

First experiments on deep ionization of Ir, Ce and Xe atoms in local ion trap at JINR

V. P. Ovsyannikov, E. D. Donets, E. E. Donets, D. E. Donets, S. I. Tytynnikov, V. I. Stegailov, A. Yu. Ramsdorf, A. Yu. Boytsov, D. N. Rassadov

Joint Institute for Nuclear Research, Dubna, Russia

A. V. Nefiodov

Petersburg Nuclear Physics Institute, St. Petersburg, Russia

A. A. Levin

MaMFIS Group, Hochschulstr. 13, D-01069 Dresden, Germany

Production of highly charged ions in electron beams (history)

Electron Beam Ion Source (EBIS), E. D. Donets, Dubna, 1967

$L_{\text{trap}} = 0.7 - 1.5 \text{ m}, j_e \sim 500 \text{ A/cm}^2$

Main Magnetic Focus Ion Source (MaMFIS)

 $L_{\text{trap}} = 1 \text{ mm}$ $j_e > 10 \text{ kA/cm}^2$

Electron Beam Ion Trap (EBIT), M. Levine, R. Marrs, LLNL, 1986

 $L_{\text{trap}} = 2 \text{ cm},$ $j_e \sim 2 \text{ kA/cm}^2$

K, cathode W, focusing (Wehnelt) electrode A, anode S_1, S_2, \dots, S_n , sections of drift tube C, collector E, extractor z, axis of electron beam j_e , effective electron current density $_2$ $L_{\rm trap}$, trap length

Main Magnetic Focus Ion Source (MaMFIS)

Electron current density j_e is the key quantity, because it determines the rate for production of highly charged ions

Operation principle of MaMFIS (Single Focus)

Electron beam trajectories for single-focus electron optics (theoretical estimation)

Radial (left fig.) and axial (right fig.) distributions of electron current density j_e near focus point F

The electron current density in a single focus can be extremely high!

C, cathode W, focusing (Wehnelt) electrode A, anode z, axis of electron beam B(z), magnetic field distribution F, magnetic focuses (local ion traps)

Operation principle of MaMFIS (Three Focuses)

MaMFIS

C, cathode A, anode **D**, drift tube

Local ion traps in a rippled electron beam

lons

B(z)

- W, focusing (Wehnelt) electrode
- z, axis of electron beam B(z), magnetic field distribution F_1, F_2, F_3 , magnetic focuses (local ion traps) Effective electron current density $j_e \sim 20$ kA/cm²

Axial distribution of electron current density on the length of 1 mm near focuses

X-ray spectra from cathode materials

M.A. Levine, R.E. Marrs, J.R. Henderson, D.A. Knapp and M.B. Schneider, **Phys. Scripta T22, 157 (1988)**

300

250

200

150

100

50

Counts

V.P. Ovsyannikov and A.V. Nefiodov, Nucl. Instr. Meth. B 370, 32 (2016)

MaMFIS-10 *E*, b 10 keV $I_{a} = 50 \text{ mA}$

First run: Justus-Liebig-University Giessen, 2013 6

MaMFIS-10: Estimation of electron current density

X-ray emission due to radiative recombination into the M-shell of Ir ions (experiment)

Charge-state distributions of Ir ions for different electron current density (computer simulation)

Electron current density is estimated t

to be
$$j_e \sim (10 - 20) \text{ kA/cm}^2$$

MaMFIS family developed until now

MaMFIS-4 E_e b 4 keV

300 250200Count 150100

Not yet tested

MaMFIS-8 E_e b 8 keV

MaMFIS-10 *E_e* b 10 keV

MaMFIS-30 *E_e* b 30 keV

First assembling of MaMFIS-40D

MaMFIS-40 at JINR in Dubna

Project parameters: Electron energy E_e b 35 keV Electron current density j_e b 20 kA/cm² **Electron current** I_e **b** 50 mA (**DC-mode**)

Realized parameters: *E*, b 40 keV j_e b 20 kA/cm² *l_e* b 50 mA

Aim of project: **Development of MaMFIS technology for** production of highly charged ions of heavy elements

Assembling for extraction mode

Permanent magnet focusing system

Focusing permanent magnets

Magnetic field distribution

Focusing permanent magnets on ionization chamber

Electron gun and its characteristics

Volt-Ampere characteristics of electron guns (EG)

Cathode assembly of electron gun

Electron beam trajectories vs. Electron energy *E*_e 11

Vacuum

Vacuum volume < 1 litre

During operation vacuum ranges from 10⁻⁹ to 5×10⁻⁸ mbar

Baking procedure

Efficiency of registration

Experimental scheme

Radiation spectrum of cathode materials¹³

Radiative recombination continuum

Cathode materials (Ir & Ce)

RR spectrum for $E_e = 22.5$ keV

RR spectrum for different E_e

MaMFIS

Injected materials (Bi & Xe)

RR spectrum of bismuth (blue curve) compared to that of cathode materials (red curve)

RR spectrum of xenon

Features and applications of MaMFIS

Advantages:

- Highest ionization factor among the ion sources available around the world
- Minimum confinement time
- High-frequency operation

Applications

•

- Atomic physics (X-ray spectroscopy and ion-atom collisions)
 Interview
 Inter
- X-ray astrophysics and solar physics
- Plasma physics (magnetic fusion diagnostics)
 Na

Disadvantage:

• low intensity in pulse

Interaction of highly charged ions with surface (secondary electron and ion emission) Secondary ion mass spectrometry Nanostructuring

MaMFIS technology perfectly fulfills the requirements

MaMFIS is a very efficient Charge Breeder with trap capacity of $10^5 - 10^6$ charges, in particular, for short half-life radionuclides

"The radioactive beam intensity spans ... from a few to over 10¹⁰ ions/s." F. Wenander, Charge breeding of radioactive ions with EBIS and EBIT, Int. Symposium on Electron Beam Ion Sources and Traps, April 7th-10th 2010, Stockholm, Sweden

Future Penning Trap Experiments at GSI / FAIR – The HITRAP and **MATS Projects**

K. Blaum^{1,2} and F. Herfurth¹ for the **HITRAP** and **MATS** Collaboration

¹GSI Darmstadt, ²Johannes Gutenberg-University Mainz

High-density microplasma research

EBIT vs. Magnetic Fusion Plasmas

- EBIT and magnetic fusion plasmas have similar densities ->> similar spectral emission
- Magnetic fusion plasmas often have several ion species EBIT plasmas have one or a few
- In fusion plasmas numerous atomic processes interact EBITs can isolate these processes
- Fusion plasmas have bulk motions and high temperatures EBIT plasmas are cold and stationary

Lawrence Livermore National Laboratory

Joel Clementson, LLNL

MaMFIS:

 $E_e \sim 10 \text{ keV}$ $j_e \sim 20 \text{ kA/cm}^2$ $n_e \sim 2 \times 10^{13} \text{ cm}^{-3}$

 $E_{e} \sim 40 \text{ keV}$ $j_e \sim 200 \text{ kA/cm}^2$ $n_e \sim 10^{14} \text{ cm}^{-3}$

High-frequency accelerators

for special applications

Ion source of MaMFIS-10 type: expected yield of $Kr^{25+} \sim 10^8$ ions per second

⁸⁴ Kr ^{25+,26+}	$132 Xe^{36+ \div 39+}$	184W42+÷46+ *	209Bi ^{48+ ÷ 53+}
3.36, 3.23	3.38 ÷ 3.67	4 ÷ 4.38	3.94 ÷ 4.45
3.10 ⁸	4 ⋅10 ⁸	4 ⋅10 ⁸	4.10 ⁸

Low-intensity, high-charge state ion beams

Nanostructuring

Basic idea – R. Schmieder, 1991

Basic research – University of California, Berkeley Livermore EBIT was moved to Berkeley in 2001

http://yebisu.ils.uec.ac.jp/surface.html

Prof. Dr. Marika Schleberger University Duisburg-Essen (Dresden EBIT)

Summary

- Novel method for production of highly charged ions in a rippled electron beam is developed and confirmed experimentally at electron energies E_{ρ} b 22.5 keV
- **Electron current density of about 20 kA/cm² is achieved** •
- X-ray radiation from highly charged ions of Ir⁶⁷⁺ and Xe⁵⁰⁺ is detected •
- Method allows one to produce any ions of arbitrary elements of the periodic table up to U⁹²⁺ ions in simple compact devices
- X-ray spectroscopy of all elements of the periodic table is feasible

Acknowledgements

The authors express deep gratitude to

- A. A. Smirnov and A. A. Karpukhin for help in the x-ray spectroscopic measurements,
- A. Mueller for giving opportunity to test the first MaMFIS in Institute for Atomic and Molecular Physics at Justus-Liebig-University Giessen,
- **O. K. Kultashev for his contribution to creation of electron optics,** All members of Krion Group of Joint Institute for Nuclear Research in Dubna, who help in experiments

THANK YOU FOR YOUR ATTENTION !