Compapison of the spallation neutron field on the surface of Carbon and Lead Target under 660 MeV protons irradiation

J.Adam, L. Zavorka, A.A.Baldin, W.Furman, S.Gustov, K.Katovsky, J.Khushvaktov, D.Kral, A.Solnyshkin, J.Svoboda, P.Tichy, S.Tyutyunnikov, J.Vrzalova, V.Wagner, M. Zeman

Joint Institute for Nuclear Research at Dubna, Moscow region, Russia

Quasi-infinite depleted uranium target (BURAN) with replacement central zone

Front view photo

Rear view photo

CARBON TARGET 10 discs with diameter 190 mm and thicknes 100 mm Density 1,8 g/cm², admixtures < 0,02%

PROTON BEAM with energy of 660 MeV Beam parameters: $x_0 = -5,1$ mm, FWHM(x) = 35,1 mm $y_0 = -0,1$ mm, FWHM(y) = 34,6 mm

BEAM beam LEAD TARGET 20 discs with diameter 190 mm and thicknes 50 mm Density 11,35 g/cm³ **PROTON BEAM** with en Beam parameters x₀

 $y_0 = -0.6 \text{ mm}, \text{ FWHM}(y) = 37.1 \text{ mm}$

Ratio (R(x)/yield(x)/(R(Zr)/yield(Zr)) Carbon yield calcul

Fundamental cross sections

CARBON TARGET

Gauss Fit: $y_0 + A^* \operatorname{sqrt} (2/\pi) / w^* \exp(-2^* ((x-x_c) / w)^2)$ From x = 50 mm to x = 990 mm

A(area)	z _c (center)	w (width)
9,3(38)E7	403(23)	692(160)
2,24(44)E8	406(22)	452(71)
2,73(66)E8	417(27)	427(82)
1,14(13)E7	355(14)	426(38)
	A(area) 9,3(38)E7 2,24(44)E8 2,73(66)E8 1,14(13)E7	A(area) z_c (center)9,3(38)E7403(23)2,24(44)E8406(22)2,73(66)E8417(27)1,14(13)E7355(14)

Polynomial Fit : $a_0+a_1*x+a_2*x^2+a_3*x^3$

From x = 50 mm to x = 990 mm

	a_0	a_1	a_2	a ₃
$U_d(n,2n)$	4,37(40)E4	5,23(45)E2	-1,02(10)	4,80(58)E-4
$U_{d}(n,f)$	1,21(25)E5	2,76(32)E3	-5,33(73)	2,62(44)E-3
U _d (n,f)new	1,14(63)E5	3,93(74)E3	-7,4 (17)	3,6(10)E-3
U_d (n, γ)	2,28(14)E4	1,46(14)E2	-0,31(3)	1,65(18)E-4
Integral = $\{a_i\}$	$_{0}*x+a_{1}*x^{2}/2+a_{2}*$	$x^{3}/3 + a_{3} x^{4}/4 \}_{0}^{10}$	00	

Integral	Fission old	Fission new	(n,2n)	(n,γ}
Gauss	3,696E-25	4,971E-25	8,669E-26	3,374E-26
Polynom	3,827E-25	5,093E-25	8,693E-26	3,364E-26
Average	3,762E-25	5,032E-25	8,681E-26	3,369E-26

LEAD TARGET

 $\begin{array}{lll} Gauss \ Fit: \ y_0 + A^* \ sqrt \ (2/\pi) \ / \ w^* \ exp(\ -2^* \ \left((x-x_c) \ / \ w\right)^2 \) \\ From \ x = 50 \ mm \ to \ x = 260 \ mm \\ Reaction & A(area) & z_c \ (center) & w \ (width) \\ U_d \ (n,2n) & 1,65(59)E8 & 82,6(78) & 251(46) \\ U_d \ (n,f) & 6,3(16)E8 & 97,6(41) & 216(30) \end{array}$

 $U_d(n,\gamma)$ 1,13(13)E8 110,8(22) 160(12)

Polynomial Fit : $a_0+a_1*x+a_2*x^2+a_3*x^3+a_4*x^4$

From x = 260 mm to x = 990 mm

	a_0	a_1	a_2	a ₃	a_4
$U_d(n,2n)$	1,20(4)E6	-6,03(21)E3	11,3(4)	-9,40(40)E-3	2,91(13)E-6
$U_{d}(n,f)$	8,63(26)E6	-4,45(16)E4	85,9(37)	-7,33(36)E-2	2,33(13)E-5
U_{d} (n, γ)	3,09(15)E6	-1,48(10)E4	26,8(25)	-2,15(26)E-2	6,42(98)E-6
Integral =	$\{a_0^*x + a_1^*x^2/$	$(2+a_2*x^3/3+a_3*)$	$x^{4}/4 + a_{4} * x^{5}$	$(5)_{260}^{1000}$	

Integral	Fission	(n,2n)	(n,γ)
Gauss	7,275E-25	1,103E-25	2,555E-25
Polynom	1,911E-25	2,794E-26	2,836E-26
Sum	9,187E-25	1,383E-25	3,713E-25

	U _d (n,fission)	U _d (n,2n)	U _d (n <i>,</i> γ)
CARBON TARGET LEAD TARGET	5,093E-25 9,187E-25	8,693E-26 1,383E-25	3,364E-26 3,713E-25
Ratio C/L	0,554	0,629	0,091

CALCULATION

The reaction rates and the neutron fluxes were calculated with the radiation transport code **MCNPX2.7.0** The cross sections were extracted from the intranuclear cascade model **INCL4.2**, from **TALYS-1.8** code, and the evaluated nuclear data file **TENDL-2015s**.

CARBON TARGET

Dist. Fis. -n Fis. -p $\langle En \rangle$ $\langle Ep \rangle$ N yield P yield YIELD* [MeV] [MeV] [%] [%] [%] [%] [%] [mm] 50 19,5 86,8 5,15 2,86 4,95 91 9 78 27,7 22 135,4 4,83 2,74 4,37 150 30 34,5 4,66 2.82 70 184,4 4,10 260 201,0 360 67 33 38,6 4,49 2,77 3,93 65 35 41,4 206,8 4,49 2,77 3,89 470 570 65 35 43,0 200,3 4,26 2,77 3,73 189,7 4,26 2,77 680 63 37 43,7 3,71 4,26 2,82 780 62 38 44,0 176,0 3,71 44,0 156,3 4,26 2,83 3,68 890 59 41 58 128,8 45,2 4,26 2,74 3,62 990 42

*) Here are values for 97Zr, for 131I, 133I, and 143Ce the calculations are also done

Neutron spektra Lead and C

CONCLUSIONS

Yields for 97Zr, 131I, 133I, 143Ce for Carbon target we must know most precise

Almost 40% protons escape for Carbon We can try propose configuration Lead + Carbon

We must finished calculation of neutron spectra for all samples of Ud and threshold detector

It interesting to study experimentaly Be target with diameter 190 mm and length 1000 mm

THANK YOU FOR YOUR ATTENTION!

Target «Quinta-M»

Схема расположения АІ-детекторов на поверхности свинцовой сборки установки «Квинта»

REACTION RATE 27Al(n,...)24Na

Расположение Al-детекторов на поверхности свинцовой сборки установки «Квинта»

(Крышка установки условно не показана).

R - Rates of reaction products in 27Al (n,x)24Na, 22Na, 7Be Right side, z - dependence

R - Rates of reaction products in 27Al(n,x)24Na, 22Na, 7Be Right side, y - dependence

R - Rates of reaction products in 27Al(n,x)24Na, 22Na, 7Be Before side, x - dependence

R - Rates of reaction products in 27Al(n,x)24Na, 22Na, 7Be Top side, x - distance, y = 615 mm, z = 290 mm

R - Rates of reaction products in 27AI(n,x)24Na, 22Na, 7BeTop side, z - distance, x = 300 mm, y = 615 mm

z - distance [mm]

Reaction rate for 27Al(n,...)24Na, 27Al(n,...)22Na and 27Al(n,...)7Be experimental and calculated

Resid.

nuclei	Data	Ed = 4 GeV Ed = 8 GeV		eV	R(8GeV)/R(4GeV)	
		R [E-29]	d(R) [E-2	9]	R [E-29]	d(R) [E-29]
Na24	Exper.	7.48	0.43	12.23	0.54	1.64(12)
	Calcl.	7.473		16.75		2.24
	Exp/cal	1.00	0.06	0.73	0.03	
Na22	Exper.	0.522	0.029	2.73	0.22	5.23(51)
	Calcul.	0.71		1.73		2.43
	Exp/cal	0.73	0.04	1.58	0.13	
Be7	Exper.	0.069	0.011	0.471	0.083	6.84(150)
	Calcul.	0.0274		0.0736		2.69
	Exp/calc	2.51	0.38	6.40	1.13	

Calculation of average neutron fluence from reaction reaction rate of Be-7, Na-22 and Na-24

$$R_{3} = \int_{3}^{4} \sigma_{3}(E)\phi_{3}(E)dE \cong \phi_{3}\sum_{3}^{4} \sigma_{3}(E)\Delta E = \phi_{3}X_{34}(3)$$

 $R3 = F3^{*}X34(3)$ $R2 = F2^{*}X23(2) + F3^{*}X34(2)$ $R1 = F1^{*}X12(1) + F2^{*}X23(1) + F3^{*}X34(1)$

F3 = R3 / X34(3) F2 = (R2 - F3* X34(2)) / X23(2) F1 = (R1 - F2* X23(1) - F3*X34(1)) / X12(1)

Sum of cross-section					
X12(1)	X23(i)	X34(i)b	X34(i)c		

Residua	al Thr	eshold	5->27	27->119	119->800	119->1000
Nuclei	[Me	eV] No.	[barn]	[barn]	[barn]	[barn]
24Na	5	1	1.12	1.38	1.925	3.132
22Na	27	2		1.32	7.891	10.690
7Be	119	3			5.386	7.663

Measured average neutron fluences [neutrons/(cm2.MeV.deuteron)] x10-5

in case of two beam energies, 4 and 8 GeV

Product	Data	E _d = 4 GeV Fluence φ [E-5]	E _d = 8 GeV Fluence φ [E–5]	φ (8GeV)/φ(4GeV)
²⁴ Na	Exp. Calc. exp/calc	4.734(243) 5.160 0.917	8.521(511) 12.91 0.660	1.800 2.502
²² Na	Exp. Calc. exp/calc	0.182(12) 0.261 1.077	0.851(69) 0.550 2.706	4.676 2.107
⁷ Be	Exp. Calc. exp/calc	0.0358(57) 0.00748 4.786	0.150(27) 0.00749 20.03	4.190 0.999

Results of analysis of γ -ray spectra of $U_{nat.}$ after irradiation with secondary neutrons from $E_d = 1.60$ GeV. All corrections are included. (+) denotes mixing due to other nuclide.

Isotope	Activity[Bq]	T _{1/2} (Library)		< R >	Number of
Energy[keV]	I _g [%]	$T_{1/2}(Exper.)$	В	R	spectra
Np-239	849(40)	2.3565(4) d	7.51(35)-05	2.97(14)E-26	31-X,16-C
106.125	27.2	2.388(15) d	6.76(30)E-05	2.67(12)E-26	6-X
106.125	27.2	2.39(6) d	6.51(40)E-05	2.64(16)E-26	3-C
209.753	3.42	2.36(5) d	9.54(43)E-05	3.77(17)E-26	5-X
209.753	3.42	2.44(10) d	9.00(52)E-05	3.56(21)E-26	3-C
228.183	10.76	2.45(6) d	8.86(37)E-05	3.50(15)E-26	6-X
228.183	10.76	2.49(4) d	8.51(54)E-05	3.36(21)E-26	3-C
277.599	14.38	2.35(3) d	7.37(33)E-05	2.91(13)E-26	5-X
277.599	14.38	2.45(9) d	7.47(53)E-05	2.96(21)E-26	3-C
315.879	1.60	1.8(3) d	7.70(63)E-05	3.04(25)E-26	4-X
315.879	1.60	2.30(12)d	7.12(64)E-05	2.81(25)E-26	2-C
334.309	2.07	2.04(14) d	6.25(52)E-05	2.47(21)E-26	5-X
334.309	2.07	3.2 d	5.15(51)E-05	2.03(20)E-26	2-C
Mo-99	14.1(16)	2.7475(4) d	1.45(17)E-06	5.74(65)E-28	3;7X,7C
Te-132	11.5(10)	3.204(2) d	1.38(12)E-06	5.46(46)E-28	7:12X,18C
I-133	35(18)	20.8 (1) h	8.0(41)E-07	3.2(16)E-28	1:2X,2C
I-135	175(14)	6.57(2) h	1.80(26)E-06	7.13(57)E-28	6;6C
Xe-135	152(58)	9.14(2) h	2.04(109)E-06	8.6(38)E-28	1;3X,2C
Ba-140	3.38(10)	12.752(3) d	1.62(5)E-06	6.40(19)E-28	5;1X,15C
Ce-143	24.5(54)	33.039(6) h	1.26(27)E-06	5.0(11)E-28	3;4X,7C

Group weight factors for calculations of total number of fissions

$$w_{j}(t) = \frac{a(j)}{\int \sigma_{j}(t, E_{n})\Phi(E_{n})dE_{n}}$$

$$w_{j}(t) = \frac{a(j)}{a(4)}$$

$$\int \sigma_{j}(t, E_{n})\Phi(E_{n})dE_{n}$$

$$a(1)$$
(16)

- * thermal, epithermal and resonance –
 * unresolved resonance and fast –
- * fast and high energy neutrons –

from $a(1) = 10^{-5} \text{ eV}$ to a(2) = 126 keVfrom a(2) = 126 keV to a(3) = 4.57 MeVfrom a(3) = 4.57 MeV up to a(4) = beam energy

$$Y_{cum}(Th, {}^{99}Mo) = w_2(Th).Y_{cum}(Th, {}^{99}Mo, 2) + w_3(Th).Y_{cum}(Th, {}^{99}Mo, 3)$$

$$\begin{split} Y_{cum}(U_{nat},r) &= [0.007204 (w_1(^{235}U).Y_{cum}(^{235}U,r,1) + w_2(^{235}U).Y_{cum}(^{235}U,r,2) + \\ &+ w_3(^{235}U).Y_{cum}(^{235}U,r,3))] + \\ &+ [0.992742((w_2(^{238}U).Y_{cum}(^{238}U,r,2) + (w_3(^{238}U).Y_{cum}(^{238}U,r,3))] \\ &\text{where } r &= {}^{99}\text{Mo}, {}^{132}\text{Te}, {}^{133}\text{I}, {}^{135}\text{I}, {}^{135}\text{Xe}, {}^{140}\text{Ba and } {}^{143}\text{Ce}. \end{split}$$

En	²³² Th	²³⁵ U	²³⁸ U	natU
Epithermal	6.72.10 ⁻⁷	0.636	7.12.10 ⁻⁵	4.65. 10 ⁻³
Resonance	0.663	0.318	0.715	0.712
Fast	0.337	0.046	0.285	0.283

The relative ratio of R_{exp} (^{nat}U,r) / (Y_{cum} (^{nat}U,r)

X-axis 1 = 99 Mo, 2 = 132 Te, 3 = 133 I, 4 = 135 I, 5 = 135 Xe, 6 = 140 Ba, and 7 = 143 Ce

Calculation of neutron spectra and reaction rates.

- MCNPX 2.6.C
- Neutron flux, 4 cells 36*36*15 mm on top of 2nd section
- Setup: lead target, uranium rods in hexagonal lattice, polyethylene box with cadmium shielding, metal and aluminum holders and wooden plates
- Realistic size of beam: Xc = -0.64 cm, Yc = -0.39 cm, FWHM - X = 2.87 cm, Y = 1.92 cm

Gauss: Xc = Yc = 0, FWHM - X = Y = 4.00 cm

- CEM, INCL model with the LA150N and LA150H libraries
- 3.2*10^7 of incident particles were used for each calculation

The simulated particles spectra on top of second section of our setup using "INCL" model and "real" beam

Ratio of neutron flux simulated in box 3 (uran) with different combination of intra-nuclear model and shape of beam.

	232Th			Unat	
Reaction	(n , g)	(n,f)	(n ,2 n)	(n , g)	(n , f)
Reaction Rate, exper.	3.03(10)E-26	5.89(60)E-27	1.60(16)E-27	2.97(14)E-26	2.24(10)E-26
R(CEM-Gauss)	2.35E-26	2.38E-27	9.95E-28	5.87E-26	1.02E-26
R(CEM-real)	1.75E-26	1.83E-27	1.16E-27	3.66E-26	7.26E-27
R(INCL-Gauss)	2.74E-26	2.10E-27	1.09E-27	5.16E-26	7.80E-27
R(INCL-real)	2.49E-26	2.03E-27	1.06E-27	5.49E-26	7.93E-27
R(C-G)/R(C-r)	1.34	1.30	0.86	0.62	1.40
R(C-G)/R(I-r)	0.94	1.17	0.94	1.07	1.29
R(C-r)/R(I-r)	0.70	0.77	1.09	0.67	0.92
R(I-G)/R(I-r)	1.10	1.04	1.03	0.94	0.98
R(exper.)/R(I-r,calc.)	1.22(4)	2.90(30)	1.51(15)	0.54(3)	2.82(13)

C-G sign CEM-Gauss, C-r _ CEM-real, I-G _ INCL-Gauss, I-r _ INCL-real

$P(A_r, Z_r)$ - Transmutation rate.

 $P(A_r, Z_r) = m(A_r, Z_r) / m(A_t, Z_t)$

 $P(A_r, Z_r) = R(A_r, Z_r) N_d(integral) (A_r / A_t)$

With normalization to 10^9 beam particles

 $P_{norm}(A_r, Z_r) = 10^9 P(A_r, Z_r) / N_d(integral)$

232Th (n,γ)233Th (β- decay,T1/2 = 22.3 min) \rightarrow 233Pa (β- decay,T1/2 = 26.967 d) \rightarrow 233U 232Th (n,2n)231Th(β-, 25.52 h) \rightarrow 231Pa(β-, 32760 y) \rightarrow 231U(n,γ) \rightarrow 232U (T1/2 = 68.9 y)

238U (n,γ) 239U (β-, 23.4 min) \rightarrow 239Np(b-,2.4 d) \rightarrow 239Pu (alpha, 24110 y) \rightarrow 235U

	ou	r	TAR	TARC		
Reaction	P _{norm.} [10 ⁻¹⁷ g/g]	D _c [cm]	P _{norm.} [10 ⁻¹⁷ g/g]	D _c [cm]		
²³² Th(n,γ)	3.09(13)	13.1	3.8(3)	122		
			1.0(2)	150		
²³⁸ U(n,γ)	2.87(9)	13.8	1.1(3)	107		
			7.7(2)	94		

TARC our E_{v} [keV] $B[10^{-6}] \quad D_{c}[cm] \quad B[10^{-6}]$ D_c [cm] 3.96(51) 0.635(63) 25.646 13.1 4.0 84.216 4.47(65) 1.32(13) 1.05(16) 25.646 8.5 84.216 2.11(32)

Reaction 232 Th(n,2n) 231 Th

 $P_{norm}(^{231}Th) = 1.59(15)10^{-18} [g/g]$ our

	Th - foils			Unat foils	
	our	TARC		our	TARC
	(n, γ),(n, 2n)	(n, γ)	(n, 2n)	(n, γ)	(n, γ)
Weight (No.1)(mg)	93.2	132	158	172	290
Weight (No.2)(mg)			678		
Diameter (No.1)(mm)	15	12.7	12.5	15	12.7
Square (N o.2)(mm)			30x29		
Thick ness (N o.1)(μ m)	45.0	88.9	110.3	52.0	127
Thick ness (N o.2)(μ m)			66.5		
Activity (No.1)(Bq)	378	536	624	2244	3783
Activity (No.2)(Bq)			2753		
Radial distance (No.1)	131	1220	~ 40	138	1070
Center - sample [mm]					
Radial distance (No.2)		1500	~ 85		940
Center – simple(mm)					
Beam particle	deuteron	proton	proton	deuteron	proton
Beam energy	1.6 GeV	3.5	2.5	1.6 GeV	3.5
		GeV /c	GeV /c		GeV /c
Sum of particle	$1.93.10^{13}$	$2.14.10^{13}$		$1.93.10^{13}$	$2.14.10^{13}$
Sum of particle (No.1)			$4.80.10^{12}$		
Sum of particle (No.2)			9.01.10 ¹²		
Irradiation time (h)	6.65	8.5		6.65	8.5

TARC – Transmutation by Adiabatic Resonance Capture The 334 t lead assembly, ~ cylinder diam. 3.3 m and length 3m

Summary of the coordinates of the centres of the 12 instrumented holes in the 334 t lead assembly volume. The beam is introduced through a 77.2 mm diameter and 1.2 m long blind hole

Hole no.	x (m)	y (m)	Hole no.	.x (m)	(m) بر
1	1.05	0.00	2	0.60	0.30
3	0.15	0.00	4	0.00	-1.50
5	0.00	-0.60	6	0.00	0.60
7	0.00	0.90	8	0.00	1.20
9	0.00	1.50	10	-0.45	0.00-
11	-0.60	0.30	12	-1.05	0.00

Summary:

Measurements and analyzing 32 Spectra – monitor AI, sample ²³²Th,^{nat}U 133 peaks – calculated E_v , I_v , $T_{1/2}$ – determined reaction products A_r, Z_r **Experimental Reaction rate** Th: ²³³Pa, ²³¹Th, ⁹⁹Mo U: ²³⁹Np, ⁹⁹Mo, ¹³²Te, ¹³³I, ¹³⁵I, ¹³⁵Xe, ¹⁴⁰Ba, ¹⁴³Ce Estimate: R(Th(n,fission)) and R(U(n,fission)) Calculation with MCNPX 2.6C – CEM, INCL, real, Gauss. Neutron flux, Reaction rate, Th, U, (n,γ) , (n,2n) (n,fission) Calculation of Transmutation rate: Th, U with (n,γ) , (n,2n) and comparisson with TARC data

THANK YOU FOR YOUR **ATTENTION!**