XXIV INTERNATIONAL BALDIN SEMINAR ON HIGH ENERGY PHYSICS PROBLEMS RELATIVISTIC NUCLEAR PHYSICS & QUANTUM CHROMODYNAMICS

RECENT RESULTS FROM THE CMD-3

Peter A. Lukin

- on behalf of CMD-3 collaboration
- Budker Institute of Nuclear Physics Novosibirsk State University

The XXIV International Baldin Seminar on High Energy Physics Problems "Relativistic Nuclear Physics and Quantum Chromodynamics", 17 - 22 September 2018

(g-2)/2 of muon (theory)

C.m. energy range is 0.32-2.0 GeV; unique optics – "round beams" Design luminosity is $L = 10^{32} 1/cm^2 s @ \sqrt{s} = 2$ GeV Experiments with two detectors, CMD-3 and SND, started by the end of 2010

Detector CMD-3

5

Collected luminosity in 2011-2013

The luminosity was limited by a deficit of positrons and limited energy of the booster.

In 2013 we reached 2 \times 160 MeV, the smallest energy ever measured at ee colliders

The VEPP-2000 upgrade has started in 2013.

About 60 pb-1 collected per detector

ω(782)	8.3 1/pb
$2E < 1 \text{ GeV} (ext{except } \omega)$	9.4 1/pb
$\varphi(1019)$	8.4 1/pb
2E > 1.04 GeV	34.5 1/pb

7

VEPP-2000 upgrade (2013-2016)

New injection complex

Collider upgrades:

- x10 more intense positron source
- booster up to 1 GeV (match VEPP-2000)
- New electronics for LXe calorimeter
- New TOF system
- DAQ and electronics upgrades

Detectors resumed data taking by the end of 2016

8

2017 data taking

2017-2018 2011-2013

Overview of CMD-3 data taking runs

Exclusive channels $e^+e^- \rightarrow hadrons$

At VEPP-2000 we do exclusive measurement of $\sigma(e^+e^- \rightarrow hadrons)$.

• 2 charged published

$$e^+e^- \to \pi^+\pi^-, K^+K^-, K_SK_L, p\overline{p}$$
 in progress
• 2 charged + γ 's
 $e^+e^- \to \pi^+\pi^-\pi^0, \pi^+\pi^-\eta, K^+K^-\pi^0, K^+K^-\eta, K_SK_L\pi^0, \pi^+\pi^-\pi^0\eta, \pi^+\pi^-\pi^0\pi^0, \pi^+\pi^-\pi^0\pi^0, \pi^+\pi^-\pi^0\pi^0, \pi^+\pi^-\pi^0\pi^0, \pi^+\pi^-\pi^0\pi^0, \pi^+\pi^-\pi^0\pi^0, \pi^+\pi^-\pi^+\pi^-, K_SK^*$
• 4 charged
 $e^+e^- \to \pi^+\pi^-\pi^+\pi^-\pi^0, \pi^+\pi^-\eta, \pi^+\pi^-\omega, \pi^+\pi^-\pi^0\pi^0, K^+K^-\eta, K^+K^-\omega$

6 charged

$$e^+e^- \rightarrow \pi^+\pi^-\pi^+\pi^-\pi^+\pi^-$$

γ's only

$$e^+e^- \rightarrow \pi^0 \gamma, \eta \gamma, \pi^0 \pi^0 \gamma, \pi^0 \eta \gamma, \pi^0 \pi^0 \pi^0 \gamma, \pi^0 \pi^0 \eta \gamma$$

other

$$e^+e^- \rightarrow n\overline{n}, \pi^0 e^+ e^-, \eta e^+ e^-$$

Dominant channel: $e^+e^- \rightarrow \pi^+\pi^-$

"Open box", when systematics of both methods < 1% Our goal is to have systematic error at the level ~ 0.33%

Dominant Channel: $e^+e^- \rightarrow \pi^+\pi^-$. Statistics

Statistical accuracy $\Delta\sigma/\sigma$ in 20 MeV bins

CMD-3 preliminary results from 2011-2013

14

$$e^+e^-
ightarrow \pi^+\pi^-\pi^0\eta$$

First measurement of total $e^+e^- \rightarrow \pi^+\pi^-\pi^0\eta$ cross section. Systematic error is 15%.

R(s) at $N\overline{N}$ threshold

One of first results from CMD-3:

- Sudden drop of $e^+e^- \rightarrow 3(\pi^+\pi^-)$ cross section at $N\overline{N}$ threshold
- Confirmed, that $p\bar{p}$ production cross section increases quickly at threshold
- Preliminary studies of dynamics of $e^+e^- \rightarrow 3(\pi^+\pi^-)$, hint of energy dependent dynamics in 1.7-1.9 GeV energy range

2017: $e^+e^- \rightarrow 3(\pi^+\pi^-)$ at $N\overline{N}$ threshold

In 2017, CMD-3 collected 13 1/pb in the narrow energy range around $N\overline{N}$ threshold

- the sharp rise of $e^+e^- \rightarrow p\bar{p}$ crosssection is confirmed
- the sharp drop of $e^+e^- \rightarrow 3(\pi^+\pi^-)$ cross-section is confirmed
- we see the similar cross-section drop in other channels

NN threshold in $2(\pi^+\pi^-)$ reaction

arXiv:1808.00145 [hep-ex]

Figure 4: The $e^+e^- \rightarrow 2(\pi^+\pi^-)$ cross section measured with the CMD-3 detector. Lines show the $p\bar{p}$ and $n\bar{n}$ thresholds.

We continue search for the NNbar threshold indication in other multi-hadron reactions

18

Conclusion

- The goal of the CMD-3 experiment at the VEPP-2000 is to provide exclusive measurement of e⁺e⁻ → hadrons from 0.32 to 2.0 GeV
- In 2011-2013 CMD-3 has collected 60 pb⁻¹ in the whole energy range $0.32 \le \sqrt{s} \le 2.0$ GeV, available at VEPP-2000.
- In 2013-2016 the collider and the CMD-3 detector have been upgraded and the data taking was resumed in 2017 and > 100 pb⁻¹ were collected so far.
- Data analysis of exclusive modes of $e^+e^- \rightarrow hadrons$ is in progress. Many results have been published.

Peter A. Lukin Recent results from CMD-3

ISHEPP-2018 International Seminar

Thank You for Your attention! Stay tuned!

Backup slides

$\sigma(e^+e^- \rightarrow hadrons)$ and the hadronic contribution to a_{μ}

So far, the hadronic contribution to a_{μ} is calculated by integrating experimental cross-section $\sigma(e^+e^- \rightarrow hadrons)$.

Weighting function $\sim 1/s$, therefore lower energies contribute the most.

Many sources of data:

- Novosibirsk: CMD-2 and SND (VEPP-2M), CMD-3 and SND (VEPP-2000)
- Factories: Babar, KLOE
- BES-III, KEDR

$$R(s) = \frac{\sigma(e^+e^- \to hadrons)}{\sigma(e^+e^- \to \mu^+\mu^-)}$$

√s (GeV)

$K_{S}K_{L}$ and $K^{+}K^{-}$ @ $\varphi(1020)$

Recent result from CMD-3:

- $K_S K_L$ at φ , systematic precision 1.8%
- K^+K^- at φ , systematic precision 2.0% (2.8%)

K^+K^- : comparison with other measurements

 $K_S K_L$ at φ is consistent between different experiments, but there is discrepancy in K^+K^- channel.

New CMD-3 K^+K^- cross-section is above CMD-2 and BaBar, but is consistent with isospin symmetry: • $R_{SND} = 0.92 \pm 0.03(2.6\sigma)$

$$R = \frac{g_{\varphi K^+ K^-}}{g_{\varphi K_S K_L} \sqrt{Z(m_{\varphi})}} = 0.990 \pm 0.017 \qquad \bullet R_{CMD-2} = 0.943 \pm 0.013(4.4\sigma)$$
$$\bullet R_{BaBar} = 0.972 \pm 0.017(1.5\sigma)$$

Possible explanation: CMD-2 trigger correction was underestimated; due to different trigger configuration there is no such correction at CMD-3

$K_S K_L$ and $K^+ K^-$: $\rho - \varphi$ interference

 $\rho - \varphi$ interference can be directly observed:

$$R_{c/n} = \sigma(e^+e^- \to K^+K^-) \times \frac{p_{K^0}^3(s)}{p_{K^\pm}^3(s)} \times \frac{1}{Z(s)} - \delta \times \sigma(e^+e^- \to K_S K_L)$$

• $r_{\rho,\omega} = 0.91 \pm 0.04$

deviation of SU(3) relations $g_{\omega K^+K^-} = g_{\rho K^+K^-} = -g_{\varphi K^+K^-}/\sqrt{2}$

• $\delta = 0.989 \pm 0.003$

test of systematic errors

CMD-3 published results from 2011-2013

More CMD-3 preliminary results from 2011-2013

atar SIZIZ

$e^+e^- \rightarrow \pi^+\pi^-$: systematics

Source	Goal	Current estimation	Comment
Radiative correction	0.2%	0.2% (cross-section) 0.0-0.4% (mom.separation)	To-do: more MCGPJ improvement, comparison to data
Event separation	0.2%	0.1-0.5% (mom.separation) ~1.5% (energy separation)	To-do: improve energy separation
Fiducial volume	0.1%	ok	Two independent subsystems to fix fiducial volume
Beam energy	0.1%	ok	Continuous monitoring via Compton backscattering
Pion corrections (decay, nucl.int.)	0.1%	0.1% - nucl.interations 0.6-0.3% - decays al low energies	To-do: improve reconstruction of decay events
Combined	0.33%	0.4-0.9% (mom.sep.) 1.5% (energy sep.)	open box when both <1%

CMD-3 Performance (2011-2013)

- 1.0-1.3 T magnetic field
- Tracking: $\sigma_{R\varphi} \sim 100 \,\mu$, $\sigma_z \sim 2 3 \,\text{mm}$
- Combined EM calorimeter (LXE, Csl, BGO), 13.5 X₀

$$\succ \sigma_E/E \sim 3\% - 10\%$$

$$\succ \sigma_{\Theta} \sim 5 \text{ mrad}$$

New TOF system

"New" TOF (2017-) Beam axis

In 2013-2016 the TOF system was completely replaced

- More granulated (16 counters \rightarrow 175 counters)
- 0.8 ns resolution per counter

30

Energy measurement

Starting from 2012, energy is monitored continuously using Compton backscattering

M.N. Achasov et al. arXiv:1211.0103v1 [physics.acc-ph] 1 Nov 2012

Search for e+e- $\rightarrow \eta'(958)$

