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Dynamics of spin and equivalence principle

High-energy experiments take place in curved space or in
noninertial frame (for example, on Earth)
Equivalence principle (EP) - a cornerstone of gravity
Newton’s theory⇒ Einstein’s “falling elevator”
Colella-Overhauser-Werner (1975) and Bonse-Wroblewski
experiments - EP for quantum-mechanical systems:
Measured phase shift due to inertial and gravitational force
Gravity on spin: EP for relativistic particles?
Classical theory of spin: Frenkel (1928), Mathisson (1937),
Papapetrou (1951), Weyssenhoff-Raabe (1947)
Compare classical rotator and quantum spin
Measure spin effects to probe spacetime geometry!
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Arbitrary Riemannian geometry in 4 dimensions
Let t be time, xa (a = 1, 2, 3) be spatial coordinates:

ds2 = V 2c2dt2 − δ
âb̂
W â

cW
b̂
d (dxc −Kccdt) (dxd −Kdcdt)

V and Ka, and 3× 3 matrix W â
b depend arbitrarily on t, xa.

Their number 1 + 3 + 9 = 13 but rotation W â
b −→ LâĉW

ĉ
b

is allowed with arbitrary Lâĉ(t, x) ∈ SO(3): =⇒ 13− 3 = 10

Coframe eαi with gαβeαi e
β
j = gij , gαβ = diag(c2,−1,−1,−1):

e 0̂i = V δ 0i , eâi = W â
b

(
δbi − cKb δ 0i

)
, a = 1, 2, 3

Exact metric of flat spacetime in noninertial frame

V = 1 +
a · r
c2

, W â
b = δab , Ka = − 1

c
(ω × r)a
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Dirac particle in gravitational & electromagnetic field
Fermion with moments (AMM µ′= (g−2)e~

4m & EDM δ′= be~
2mc )(

i~γαDα −mc+
µ′

2c
σαβFαβ +

δ′

2
σαβGαβ

)
ψ = 0

Spinor covariant derivative (with σαβ = iγ[αγβ])

Dα = eiαDi, Di = ∂i −
ie

~
Ai +

i

4
σαβΓi αβ

Connection for general spacetime geometry

Γi â0̂ =
c2

V
W b

â ∂bV ei
0̂ − c

V
Q

(âb̂)
ei
b̂,

Γ
i âb̂

=
c

V
Q

[âb̂]
ei

0̂ +
(
C
âb̂ĉ

+ C
âĉb̂

+ C
ĉb̂â

)
ei
ĉ

Here anholonomity C
âb̂
ĉ = W d

âW
e
b̂
∂[dW

ĉ
e] and

Q
âb̂

= gâĉW
d
b̂

(
1
cẆ

ĉ
d +Ke∂eW

ĉ
d +W ĉ

e∂dK
e
)
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Dirac Hamiltonian
Naive Hamiltonian is not Hermitian. Rescale wave function

ψ −→
(√
−ge0

0̂

) 1
2
ψ and recast Dirac wave equation into

Schrodinger form i~∂ψ∂t = Hψ

Dirac Hamiltonian (with Fba = VW b
â and π = −i~∇− eA)

H = βmc2V + eΦ + c
2

(
πbFbaαa + αaFbaπb

)
+ c

2 (K · π + π ·K) + ~c
4 (Ξ ·Σ−Υγ5)

−βV (Σ ·M + iα ·P)

Here β = γ0̂, αa = γ0̂γâ, γ5 =
(

0 −1
−1 0

)
, Σ =

(
σ 0
0 σ

)
,

Υ = V εâb̂ĉΓ
âb̂ĉ

= −V εâb̂ĉC
âb̂ĉ
, Ξâ =

V

c
ε
âb̂ĉ

Γ0̂
b̂ĉ = ε

âb̂ĉ
Qb̂ĉ
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Electrodynamics in curved spacetime
Gravity is universal: affects also electromagnetism. How?
Basic objects: field strength F , excitation H and current J

Maxwell’s theory – without coordinates and frames

dF = 0, dH = J, H = λ0 ?F, λ0 =
√
ε0/µ0

Coordinates xi: F = 1
2Fijdx

i ∧ dxj , H = 1
2Hijdx

i ∧ dxj ,
and J = 1

6Jijkdx
i ∧ dxj ∧ dxk are (1 + 3) decomposed:

Ea = {F10, F20, F30}, Ba = {F23, F31, F12}
Ha = {H01, H02, H03}, Da = {H23, H31, H12}

Ja = {− J023,− J031,− J012}, ρ = J123

Maxwell equations are recast into standard form
∇×E + Ḃ = 0, ∇ ·B = 0,

∇×H − Ḋ = J , ∇ ·D = ρ
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Gravity/inertia encoded in constitutive relation H = H(F )

Da =
ε0w

V
gabEb − λ0

w

V
gadεbcdK

cBb,

Ha =
1

µ0wV

{
(V 2 −K2)gab +KaKb

}
Bb − λ0

w

V
εadcK

c gdbEb

Here Ka = gabK
b, K2 = gabK

aKb and w = detW ĉ
d.

Frame eαi needed for fermions =⇒ Fαβ = eiαe
j
βFij

Components: Ea = {F1̂0̂, F2̂0̂, F3̂0̂} & Ba = {F2̂3̂, F3̂1̂, F1̂2̂}
Relation between holonomic and anholonomic fields

Ea =
1

V
W b

â(E + cK ×B)b, Ba =
1

w
W â

bB
b

Nonminimal coupling −βV (Σ ·M + iα ·P) governed by

Ma = µ′Ba + δ′Ea, Pa = cδ′Ba − µ′Ea/c.
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Foldy-Wouthuysen transformation needed to reveal
physics (uncouple positive and negative energy states)
Recast generic Hamiltonian into

H = βM + E +O, βM = Mβ, βE = Eβ, βO = −Oβ

Foldy-Wouthuysen unitary transformation

ψFW = Uψ, HFW = UHU−1 − i~U∂tU−1

In arbitrary external fields (with ε =
√
M2 +O2)

U =
βε+ βM−O√
(βε+ βM−O)2

β

For Dirac fermion we have explicitly: M = mc2V and

E = eΦ + c
2 (K · π + π ·K) + ~c

4 Ξ ·Σ− βVΣ ·M,

O = c
2

(
πbFbaαa + αaFbaπb

)
− ~c

4 Υγ5 − iβVα ·P
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FW Hamiltonian HFW = H(1)
FW +H(2)

FW +H(3)
FW +H(4)

FW :

H(1)
FW =βε′ + ~c2

16

{
1
ε′ ,
(

2εcaeΠe{πb,Fdc∂dFba}+ Πa{πb,FbaΥ}
)}

+ ~mc4
4
εcaeΠe

{
1
T ,
{
πd,FdcFba∂bV

}}
,

H(2)
FW = c

2
(Kaπa + πaK

a) + ~c
4

ΣaΞa + ~c2
16

{
1
T ,
{

Σa{πe,Feb},
{
πf ,
[
εabc×

×( 1
c
Ḟf c −Fdc∂dKf +Kd∂dFf c)− 1

2
Ff d

(
δdbΞa − δdaΞb

)]}}}
,

H(3)
FW =eΦ− e~c2

4

{
1
ε′ , V

2ΠaBa

}
− e~c2

8

{
1
T ,
[
2~Fba∂b(V 2Ea)

−Σaε
abc
(
{Fdb, πd}V 2Ec − V 2Eb{Fdc, πd}

)]}
,

H(4)
FW =− c

8

{
1
ε′ ,
[
Σaε

abc({Fdb, πd}V Pc − V Pb{Fdc, πd})− 2~Fba∂b(V Pa)
]}

−V ΠaMa+ c2

4

{
1
T ,
(

Πa{{FcaFdbVMb, πc}, πd
}

+β~
{
Fba[J a+Kc∂c(V Pa)], πb

})}
Here { , } anticommutators, T = 2ε′

2
+ {ε′,mc2V }, Π = βΣ,

ε′=
√
m2c4V 2+ c2

4
δac{πb,Fba}{πd,Fdc}, J a=εabcFdb∂d(VMc)+ ∂Pa

c∂t

This result is exact – no (weak field etc) approximations for V,W â
b,K

a.
Planck ~ is the only small parameterYuri N. Obukhov Quantum spin dynamics
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Quantum dynamics of spinning particle
Evolution of spin (polarization operator Π = βΣ)

dΠ

dt
=
i

~
[HFW ,Π] = Ω(1) ×Σ + Ω(2) ×Π

Semiclassical precession velocity of spin
Ωa(1) = c2

ε
Fdcπd

(
1
2
Υδac − εaklV Cklc + ε

ε+mc2V
εabcW k

b̂ ∂dV

+ eV 2

ε′+mc2V ε
acbEb − 2V

c~ ε
acbPb

)
Ωa(2) = c

2
Ξa − c3

ε(ε+mc2V )
εabcQ(bd)δ

dnFknπkF lcπl

− ec2V 2

ε
Ba + 2V

~

(
−Ma + c2

ε(ε+mc2V )
δanFcnπcFdbπdMb

)
Here ε =

√
m2c4V 2 + c2δcdFacFbd πa πb

Semiclassical FW Hamiltonian

HFW = βε+ eΦ +
c

2
(K ·π + π ·K) +

~
2
Π ·Ω(1) +

~
2
Σ ·Ω(2)
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Physical spin s precesses wrt rest frame: ds
dt = Ω× s

Spin dynamics on Earth (with g = − GM
r3
r, γ = 1/

√
1− v2/c2)

Ω =
e

m

{
− 1

γ
B +

1

γ + 1

v ×E

c2

}
− ω +

2γ + 1

γ + 1

v × g
c2

− 2µ′

~

{
B− v ×E

c2
− γ

γ + 1
v
B · v
c2

}
− 2δ′

~

{
E + v ×B− γ

γ + 1
v
E · v
c2

}
Analysis of manifestations of terrestrial rotation and gravity
in precision high-energy physics: influence not negligible
E.g.: Earth’s gravity produces same effect as deuteron’s
EDM of δ′ = 1.5× 10−29 e·cm in planned dEDM experiment
with magnetic focusing (AGS proposal EDM Collaboration)
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Spin dynamics in a gravitational wave
Gravitational and electromagnetic fields not superimposed
but their action on fermion is combined in a nontrivial way
=⇒ new prospects for detection of grav. wave effects?
In coordinates (t, x, y, z), weak gravitational wave is

V = 1, K = 0, W â
b =

 1 + w⊕ w⊗ 0

w⊗ 1− w⊕ 0

0 0 1


Functions w⊗(ϕ), w⊕(ϕ) of phase ϕ = ω(t− z

c ), describe
2 polarizations of a plane wave with frequency ω along z
Hamiltonian for fermion’s spin in this spacetime reduces to

HFW = −
(
µ0 + µ′

)
Π ·B

Here Bohr’s magneton µ0 = e~
2m . Important observation:

Anholonomic field Ba = W â
bB

b bears “imprint” of the
gravitational wave on applied magnetic field B!
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Recall particle with magnetic moment in flat space (no
gravity) in constant homogeneous magnetic field: spin
polarized along/against applied field. Additional rotating
(alternating) field in plane perpendicular to original field
=⇒ spin flip: magnetic resonance phenomenon occurs
Suppose B = (B0, 0, 0) with B0 =const, and w⊕ = 0,

w⊗ = g0 cosϕ = g0 cos (ωt− ωz/c)
describes wave with frequency ω and amplitude g0 along z
=⇒B = (B0, B0w⊗, 0), ie magnetic resonance conditions
Probability to get at t spin oriented oppositely to initial at t0

P− 1
2

=
sin2 {ω0g0(t− t0)Λ/4}

Λ2

Here Larmor frequency ω0 = 2(µ0 + µ′)B0/~, and

Λ2 = 1 +
4(1− ξ)2

g20
, ξ =

ω

ω0

(
1− g20

16ξ2

)
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“...The question whether this
continuum has a Euclidean,
Riemannian, or any other
structure is a question of
physics proper which must be
answered by experience, and
not a question of a conven-
tion to be chosen on grounds
of mere expediency.”

A. Einstein, Geometrie
und Erfahrung, Sitzungsber.
preuss. Akad. Wiss. 1 (1921)
123-130.

.
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Experimental bounds on torsion
To probe spacetime geometry: dynamics of spin

dΠ

dt
=
i

~
[HFW ,Π] = Ω×Π

Theory: spin precession to probe torsion: Adamowicz
(1975), Rumpf (1980), Audretsch (1981), Lämmerzahl
(1997); review W.T.Ni, Rep.Prog.Phys. 73 (2010) 056901
Experiment: effect of Earth’s gravity on nuclear spins Hg
Spin Hamiltonian (torsion Ťα = 1

2η
µνλαTµνλ, Ť = {Ť a})

HFW = − gNµNB ·Π−
~
2
ω ·Σ− ~c

4
Ť ·Σ.

B.J. Venema et al, Phys. Rev. Lett. 68 (1992) 135
Limits on torsion from Zeeman energy levels measurements

|Ť | < 4.3× 10−14m−1

Recent: C. Gemmel et al, Phys. Rev. D82 (2010) 111901
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Conclusions and Outlook
Searches for spin effects in gravity is fundamental issue.
Overview of relevant laboratory experiments: Wei-Tou Ni,
Rep. Prog. Phys. 73 (2010) 056901
Theoretical framework of fermion spin dynamics developed
[based on: Obukhov, Silenko, Teryaev, Phys. Rev. D90
(2014) 124068; Phys. Rev. D94 (2016) 044019; Phys. Rev.
D96 (2017) 105005] applicable to arbitrary strong and time-
dependent gravitational, inertial and electromagnetic fields
Exact Foldy-Wouthuysen transformation constructed
Effects of terrestrial gravity and rotation non-negligible
Influence of gravitational wave on spin possibly detectable
in the framework of a magnetic resonance type setup
Probing spacetime geometry: from nuclear spin dynamics
obtained new limits on spacetime torsion T < 10−14 1

m
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