Hadron Modifications in Dense Nuclear Matter

G. Musulmanbekov JINR genis@jinr.ru

Content

- Motivation
- Hadrons in Nuclei
 - Strongly correlated quark model (SCQM) of the hadron structure
 - Building the nuclear structure
- Hadron modifications in a dense nuclear matter
- Understanding of exp. effects in HIC
 - Enhanced strangeness production
 - Horn-effect
 - Enhancement of dilepton mass spectra in the range 0.2 0.6
- Conclusion

Motivation

- How nuclear matter behave under high compression?
- How hadron structures are modified in a dense matter?
- What observables are the possible signals of these modifications?

Motivation

• Does hadronic matter transit into QGP?

Motivation

• Does hadronic matter transit into QGP?

Toy Model:

Strongly Correlated Quark Model

G. Musulmanbekov, 1995

Strongly Correlated Quark Model Motivations

pp – interactions at high energies

small-small quark configurations

intermediate-small quark configurations

large-large quark configurations

Strongly Correlated Quark Model (SCQM)

Strongly Correlated Quark Model (SCQM)

The Strongly Correlated Quark Model

Hamiltonian of the Quark – AntiQuark System

$$H = \frac{m_{\bar{q}}}{(1 - \beta_{\bar{q}}^{2})^{1/2}} + \frac{m_{q}}{(1 - \beta_{q}^{2})^{1/2}} + V_{\bar{q}q}(2x)$$

 m_{q}^{-} , m_{q}^{-} are the current masses of quarks, $\beta = \beta(x)$ – the velocity of the quark (antiquark), $V_{\overline{qq}}^{-}$ - is the quark–antiquark potential.

$$H = \left[\frac{m_{\bar{q}}}{(1 - \beta_{\bar{q}}^2)^{1/2}} + U(x)\right] + \left[\frac{m_{\bar{q}}}{(1 - \beta_{\bar{q}}^2)^{1/2}} + U(x)\right] = H_{\bar{q}} + H_{\bar{q}}$$

 $U(x) = \frac{1}{2}V_{\bar{q}q}(2x)$ is the potential energy of a single quark/antiquark.

Constituent Quarks – Topological Solitons

SCQM = Breather Solution of Sine- Gordon equation

$$\partial_{\mu}\partial^{\mu}\phi(x,t) + \sin\phi(x,t) = 0$$

Breather – oscillating soliton-antisoliton pair:

$$\phi(x,t)_{s-as} = 4 \tan^{-1} \left[\frac{\sinh\left(ut/\sqrt{1-u^2}\right)}{u\cosh\left(x/\sqrt{1-u^2}\right)} \right]$$

$$\varphi(x,t)_{s-as} = \frac{\partial \phi(x,t)_{s-as}}{\partial x}$$

is identical to our quark-antiquark system;

Breather – quark-antiquark pair Meson

What is Chiral Symmetry and its Breaking?

- Chiral Symmetry $SU(2)_{L} \times SU(2)_{R}$ for $\psi_{L,R} = u, d$
- The order parameter for symmetry breaking is quark or *chiral* condensate:

 $\langle \psi \psi \rangle \simeq - (250 \text{ MeV})^3, \quad \psi = u, d$

• As a consequence massless valence quarks (u, d) acquire dynamical masses which we call constituent quarks $M_C \approx 350 - 400 \text{ MeV}$

Quark Potential

Potential in soliton-antisoliton system: $U_{sol-asol} = m \cdot tanh^2(\alpha x)$

W. Troost, CERN Report, 1975; P. Vinsarelly, Acta Phys. Aust. Suppl., 1976

quark-antiquark pair Meson

Generalization to the 3 – quark system (baryons)

Nucleon - SU(3)_{color} singlet SU(3)_{color} - RGB

Interplay between constituent and current quark states Chiral Symmetry Breaking > Restoration

During the valence quarks oscillations:

$$|B\rangle = a_1|q_1q_2q_3\rangle + a_2|q_1q_2q_3\overline{q}q\rangle + a_3|q_1q_2q_3g\rangle + \dots$$

Quark Potential

U(x) > I – constituent quarks U(x) < II – current (relativistic) quarks

Nucleon

Quark color wave function

$$\psi(x)_{Color} = \sum_{i=1}^{3} a_i(x) |c_i\rangle$$

Where $|c_i\rangle$ are orthonormal states with *i*, *j* = R,G,B $\langle c_i | c_j \rangle = \delta_{ij}$

Nucleon wave function $\psi(x)_{Color} \rightarrow \frac{1}{\sqrt{6}} \sum_{ijk} e_{ijk} |c_i\rangle |c_j\rangle |c_k\rangle$

Parameters of SCQM for the Nucleon

• Parameters of Quark potential $U_{sol-asol} = m \cdot tanh^2(\alpha x)$

1. Mass of Consituent Quark

$$m = M_{Q(\overline{Q})}(x_{\max}) = \frac{1}{3} \left(\frac{m_{\Delta} + m_{N}}{2} \right) \approx 360 MeV,$$

2. Amplitude of VQs oscillations : $\alpha = x_{max} = 0.64 \text{ fm}$,

- Constituent quark sizes (parameters of gaussian distribution): $\sigma_{x,v}=0.24 \text{ fm}, \sigma_z=0.12 \text{ fm}$
- Parameters 2 and 3 are derived from the calculations of Inelastic Overlap Function (IOF) and σ_{tot} in p p and pp collisions.

"The wave packet solution of time-dependent Schrodinger equation for harmonic oscillator moves in exactly the same way as corresponding classical oscillator" *E. Schrodinger, 1926*

Quark Potential

Structure Function of Valence Quarks in Proton

SCQM \implies The Local Gauge Invariance Principle

Destructive Interference of color fields = **Phase rotation of the** quark w.f. in color space:

$$\psi(x)_{Color} \to e^{ig\theta(x)}\psi(x)$$

Phase rotation in color space \implies quark dressing (undressing) = the gauge transformation

 $A^{\mu}(x) \to A^{\mu}(x) + \partial^{\mu}\theta(x)$

Therefore, during quark oscillation its

color charge

momentum

mass

are continuously varying functions of time.

Relation SCQM to QCD

We reduce interaction of color quarks via **non-Abelian** fields to its **E-M** analog:

$$\begin{aligned} A_a^{\mu}(x) &\to A^{\mu}(x) \\ F_a^{\mu\nu} &= \partial^{\mu} A_a^{\nu} - \partial^{\nu} A_a^{\mu} - \lambda f^{abc} A_b^{\mu} A_c^{\nu} \to F_{ch}^{\mu\nu} = \partial^{\mu} A^{\nu} - \partial^{\nu} A^{\mu} \end{aligned}$$

Spin in SCQM

Conjecture: spin of constituent quark is entirely analogous to the angular momentum carried by classical circularly polarized wave:

$$\mathbf{J}_{\mathbf{Q}} = \mathbf{J}_{\mathbf{g}} = \int_{a}^{\infty} d^{3}r \left[\mathbf{r} \times (\mathbf{E} \times \mathbf{B}) \right]$$

Classical analog of electron spin – *F.Belinfante 1939; R. Feynman 1964; H.Ohanian 1986; J. Higbie 1988.*

Electron surrounded by proper E and B fields creates circulating flow of energy:

$S = \varepsilon_0 c^2 E \times B$

Total angular momentum created by this Pointing's vector

$$\mathbf{s} = \mathbf{L} = (\dots) \int_{a}^{\infty} d^{3} r \left[\mathbf{r} \times (\mathbf{E} \times \mathbf{B}) \right]$$

is associated with the entire spin angular momentum of the electron.

Spin in SCQM

1. Now we accept that

$$A^{\mu} = \{\varphi, \mathbf{A}\}$$

and intersecting E_{ch} and B_{ch} create around VQ color analog of Pointing's vector (circulating flow of energy)

$$S = \varepsilon_0 c^2 E_{ch} \times B_{ch}$$

2. Total angular momentum created by this Pointing's vector

$$\mathbf{s}_{\mathbf{Q}} = \mathbf{L}_{\mathbf{g}} = (\dots) \int_{a}^{\infty} d^{3}r [\mathbf{r} \times (\mathbf{E}_{\mathbf{ch}} \times \mathbf{B}_{\mathbf{ch}})]$$

is associated with the intrinsic spin of the constituent quark.

Quarks – Oscillating Vortices

- In the current quark state E_{ch} and B_{ch} are concentrated in a **small radius shell** around VQ.
- And so is for the vortices around VQs.

Polarized proton-proton collisions

Collision of Vorticing Quarks

"Krish" - effect

Summary on Quarks in Hadrons

- Constituent quarks are identical to solitons.
- Quarks and gluons inside nucleons are strongly correlated;
- Hadronic matter distribution inside hadrons is fluctuating quantity;
- Nucleons are not spherically symmetric (deformed).

Quark Arrangement inside Nuclei

Two Nucleon System in SCQM

Selection rules for binding two quarks of neighboring nucleons at a junction:

- $SU(3)_{Color}$ of different colors
- $SU(2)_{Flavor}$ of different flavors
- $SU(3)_{Spin}$ of parallel spins

Two Nucleon System in SCQM

Quark Potential Inside Nuclei

Quarks inside nucleus

Hadron modifications in a dense nuclear matter

1. Baryonic matter under compression

Hadron modifications in a dense nuclear matter

1. Baryonic matter under compression

Quark condensate around valence quarks, $\langle \psi \psi \rangle$

Hadron modifications in a dense nuclear matter 1. Baryonic matter under compression

Baryonic matter under compression

Higher compression makes nucleons to convert into

- delta-isobars
- hyperons
- higher mass resonances

Nucleon Transition into Hyperon Phase

How can nucleons be converted into hyperons?

• Inside highly compressed nuclear matter a strange quark-antiquark condensate is created.

And:

- **u** and **d** quarks in nucleons are replaced by **s**-quarks,
- *s*-antiquarks together with those *u* and *d* form kaons:

p, n \rightarrow hyperons + kaons

the heavier quark content of a baryon, the less spatial dimensions it occupies

Scenario to avoid collapse

Higher compression

 $n, p \Longrightarrow \Delta$

$u, d \Longrightarrow s, c, \dots, n, p \Longrightarrow \Lambda, \Sigma, \Xi, \Omega, \dots$

Hadronic liquid

Neutron star

Gravitational compression

NS core

Hadron modifications in a dense nuclear medium

1. Hadronic matter at high density and temperature

Particle production in a hot and dense fireball

- π -production is suppressed
- vector mesons: $\rho, \omega, \varphi, K^*, \dots$ incompressible (effective cores)
- *ρ*, ω 'melting': mass dropping and width-widening;
 dilepton spectra
- Fireball 'cooling' \rightarrow increased π yield

Hadrons in a high dense and temperature medium Model Consequences

- 1. Baryons transform to isobars then to hyperons
- **2.** π -production is suppressed
- 3. Particle generation inside hot and dense fireball is realized mainly via vector mesons ρ , ω , φ , K^* , ...
- 4. ρ , ω 'melting': mass dropping and width-widening;
- 5. Fireball evolution:

Hadron-Resonance Liquid → Hadron-Resonance Gas

Hadrons in a high dense and temperature medium

1. Hadrons – topological solitons?

- 2. Conservation of topological charge
- 3. Deconfinement is forbidden \rightarrow no room for QGP

Space-time Evolution of HIC

Experiments

Energy range: $\sqrt{s} = 3 - 11 \text{ GeV}$ most interesting!

- Enhanced yield of K⁺, φ, (multi)strange baryons
 experiments: KaoS, AGS, NA49 at low energies of SPS, (BES RHIC)
- Horn-effect irregular behaviour of K^+/π^+ experiments: NA49, STAR (BES RHIC)
- **Dilepton production** experiments: DLS, HADES, CERES, PHENIX
- **Projects:** FAIR/CBM, NICA/MPD, BM&N

Enhanced yield of K⁺ in subthreshold kaon production

KaoS at SIS

Transport models with NN-interactions

- underestimate yield of K⁺ by a factor of 6
- overestimate yield of K⁻

J. Phys. G: Nucl. Part. Phys. 27 (2001) 275

RQMD:

- K⁺ N repulsive potential
- K⁻N attractive potential
- Momentum dependent Skyrme forces
- Compression parameter

✓ soft ~ 200 MeV

✓ hard ~ 380 MeV

Enhansement of stangeness

- Clear evidence for "horn" structure in K^+/π^+ at ~30 A GeV !
- Non-horn structure in K^-/π^-

Enhancement of strangeness φ-mesons

Enhanced yield of hyperons

PbPb vs pBe SPS

Thank you for your attention!