The Milky Way in a phase and coordinate spaces

Martynova Anastasia Scientific superviser: Teryaev O.V.

Dubna State University

19 апреля 2018

19 апреля 2018

Martynova Anastasia Scientific super

1 Spiral structures in Heavy Ion Phisics

2 The construction of the galaxy rotation curve in order to study the spiral structures in the phase space

19 апреля 2018

2 / 13

- 3 The spiral structure in the coordinate and phase spaces
- **1** Time depending of helical structures

Spiral structures in Heavy Ion Phisics

Motivations:

- The possibility of observing collisions in heavy-ion physics only in phase space
- Comparison of structures arising in heavy-ion physics and in spiral galaxies

The appearance of vortex layers ("small galaxies") in the heavy ions collision

19 апреля 2018

3 / 13

Spiral structures in Heavy Ion Phisics

Motivations:

In paper

Statistical analysis of 2D patterns and its application to astrometry Petr Zavada and Karel Piska arXiv:1602.01812v2 [hep-ph] 14 Feb 2016

is discussed application of the method, based on the use of the Fourier expansion of azimuthal distributions of produced particles in in Heavy Ion Phisics for astrometric data, obtained by GAIA mission

Gaia is a mission to chart a three-dimensional map the Milky Way and the Local Group, in the process revealing the composition, formation and evolution of the Galaxy. (http://sci.esa.int/gaia/)

The construction of the galaxy rotation curve in order to study the spiral structures in the **phase** space

The velocity v of matter in the galaxy:

$$v(r) = \sqrt{\Sigma_i^n (v_i)^2} \qquad (1$$
$$v(r) = \sqrt{\frac{MG}{r}}, \qquad (2$$

$$M = \int_{a}^{b} \rho(r) d^{3}r, \qquad (3)$$

Puc.: Example of NGC1560, NGC2403, NGS3198, NGC6503 rotation curves

The construction of the galaxy rotation curve in order to study the spiral structures in the **phase** space

Components influenced on rotation curve:

• Bulge

• Thin stellar disk:

$$\sigma_D = \frac{M_D}{2\pi R_D^2} exp \frac{-r}{R_D} \qquad (4)$$

• Navarro-Frenk-White(NFW) Dark halo

$$\rho(r)_{NFW} = \frac{\rho_s}{\frac{r}{r_s}(1+\frac{r}{r_s})^2} \quad (5)$$

The construction of the Milky Way rotation curve

Data 1 from "A revised rotation curve of the Milky Way with maser astrometry" Xiao-Sheng Xin and Xing-Wu Zheng Data 2 from "Rotation curve of the Milky Way out to ~200 kpc" Pijushpani Bhattacharjee, Soumini Chaudhury, and Susmita Kundu

The rotation curve based on bachelor's work (With Gladyshev A.V. as scientific superviser)

Construction of the hodograph of the Galaxy in the coordinate and phase spaces

Components of godograph in the coordinate space:

$$\xi[r] = rsin(\frac{V(r)T}{r} + \phi)$$

$$\eta[r] = rcos(\frac{V(r)T}{r} + \phi)$$
(6)

With the known inverse function R(v), the angular rotation velocity of the velocity vector is determined by the value $\frac{v}{R(v)}$. Godograph components in the phase space:

$$\xi[v] = v\cos(\frac{vT}{R(v)} + \phi),$$

$$\eta[v] = v\sin(\frac{vT}{R(v)} + \phi)$$
(7)

19 апреля 2018

9 / 13

with ϕ as an initial phase

Martynova Anastasia Scientific super

All stars rotate clockwise

Puc.: Godographs of components and the rotation curve of the Milky way in the coordinate (up) and **phase**(down) spaces: a) Bulge, b) Stellar disk, c)Dark matter, d)Rotation curve. The spirals are twisted in different directions

Рис.: Time depending of helical structures in the coordinate (up) and ${\bf phase}$ (down) spaces

- The helical structures in coordinate and velocity space are found and compared
- Individual components in the phase space are twisted in different directions
- We are going to
 - study spiral structure using GAIA data in common with Institute of Physics AV CR (Prague)
 - Development of algorithms for searching for spiral structures in data on heavy ion collisions

19 апреля 2018

Thanks for your attention!

æ