2018

Effective theories

- Example from QED:

$$
\mathcal{L}=\quad-\frac{1}{4} F_{\mu \nu} F^{\mu \nu} \quad+\quad c_{1}\left(F_{\mu \nu} F^{\mu \nu}\right)^{2}+c_{2} F_{\mu \nu} F^{\nu \alpha} F_{\alpha \beta} F^{\beta \mu}
$$

- But also we have interecting fermions term $\bar{\psi} \gamma^{\mu} \psi A_{\mu}$

In the $m_{e} \rightarrow \infty$ limit lead to the massive tadpoles and from them we define c_{1} and c_{2}

Effective approach to the scalar potential

- Near phase transiotion point physics become very sensitive to input parameters and higher order effects e.g.
- Phase transitions in various condensed matter systems described different varioations of the $\mathcal{O}(N) \varphi^{4}$ theories
- Standard Model near the point of the spontaneous symmetry breaking
- Effectinve potential approach is a way to account infinite sum of the higher dimensional interaction terms in lagrangian with higher order perturbative corrections

- From the QED example we saw how to account for the fixed dimensionality terms, but what about all posible cases?

Lagrangian parameters and mass scales

$$
\mathcal{L}_{S}=\underbrace{\frac{m_{H}^{2}}{2} H^{2}+\frac{m_{G}^{2}}{2} G_{i}^{2}}_{\text {mass terms }}+\underbrace{\frac{\tau_{0}}{6} H^{3}+\frac{\tau_{i}}{6} H G_{i}^{2}}_{\text {triple interaction }}+\underbrace{\frac{\lambda_{0}}{24} H^{4}+\frac{\lambda_{i}}{12} H^{2} G_{i}^{2}+\frac{\lambda_{i j}}{24} G_{i}^{2} G_{j}^{2}}_{\text {quartic interaction }}
$$

- $O(N)$ symmetric scalar φ^{4} theory with $\left\langle\varphi_{1}\right\rangle=v \neq 0$ and all other $\left\langle\varphi_{i}\right\rangle=0$

$$
\begin{gathered}
\mathcal{L}=\frac{m^{2}}{2} \varphi^{2}+\frac{\lambda}{24}\left(\varphi^{2}\right)^{2} \\
\tau_{0}=\tau_{i}=\lambda v, \quad \lambda_{0}=\lambda_{i}=\lambda_{i j}=\lambda \quad m_{H}^{2}=m^{2}+\frac{\lambda}{2} v^{2}, m_{G}^{2}=m^{2}+\frac{\lambda}{6} v^{2}
\end{gathered}
$$

- Standard Model in the broken phase

$$
\begin{aligned}
\mathcal{L}= & m^{2} \Phi^{\dagger} \Phi+\frac{\lambda}{6}\left(\Phi^{\dagger} \Phi\right)^{2}, \quad \Phi=\frac{1}{\sqrt{2}}\left(v+H+i G_{0}, G_{r}+i G_{i}\right)^{T} \\
\tau_{0}= & \tau_{i}=\lambda v, \quad \lambda_{0}=\lambda_{i}=\lambda_{i j}=\lambda \quad m_{H}^{2}=m^{2}+\frac{\lambda}{2} v^{2}, m_{G}^{2}=m^{2}+\frac{\lambda}{6} v^{2}
\end{aligned}
$$

Known results for the effective potential

2-loop Analytically SM [Ford,Jack,Jones'93], general theory [Martin'01]
3-loop Numerically general theory [Martin'17]

$$
D\left(m_{H}\right)=\square=\frac{1}{p^{2}+m^{2}+\frac{\lambda v^{2}}{2}}, \quad D\left(m_{G}\right)=----=\frac{1}{p^{2}+m^{2}+\frac{\lambda v^{2}}{6}}
$$

Three-loop analytically known results:

- Massless broken $\mathcal{O}(N)$ symmetric φ^{4} theory (only $\mathcal{O}\left(\frac{1}{\varepsilon}\right)$ part) $m_{G}^{2}=3 m_{H}^{2}$ [Chung, Chung'97;Kotikov'98]
- Single component masive φ^{4} theory
[Chung,Chung'99]

Our goal:

General case $m \neq 0$ with two scales $m_{G} \neq m_{H}$

Three-loop topologies for vacuum integrals

- Topology A is a single scale, reduction using MATAD [Steinhauser'oo] master integrals known up to the weight 6 [Kniehl,A.P..Veretin'17]
- Topologies B and C have 11 master integrals each depending on a single variable $x=\left(\frac{m_{G}}{m_{H}}\right)^{2}$, reduction using LiteRed [Lee'14]
- Differentiating in x and reducing back to the set of the mater integrals we obtain closed system of 11 differential equations:

$$
\partial_{x} J_{a}(\varepsilon, x)=M_{a b}(\varepsilon, x) J_{b}(\varepsilon, x)
$$

- We are looking for the solution as a series expansion in $\varepsilon=2-d / 2$

Iterated integrals

$$
\int_{0}^{x} d z_{1} f_{1}\left(z_{1}\right) \int_{0}^{z_{1}} d z_{2} f_{2}\left(z_{2}\right) \int_{0}^{z_{2}} d z_{3} f_{3}\left(z_{3}\right) \cdots \int_{0}^{z_{n-1}} d z_{n} f_{n}\left(z_{n}\right)
$$

- Harmonic polylogarithms(HPL), include Li_{n} and $S_{n, p}$

$$
f_{-1}(z)=\frac{1}{z-1}, \quad f_{0}(z)=\frac{1}{z}, \quad f_{1}(z)=\frac{1}{z+1}
$$

- Generalized polylogarithms(GPL), include HPL

$$
f_{a}(z)=\frac{1}{z-a}
$$

- Cyclotomic polylogarithms, after factorization over \mathbb{C} and partial fractioning can be reexpressed through GPL

$$
f_{a}^{b}(z)=\frac{z^{b}}{\Phi_{a}(z)}, f_{0}^{0}(z)=1 / z, \quad \Phi_{n}(z)=\prod_{\operatorname{gcd}(k, n)=1}\left(z-e^{2 \pi i \frac{k}{n}}\right)
$$

Differential equations and canonical basis

- Set of the master integrals is not unique, we are looking for the basis, which coefficients of ε-expansion have constant transcendental weight
- Differentiation reduces transcendental weight by one, if we assign weight one to $\varepsilon, D E$ for integrals in a new basis would have following form [Henn'13]:

$$
\partial_{x} g_{a}(x)=\varepsilon M_{a b}(x) g_{b}(x)
$$

- For the coefficients of ε-expansion system decouple and solution can be written explicitly, upto a constant for each integration:

$$
g_{a}\left\{\varepsilon^{n}\right\}(y)=\int d y M_{a b}(y) g_{b}\left\{\varepsilon^{n-1}\right\}(y)+\mathcal{C}_{a, n}
$$

- For system solvable in terms of GPL, algorithmic ways of canonical basis construction exists [Lee'14] and [Meyer'16] with public implementations Fuchsia [Gituliar,Magerya'17], epsilon [Prausa'17] and CANONICA [Meyer'17]
- Rational transformation can be constructed only after apropriate variable change

$$
x=\frac{y^{2}}{\left(1+y^{2}\right)^{2}}
$$

Cyclotomic polylogarithms integration

- System in canonical basis can be easily decomposed into the form, where $B_{a, b}$ and $C_{a, b}$ are pure numeric matrices and all y dependence is inside functions f_{a}^{b} known how to integrate using definition of CPL:

$$
\begin{aligned}
B(y)= & \left(f_{0}^{0} B_{0,0}+f_{1}^{0} B_{1,0}+f_{2}^{0} B_{2,0}+f_{3}^{0} B_{3,0}+f_{3}^{1} B_{3,1}\right. \\
& \left.+f_{4}^{1} B_{4,1}+f_{6}^{0} B_{6,0}+f_{6}^{1} B_{6,1}+f_{12}^{1} B_{12,1}+f_{12}^{3} B_{12,3}\right) \\
C(y)= & \left(f_{0}^{0} C_{0,0}+f_{1}^{0} C_{1,0}+f_{2}^{0} C_{2,0}+f_{3}^{0} C_{3,0}+f_{3}^{1} C_{3,1}\right. \\
& \left.+f_{4}^{1} C_{4,1}+f_{6}^{0} C_{6,0}+f_{6}^{1} C_{6,1}+f_{8}^{3} C_{8,3}\right)
\end{aligned}
$$

- Integration constants fixed from the finite number of terms in small m_{G} mass expansion $(y \rightarrow 0)$ of integrals and expansion of result in terms of CPL using HarmonicSums package [Ablinger'13] and our own implementation
- Finite parts of the three-loop integrals are expressible through the cyclotomic polylogarithms up to the weight four

Numerical evaluation and transformations

- Cyclotomic polylogarithms are easy to evaluate with high precision as a series expansion near zero
- Comparing to HPL and even GPL lack of transformation rules like $x \rightarrow 1-x$
- Differential equations with initial conditions are known for CPL
- Possible to construct terms of series expansion in different regions using expansion around singular points [Lee,Smirnov,Smirnov'17]

Conclusion

1. We have calculated closed three-loop analytical expression for the massive scalar theory in the broken phase in the broken phase
2. New set of the two-mass three-loop tadpole integrals calculated
3. New set of functions from the iterated integrals class used to represent results of the calculation and need further investigation

Thank you for attention!

