Recent results from BESIII

I.Boyko

XXIV International Baldin Seminar Dubna, 18 Sept 2018

I.Boyko

Recent results from BESIII

Location of IHEP in Beijing

I.Boyko

Recent results from BESIII

History

- BES: 1989-1993 (BEPC)
- BESII: 1998-2004
- **BESIII**: 2008-...

(BEPC) (BEPCII)

BES = BEijing Spectrometer BEPC = Beijing Electron-Positron Collider

BESIII collaboration

- Almost 500 members, 66 institutions, 14 countries
- 38 institutions from China, 7 rest of Asia, 16 Europe (incl. Dubna and Novosibirsk), 5 USA

BEPCII storage rings

Collision energy
 2.0 – 4.6 GeV

- Design luminosity 1.0x10³³ cm⁻² s⁻¹
- Achieved luminosity 1.0x10³³ cm⁻² s⁻¹
- Energy spread 5x10⁻⁴
- No. of bunches
 93
- Total current 0.91A
- Circumference
 237m

BESIII detector

CsI(Tl) calorimeter

BESIII general view

Inner tracker upgrade

- Inner part of the Main Drift Chamber suffers from aging
- In summer 2019 it will be replaced by a Cylindrical GEM
- Similar to KLOE-2 CGEM

- Rate 10⁴ Hz/cm²
- $\sigma_{r\phi} \sim 130 \ \mu m$
- $\sigma_p/p=0.5\%@1GeV/c$

I.Boyko

Recent results from BESIII

World largest samples of J/ ψ , ψ (2S), ψ (3770), ψ (4040), ψ (4180), Y(4260), ...

R ratio

BESIII physics program

- Charmonium physics
- Charmed hadrons
- Exotic states
- Light hadron spectroscopy
- Tau lepton physics
- R-scan (inclusive hadron yield)
- Baryon form-factors
- Searches for new physics

Zc states

First observation of a charged charmonium-like state

Z_c(3900)+

- An unambiguous peak of (π±J/ψ) mass observed in ee→π⁺π⁻J/ψ data
- M = 3899.0 ± 3.6 ± 4.9 MeV
- Γ = 46 ± 10 ± 20 MeV
- Most natural interpretation is a 4-quark state ccqq (tetraquark); other interpretations also possible

PWA of Zc(3900)

- Contributions from σ , f₀(980), $f_2(1270)$ and $f_0(1370)$ have been considered
- Spin-parity established to be 1⁺ at more than 7σ level

1.0

PR12001

Other Zc states

- In total, 4 charged and 4 neutral states have been observed at ~3900 and ~ 4020 MeV in decay modes $\pi\pi J/\psi$, πh_c , D*D and D*D*
- A natural hypothesis: we observe 2 doublets of charged and neutral partners

Summary on Zc decay modes

3900 MeV		4020 MeV	
charged	neutral	charged	neutral
π±J/ψ	πºJ/ψ	π±h _c	π ⁰ h _c
$M = 3899.0 \pm 6.1$	$M = 3894.8 \pm 2.3$	$M = 4022.9 \pm 2.8$	$M = 4023.9 \pm 4.4$
$\Gamma = 46 \pm 22$	$\Gamma = 29.6 \pm 8.2$	$\Gamma = 7.9 \pm 3.7$	Γ = 7.9 (fixed)
(D*D)±	(D*D) ⁰	(D*D*)±	(D*D*) ⁰
$M = 3882.0 \pm 1.9$	M=3885.7 ± 10.2	$M = 4026.3 \pm 4.5$	$M = 4025.5 \pm 5.6$
$\Gamma = 26.5 \pm 2.7$	Γ = 35 ± 19	$\Gamma = 24.8 \pm 9.5$	$\Gamma = 23.0 \pm 6.1$

XYZ states

XYZ states

I.Boyko

Recent results from BESIII

XYZ states

- An energy scan was performed in the energy domain of XYZ states
- Total 9.0 fb⁻¹ data have been collected
 - Of them, 8.2 fb⁻¹ from a dedicated XYZ-scan
 - Additional 0.8 fb⁻¹ from earlier scans
- Collision energy between 3.77 and 4.60 GeV

I.Boyko

- Two resonant structures are observed:
 - Y(4260)? M = 4222.0 \pm 3.1 \pm 1.4, Γ = 44.1 \pm 4.3 \pm 2.0 MeV
 - $Y(4360)? M = 4320.0 \pm 10.4 \pm 7$, $\Gamma = 101.4 \pm 25 \pm 10 MeV$
- Precision on Y(4260) improved
- Y(4360): first observation in $ee \rightarrow \pi^+\pi^- J/\psi$
 - Seen in $ee \rightarrow \pi^+ \pi^- \psi'$ by Belle and BaBar

- Two resonances observed:
 - Y(4220): M = 4218.0 ± 5 ± 0.9, Γ = 66 ± 12 ± 0.4 MeV
 - Y(4390): M = 4391.5 ± 6.8 ± 1.0, Γ = 139.5 ± 20 ± 0.6 MeV
- Inconsistent with Y(4260)^{PDG}, Y(4360), ψ(4415)
- Y(4220) consistent with the structure observed in $ee \rightarrow \omega \chi_{c0}$

I.Boyko

- Again, 2 resonances observed:
 - Y(4220): M = 4224.8 ± 5.6 ± 4, Γ = 72.3 ± 9.1 ± 0.9 MeV
 - Y(4390): M = 4400.1 \pm 9.3 \pm 2.1, Γ = 181.7 \pm 16.9 \pm 7.4 MeV
- Y(4220) consistent with $\pi^+\pi^-h_c$, $\pi^+\pi^-J/\psi$, $ee \rightarrow \omega \chi_{c0}$
- Y(4390) consistent with $\pi^+\pi^-h_c$

Baryonic form-factors

$\Lambda_{\rm C}$: the lightest charmed baryon

- Belle data can be described by a Y(4660) resonance
 M = 4652.5 ± 3.4 MeV
- BESIII data show flat cross-section down to the threshold
- There is some tension between BESIII and Belle data

$\Lambda_{\rm C}$ polar angle distribution

- Can be parameterized by $1 + \alpha_{\Lambda c} \cos^2 \theta$
- Form-factor ratio given by: $|G_E/G_M|^2(1-\beta^2) = (1 \alpha_{\Lambda c})/(1 + \alpha_{\Lambda c})$

Lambda form-factor

- At BESIII it is possible to measure cross-section down to the threshold energy (just 1 MeV above!)
- Like for Λ_C , BESIII observes a threshold enhancement
- BESIII results marginally consistent with BaBar, but not with the theoretical description

The ppbar threshold

Steep rise of ppbar cross-section is observed by CMD and BaBar
BESIII scan down to 2000 MeV confirms the observations (see next slide)

Oscillations of ppbar form-factor

- BESIII confirms the periodic oscillations of the effective form-factor as a function of p-pbar relative momentum (first seen in BaBar data)
- An explanation is proton-antiproton rescattering at ~1 fm distances

Charmonia baryonic decays (2)

- Again, negative angular parameter is observed in $J/\psi \rightarrow \Sigma\Sigma$
- Not the case for ψ' decays and for non- Σ final states
- LO QCD predicts positive α in all cases
- More sophisticated theoretical model are necessary to explain the observations

I.Boyko

Charm decays

 $D_{s}^{+} \rightarrow \mu^{+} \nu$

- $B[D_s^+ \rightarrow \mu^+ \nu] = 0.528 \pm 0.015 \pm 0.014\%$
- f_{Ds}|Vcs| = 242.5 ± 3.5 ± 3.7 MeV

$$R \equiv \frac{\Gamma(D_s^+ \to \tau^+ \nu)}{\Gamma(D_s^+ \to \mu^+ \nu)} \qquad \begin{array}{l} \text{SM:} \qquad \mathsf{R} = 9.74 \pm 0.1 \\ \text{BESIII:} \qquad \mathsf{R} = 10.2 \pm 0.5 \end{array}$$

I.Boyko

Recent results from BESIII

 $D^+ \rightarrow \tau^+ \nu$

- Nsig = 137 ± 27
- $B[D^+ \rightarrow \tau^+ \nu] = (1.20 \pm 0.24_{stat}) \times 10^{-3}$
 - $R \equiv \frac{\Gamma(D^+ \to \tau^+ \nu)}{\Gamma(D^+ \to \mu^+ \nu)}$ SM: R = 2.66 ± 0.01 BESIII: R = 3.21 ± 0.64

I.Boyko

Recent results from BESIII

Light hadron spectroscopy

Structures at the pp threshold

- M(X) = 1832 ± 32 MeV
- Γ(X) = 13 ± 40 MeV
- $J^{PC} = 0^{-+}$
- $B(J/\psi \rightarrow \gamma X) = (9.0 \pm 1.5) \times 10^{-5}$ I.Boyko Recen

- BESIII observed quite a number of structures right below the pp threshold
- Recent increase of J/ψ statistics by factor of 4 (1.3B → 6B) will be extremely useful to clarify the situation

Physics of τ -leptons

Precision measurement of Mτ

• $M\tau = 1776.91 \pm 0.12 \pm 0.12$

- As good as the rest of the world
- PDG: 1776.86±0.12
- BESIII systematics: mostly the statistics of energy calibration runs

Summary

- With its excellent detector and huge statistics, BESIII is now the world leader in the energy domain of charm and charmonium
- An exotic state of matter (Zc resonances) has been discovered
- Many intriguing and puzzling results obtained in spectroscopy of XYZ mesons
- High precision measurements allow a detailed scrutiny of the Standard Model predictions
- After 10 years of successful running, an upgrade of both machine and detector is planned – expect even more results !